
– 1 –

A Formal Approach to Service-Oriented Modelling†

José Luiz Fiadeiro1, Antónia Lopes2, Laura Bocchi1 and João Abreu1

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK
{bocchi,jose,jpad2}@mcs.le.ac.uk

2 Department of Informatics, Faculty of Sciences, University of Lisbon
Campo Grande, 1749-016 Lisboa, PORTUGAL

mal@di.fc.ul.pt

Abstract. This paper provides an overview of a formal approach to service-
oriented modelling that we have been developing within the SENSORIA pro-
ject [39]. A modelling language – SRML – and a number of formal techniques
that address qualitative and quantitative analysis support this approach, all of
which are based on mathematical foundations. Our focus will be on the lan-
guage primitives that SRML offers for modelling business services and activi-
ties, and on the methodological approach that SRML supports.

1 Introduction

Service-oriented computing (SOC) is emerging as the paradigm that will support the
new generation of global computers (e.g., the web, the grid), enabling the flexible
interconnection of autonomously developed and operated applications [5]. Among
the distinguishing aspects of this new paradigm is the fact that the ‘construction’ of
service-oriented applications is focused not so much on the production of code but on
service discovery, selection and binding — steps that might occur automatically, at
run-time. Because modelling is an essential activity in software construction [18], it
is important that developers have available languages that are appropriate for design-
ing applications under this new paradigm.

This paper provides an overview of a formal approach to service-oriented model-
ling that we have been developing within SENSORIA [39] – an Integrated Project
funded under the ‘Global Computing’ (GC) initiative. A modelling language –
SRML – and a number of formal techniques that address qualitative and quantitative
analysis support this approach, all of which are based on mathematical foundations.
Our focus in this paper is on the language primitives that SRML offers for modelling
business services and activities, and on the methodological approach that SRML
supports.

† This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA: Software

Engineering for Service-Oriented Overlay Computers.

– 2 –

SRML addresses Service-Oriented Computing (SOC) as a new paradigm in which
interactions are no longer based on fixed or programmed exchanges of products with
specific parties – what is known as clientship in object-oriented programming – but
on the provisioning of services by external providers that are procured on the fly
subject to a negotiation of service level agreements (SLAs). More precisely, the pro-
cesses of discovery and selection of services as required by an application are not
coded (at design time) but performed by the middleware according to functional and
non-functional requirements (SLAs). The process of binding the client application
and the selected service is not performed by skilled software developers, but also at
run time, by the middleware. Because the set of available services changes as provid-
ers update their portfolios, and service-level agreements may be context-dependent,
different instances of the same application may bind to different services and operate
according to different SLAs resulting from different negotiations.

SOC brings to the front many aspects that have already been discussed about com-
ponent-based development (CBD), for instance in [24]. Given that different people
have different perceptions of what SOC and CBD are, we will simply say that, in this
paper, we will take CBD to be associated with what we called the ‘static’ engineering
approach. For instance, starting from a universe of (software) components as ‘struc-
tural entities’, Broy et al view a service as a way of orchestrating interactions among a
subset of components in order to obtain some required functionality – “services co-
ordinate the interplay of components to accomplish specific tasks” [17]. As an exam-
ple, we can imagine that a bank will have available a collection of software compo-
nents that implement core functionalities such as computing interests or charging
commissions, which can be used in different products such as savings or loans.

SOC differs from this view in that there is no such fixed system of components that
services are programmed to draw from but, rather, an evolving universe of software
applications that service providers publish so that they can be discovered by (and
bound to) business activities as they execute. For instance, if documents need to be
exchanged as part of a loan application, the bank may decide to procure an external
courier service for each loan application that is processed, possibly taking into ac-
count the address to which the documents need to be sent, speed of delivery, relia-
bility, and so on. Another important difference can be found in the nature of the
interactions, which in SOC tend to be ‘conversational’ in the sense that they follow a
message-exchange protocol that reflects a business-oriented mode of composition [7].

One of our key concerns in defining SRML was precisely the need to distinguish
between these two different modes of composition (as further discussed in Section 4).
In what concerns SOC, we decided to follow the basic principles and structures put
forward by the Service Component Architecture (SCA) [46]. However, SCA ad-
dresses low-level design in the sense that it provides an assembly model and binding
mechanisms for service components and clients programmed in specific languages,
e.g. Java, C++, BPEL, or PHP. Instead, what we find in SRML are primitives that
address high-level design and support a shift of emphasis from programming to (busi-
ness) modelling, from component interoperability to business integration. This means
that we will be discussing SOC at a level of abstraction that is different from most
other work on Web services (e.g. [7, 37]) and Grid computing (e.g. [29]), including

– 3 –

the languages and standards that have been put forward by organisations such as
OASIS (www.oasis-open.org) and W3C (www.w3.org). SRML is ‘technology ag-
nostic’ in the sense that it does not commit to any specific language or platform for
programming and composing services.

Several aspects of (earlier versions of) SRML and its associated methodology have
already been presented at a number of conferences and workshops (e.g. [2,10,25]).
This paper integrates all these aspects and presents a coherent view of the language in
its final version. Although our approach is formal, details of its mathematical seman-
tics have been left out; they can be found instead in [1,27] (see also the shorter ac-
counts of fragments of this semantics that have been published in [3,26,28]). There-
fore, the paper is mostly mathematics-free with the exception of Section 3.2 and parts
of Section 5.

The paper proceeds as follows. In Section 2, we provide an overview of how we
support the transition from business requirements to high-level design models using a
(service-oriented) extension of use-case diagrams. In Section 3, we put forward the
coordination model on which SRML is based. In Section 4, we present the modelling
primitives of SRML. In Section 5, we discuss our model of configuration manage-
ment. Finally, in Section 6, we discuss related approaches. As a running example, we
use a mortgage brokerage service that is part of a larger financial case study devel-
oped within SENSORIA.

2 From Use-Case Diagrams to Service and Activity Modules

Before we introduce the modelling primitives that SRML offers for high-level (busi-
ness) design, it is important to show how traditional use-case diagrams can be ex-
tended so as to support the specificities of service-oriented software engineering. In
order to illustrate our approach, we consider the (simplified) case of a financial ser-
vices organisation that wants to offer a mortgage-brokerage service GETMORTGAGE.
This service involves the following steps:

• Proposing the best mortgage deal to the customer that invoked the service;
• Taking out the loan if the customer accepts the proposal;
• Opening a bank account associated with the loan if the lender does not provide

one;
• Getting insurance if required by either the customer or the lender.

In our example, the selection of a lender is restricted to firms that are considered
reliable. For this reason, we consider an UPDATEREGISTRY activity supporting the
management of a registry of reliable lenders. This activity relies on an external certi-
fication authority that may vary according to the identity of the lender.

– 4 –

2.1 Use-case diagrams for service-oriented modelling

Traditionally, use-case diagrams are used for providing an overview of usage re-
quirements for a system that needs to be built. Our aim is to address a novel devel-
opment process that does not aim at the construction of a ‘system’ but, rather, of two
kinds of software applications – services and activities – that can be bound to other
software components either statically (in a component-based way) or dynamically (in
a service-oriented way):

• Activities correspond to applications developed according to requirements pro-
vided by a business organisation, e.g. the applications that, in a bank, imple-
ment the financial products that are made available to the public, which are
triggered when the corresponding requests are published, (say when a client of
the bank requests a loan at a counter or through on-line banking). Activities
may be implemented over given components (for instance, a component for
computing and charging interests) in a traditional CBD way, but they can also
rely on services that will be procured on the fly using SOC (for instance, an in-
surance for protecting the customer in case he/she is temporarily prevented
from re-paying the loan due to illness or job loss).

• Services differ from activities in that they are not developed to satisfy specific
business requirements of a given organisation but to be published (in service
repositories) in ways that allow them to be discovered when a request for an
external service is published in the run-time environment. As such, they are
classified according to generic service descriptions – what in Section 4.1.3 we
call ‘business protocols’ – that are organised in a hierarchical ontology to fa-
cilitate discovery.

The distinction between these two kinds of applications reflects the existence of dif-
ferent stakeholders in service-oriented development (see [31] for a wider discussion)
and has two important methodological implications. On the one hand, services and
activities have the particularity that each has a single usage requirement. Hence, they
can be perceived as use cases. On the other hand, from a business point of view, the
services and activities to be developed by an organisation constitute logical units.

In our example, UPDATEREGISTRY is treated as an activity in the sense that it is
driven by the requirements of the financial services organisation itself – it will be
stored in an activity repository and will be invoked by internal applications (e.g., a
web interface). On the other hand, GETMORTGAGE is meant to be placed in a service
repository for being discovered and bound to activities running ‘globally’, i.e. not
necessarily in the financial services organisation. Both UPDATEREGISTRY and GET-
MORTGAGE can be seen to operate as part of a same business unit and, hence, it makes
sense to group them in the same use-case diagram – use-case diagrams are useful for
structuring usage requirements of units of business logic.

In order for use-case diagrams to reflect the methodological implications of our
approach, we proposed in [10] a number of extensions to the standard notation.
Figure 1 uses the mortgage example to illustrate our proposal: the diagram represents
a business logical unit with the two use cases identified before. The rectangle around

– 5 –

the use cases, which in traditional use-case diagrams indicates the boundary of the
system at hand, is used to indicate the scope of the business unit. Anything within the
box represents functionality that is in scope and anything outside the box is con-
sidered not to be in scope.

For the UPDATEREGISTRY activity, the primary actor is Registry Manager; its goal
is to control the way a registry of trusted lenders is updated. The registry itself is
regarded as a supporting actor. The Certification Authority on which UPDATEREGIS-
TRY relies is also considered a supporting actor in the use case because it is an external
service that needs to be discovered based on the nature of the lender being considered.

In the GETMORTGAGE service, the primary actor is a Customer that wants to obtain
a mortgage. The use case has four supporting actors: Lender, Bank, Insurance and
Registry. The Lender represents the bank or building society that lends the money to
the customer. Because only reliable firms can be considered for the selection of the
lender, the use case involves communication with Registry. When the lender does not
provide a bank account, the use case involves an external Bank for opening a new
account. Similarly, the use case involves interaction with an Insurance provider for
situations where the lender requires insurance or the customer decides to get one.

Figure 1: Service-oriented use-case diagram for Mortgage Finder

– 6 –

As in traditional use cases, we view an actor as any entity that is external to the
business unit and interacts with at least one of its elements in order to perform a task.
As motivated above, we can distinguish between different kinds of actors, which led
us to customise the traditional icons as depicted in Figure 1. These allow us to dis-
criminate between user/requester and resource/service actors.

User-actors and requester-actors are similar to primary actors in traditional use-
case diagrams in the sense that they represent entities that initiate the use case and
whose goals are fulfilled through the successful completion of the use case. The
difference between them is that a user-actor is a role played by an entity that interacts
with the activity, while a requester-actor is a role played by one or more software
components operating as part of the activity that triggers the discovery of the service.

For instance, the user-actor Registry Manager represents an interface for an em-
ployee of the business organisation that is running Mortgage Finder whereas the
requester-actor Customer represents an interface for a service requester that can come
from any external organisation. A requester-actor can be regarded as an interface to
an abstract user of the functionality that is exposed as a service; it represents the range
of potential customers of the service and the requirements typically derive from stan-
dard service descriptions stored in service repositories such as the UDDI. In SRML,
these descriptions are given by business protocols (discussed in Section 4.1.3) and
organised in a shared ontology, which facilitates and makes the discovery of business
partners more effective. The identification of requester-actors may take advantage of
existing descriptions in the ontology or it may identify new business opportunities. In
this case, the ontology would be extended with new business protocols corresponding
to the new types of service.

Resource-actors and service-actors of a use case are similar to supporting actors in
traditional use-case diagrams in the sense that they represent entities to rely on in
order to achieve the underlying business goal. The difference is that a service-actor
represents an outsourced functionality to be procured on the fly and, hence, will typi-
cally vary from one instance of the use case to another, whereas a resource-actor is an
entity that is statically bound and, hence, is the same for all instances of the use case.
Resource-actors are typically persistent sources/repositories of information. In gen-
eral, they are components that are already available to be shared within a business
organisation. Such organisational aspects are explored in [12] from the point of view
of virtual organisation breeding environments in the sense of [19].

The user- and resource-actors, which we represent at the top and bottom of our
specialised use-case diagrams, respectively, correspond in fact to the actors that are
presented on the left and right-hand side in traditional use-case diagrams, respec-
tively. In contrast, the ‘horizontal dimension’ of the new diagrams, comprising re-
quester- and service-actors, captures the types of interactions that are specific to SOC.

We assume that every use case corresponds to a service-oriented artefact and that
the association between a primary actor and a use case represents an instantia-
tion/invocation. For this reason, in this context, we constrain every use case to be
associated with only one primary actor (either a requester or a user).

– 7 –

2.2 Deriving the structure of SRML modules

The proposed specialisations of use-case diagrams allow us to identify and derive a
number of aspects of the structure of SRML modules – the main modelling primitives
that we use for services and activities. Each use case, representing either a service or
an activity, gives rise to a SRML service module or activity module, respectively.
Figure 2 presents the structure of the modules derived from the use-case diagram in
Figure 1.

A SRML module provides a formal model of a service or activity in terms of a
configuration of ‘interfaces’ (formal specifications) to the parties involved. In the
case of activity modules:

• A serves-interface (at the top-end of the module) identifies the interactions that
should be maintained between the activity and the rest of the system in which
it will operate. This interface results from the user-actor of the corresponding
use case.

• Uses-interfaces (at the bottom-end of the module) are defined for those (persis-
tent) components of the underlying configuration that the activity will need to
interact with once instantiated. These interfaces result from the resource-
actors of the corresponding use case and provide formal descriptions of the be-
haviour required of the actual interfaces that need to be set up for the activity
to interact with components that correspond to (persistent) business entities.

• Requires-interfaces (on the right-hand boundary of the module) are defined for
services that the activity will have to procure from external providers if and
when needed. Typically, these reflect the structure of the business domain it-
self in the sense that they reflect the existence of business services provided
outside the scope of the local context in which the activity will operate. These
interfaces result from the service-actors of the corresponding use case.

• Component and wire interfaces (inside the module) are defined for orchestrat-
ing all these entities (actors) in ways that will deliver stated user requirements
through the serves-interface. These interfaces are not derived from the use-
case diagram but from the description of the corresponding business require-
ments, i.e. they result from a design step. Typically, a designer will choose
pre-defined patterns of orchestration that reflect business components that will
be created in support of the activity or chosen from a portfolio of components
already available for reuse within the business organisation. The choice of the
internal architecture of the module (components and wires) should also reflect
the nature of the business communication and distribution network over which
the activity will run.

In the case of a service module, a similar diagrammatic notation is used except that
a provides-interface is used instead of a serves-interface:

• The provides-interface should be chosen from the hierarchy of standard busi-
ness protocols because the purpose here is to make the service available to the
wider market, not to a specific client. It derives from the requester-actor of the
corresponding use case.

– 8 –

• Some of the component interfaces will correspond to standard components that
are part of the provider’s portfolio. For instance, these may be application
domain dependent components that correspond to typical entities of the busi-
ness domain in which the service provider specialises.

• Uses-interfaces should be used for those components that the service provider
has for insuring persistence of certain effects of the services that it offers.

In addition, both activity and service modules include:
• An internal configuration policy (indicated by the symbol), which identifies

the triggers of the external service discovery process as well as the initialisa-
tion and termination conditions of the components that instantiate the compo-
nent-interfaces.

• An external configuration policy (indicated by the symbol),
which consists of the variables and constraints that determine the quality pro-
file of the activity to which the discovered services need to adhere.

Figure 2: The SRML modules for the activity UPDATEREGISTRY and the service GET-

MORTGAGE

The language primitives that are used in SRML for defining all these interfaces as
well as the configuration policies are detailed in Section 4. A summary of the graphi-
cal notation can be found in Appendix A at the end of the paper.

– 9 –

3 The Coordination Model

The interfaces of a SRML module identified through a use-case diagram reflect busi-
ness dependencies of services or activities, not the interfaces that software compo-
nents offer to be interconnected: modules are not models of components but of busi-
ness processes. In this section, we detail the coordination model that SRML adopts
for component interconnection, i.e. we address the nature of the interfaces that com-
ponents offer and the way wires interconnect them. We also outline a formalisation
of this model, full details of which are available from [1].

3.1 Conversational interactions

Typically, in CBD, one organises component interfaces (what they offer to and expect
from the rest of the system) in ports, which include the protocols that regulate mes-
sage exchange at those ports. In SRML, we have fixed the nature of the interactions
and protocols followed by components and wires to reflect the typical business con-
versations that arise in SOC [7]. We distinguish the following types of interactions:

r&s
The interaction is initiated by the co-party, which expects a reply. The co-party
does not block while waiting for the reply.

s&r
The interaction is initiated by the party and expects a reply from its co-party.
While waiting for the reply, the party does not block.

rcv The co-party initiates the interaction and does not expect a reply.

snd The party initiates the interaction and does not expect a reply.

ask The party synchronises with the co-party to obtain data.

rpl The party synchronises with the co-party to transmit data.

tll The party requests the co-party to perform an operation and blocks.

prf The party performs an operation and frees the co-party that requested it.

Interactions involve two parties and can be in both directions, i.e. they can be con-
versational. Interactions are described from the point of view of the party in which
they are declared, i.e. ‘receive’ means invocations received by the party and sent by
the co-party, and ‘send’ means invocations made by the party. Interactions can be
synchronous, implying that the party waits for the co-party to reply or complete, or
asynchronous, in which case the party does not block. Typically, synchronous (block-
ing) interactions occur with persistent components, reflecting interconnections based
on the exchange of products (clientship as in OO). Interactions among the (internal)
components responsible for the orchestration are non-blocking so that they can en-
gage in multiple, concurrent conversations with different parties.

Interactions of type r&s and s&r are conversational, i.e. they involve a number of
events exchanged between the two parties:

– 10 –

interaction The event of initiating interaction.
interaction The reply-event of interaction.
interaction The commit-event of interaction.
interaction The cancel-event of interaction.
interaction The revoke-event of interaction.

The meaning of the these events should be self-explanatory: the reply-event is sent
by the co-party, offering a deal or declining to offer one; in the first case, the party
that initiated the conversation may either commit to the deal or cancel the interaction;
after committing, the party can still revoke the deal, triggering a compensation
mechanism. Every conversational interaction has an associated pledge – a condition
that is guaranteed to hold from the moment a positive reply-event occurs until either
the commit-event occurs, the cancel-event occurs or the validity period associated
with the offer expires, whichever happens first. We denote the pledge associated with
interaction by interaction and its validity period by interaction. See Figure 3 for
some of the possible scenarios (explained further below) that can arise when the co-
party replies positively and offers a deal.

All interactions can have parameters for transmitting data when they are initiated –
declared as . Conversational interactions can also have parameters for carrying a
reply – declared as  – or for carrying data if there is a commit, a cancel or a revoke
– declared as ,  and  respectively. In particular, every reply-event interaction
has two distinguished parameters:

• Reply is a Boolean parameter that indicates whether the reply is positive,
meaning that the co-party is ready to proceed, or negative, in which case the
interaction terminates. That is, interaction.Reply is false if, for some reason
related with the business logic, the request interaction can not be fulfilled.

• UseBy is a parameter that, in the case of a positive reply, indicates the expiry
date of the pledge (i.e. the deal being offered). The value of this parameter
(including the value +∞) is obtained by adding the value of the configuration
variable (non-functional attribute) interaction to the instant at which interac-
tion is sent. As discussed in Section 4.2.2, configuration variables can be
subject to negotiation during the discovery/selection process.

Interactions can be seen as ports in the traditional CBD sense, the associated events
representing the interface of the components. The sequence diagrams in Figure 3
illustrate the protocol associated with every interaction for which the reply is positive.
In the case on the left, the initiator commits to the pledge; a revoke may occur later
on, compensating the effects of the commit-event interaction (this can however be
constrained by the business logic, for instance, by defining a deadline for the compen-
sation to be available). In the middle, there is a cancellation; in this situation, a re-
voke is not available. On the right, the expiry time occurs without a commit or cancel
having occurred; this implies that no further events for that interaction will occur. In
Section 4.1, we give examples of the intended usage of these primitives.

– 11 –

Figure 3: The protocol of conversational interactions when the reply is positive

Events occur during state transitions in both parties involved in the interaction: we
use event! in order to refer to the publication of event in the life of the initiating party,
and event? (resp. event¿) for its execution (resp. being discarded) by the party that
receives it. The occurrences of event! and event? (or event¿) may not coincide in
time: we consider that there may exist a delay between publishing and delivering an
event. The value of this delay is given by the configuration variable Delay associated
with the wire through which the events are transmitted (see Figure 4). In this paper,
we do not explore in any depth the use of such delays. See instead [9] for a formal
model over which timing aspects of service provision can be analysed through a tool
like PEPA [32].

Figure 4: The intuitive semantics of delays.

One of the ways that we have found useful for identifying the interactions that are
relevant for defining a given activity or service module is to draw message sequence
diagrams that characterise the interconnections required between the different parties.
For instance, the message sequence diagram in Figure 5 concerns the workflow that is
initiated by the initial request received by GETMORTGAGE from the customer CR.

3.2 A formal model

The coordination model of SRML, summarised below, is defined in terms of states
and state transitions (see [1] for a detailed definition). We work over configurations
of global computers defined by a set COMP of components (applications deployed

– 12 –

over execution platforms) linked through wires (e.g. interconnections between com-
ponents over a given communication network), the set of which we denote by WIRE.

A state consists of:
• The set PND of the events that are pending in the wires, i.e. the events that

have been published but not yet delivered by the wires;
• The set INV of the events that have been invoked, i.e. those that were delivered

by the wires and are stored locally by the components that received them, wait-
ing to be processed;

• The time at that state;
• The set of pledges that hold in that state;
• A record of all events that have been published (!), delivered (¡), executed (?)

or discarded (¿);
• The values of all event parameters and configuration attributes.

Figure 5: Identifying interactions within GETMORTGAGE.

In this model, state transitions are characterised by what we call a computation step.
A computation step consists of:
• An ordered pair of states SRC (source) and TRG (target);
• A subset DLV of PNDSRC consisting of the events that are pending in the source

state and selected for delivery during that step;

– 13 –

• A set PRC that selects from INVSRC one event for every component that has
events waiting to be processed;

• A subset EXC of PRC consisting of the events that are actually executed (the
others are discarded);

• A set PUB consisting of the events that are published during that step together
with a function that assigns a value to the parameters of each such event;

such that:
• The set INVTRG of the events in the target state that have been invoked are those

in DLV (i.e. delivered during the step) together with those already in INVSRC

that have not been selected by PRC to be processed;
• The set PNDTRG of the events that are pending at the target state are those in

PUB (i.e. published during the step) together with those of PNDSRC that have
not been selected by DLV to be delivered.

That is, the set of events that are pending in wires is updated during each computa-
tion step by removing the events that the wire delivers during that step – DLV – and
adding the events that each component publishes – PUB. We assume that all the
events that are selected by DLV are actually delivered to the receiving component, i.e.
each wire is reliable – see [1] for a model that considers unreliable wires.

At each step, components may choose to process one of the events waiting to be
processed; this is captured by the function PRC. The fact that each component can
only process one event at a time is justified by the assumption that the internal state of
the components is not necessarily distributed and therefore no concurrent changes can
be made to their states.

The set of events that are waiting to be processed by every component is updated
in each step by removing the event that is processed and adding the events that are
actually delivered to that component. Figure 6 is a graphical representation of the
flow of events that takes place during a computation step from the point of view of
components A and B connected by a wire W.

4 The Modelling Primitives of SRML

4.1 Behaviour specification languages

The entities involved in service and activity modules – component interfaces, re-
quires-interfaces, provides-interfaces, uses-interfaces, serves-interfaces and interac-
tion protocols – can be defined in SRML independently of one another as design-time
reusable resources. For that purpose, we have defined a number of different but re-
lated languages, which we present and illustrate in this section using fragments of our
running example. The full specification is available in Appendix B.

– 14 –

Figure 6: The event flow from the point of view of a wire W between parties A and B.

4.1.1 Signatures

All the languages that we use have in common the declaration of the interactions (in
the sense of Section 3.1) in which the corresponding entity can be involved – what we
call a signature. These declarations are strictly local to the entity, i.e. we cannot rely
on global names to establish interconnections between entities, which is precisely the
role of the wires. As an example, consider the component-interface MA, which we
declared to be of type MortgageAgent. The corresponding signature is:

INTERACTIONS
 r&s getProposal
  idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
  proposal:mortgageproposal
 cost:moneyvalue

 s&r askProposal
  idData:usrdata,

 income:moneyvalue,
  proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 s&r getInsurance
  idData:usrdata,
 loanData:loandata,
  insuranceData:insurancedata

– 15 –

 s&r openAccount
  idData:usrdata,
 loanData:loandata,
  accountData:accountdata
 s&r signOutLoan
  insuranceData:insurancedata,
 accountData:accountdata,
  contract:loancontract
 snd confirmation

  contract:loancontract
 ask getLenders(prefdata):setids
 tll regContract(loandata,loancontract)

Interactions are classified according to the types defined in Section 3.1. For in-
stance, getProposal is declared to be of type r&s, i.e. as being an asynchronous con-
versational interaction that is invoked by the co-party. This interaction has three
parameters that carry data produced by the co-party at invocation time – the user
profile, income and preferences for the mortgage. Such parameters are declared
under the symbol . Parameters that are used by the mortgage agent for sending the
reply are declared under the symbol  – in the case at hand, the details of mortgage
proposal and the cost of the mortgage-brokerage service for taking out the loan if the
customer accepts the proposal.

The co-party of the mortgage agent in this interaction is not named (the same ap-
plies to all other interactions, as discussed in Section 3.1). This makes it possible to
specify the behaviour that can be assumed of the mortgage agent at the interface,
independently of the way it is instantiated within any given system.

The signature of MortgageAgent includes seven additional interactions, all of
which are self-initiated. While askProposal, getInsurance, openAccount, signOut-
Loan and confirmation are asynchronous (i.e. of type s&r or snd), the interactions
getLenders and regContract are synchronous. In the case of getLenders, the mort-
gage agent has to synchronise with the co-party to obtain data (the identification of
the lenders that meet the user preferences for the mortgage) whereas, in the case of
regContract, the party requests the co-party to perform an operation (register a loan
contract) and blocks until the operation is completed.

4.1.2 Business roles

In SRML, interfaces to service components are typed by business roles. A business
role is specified by defining the way in which the interactions declared in the signa-
ture are orchestrated. For that purpose, we offer a textual declarative language based
on states and transitions that is general enough to support languages and notations that
are typically used for orchestrating workflows such as BPEL and UML statecharts.

In a typical business role, a set of variables provides an abstract view of the state of
the component and a set of transitions models the actions performed by the compo-
nent, including the way it interacts with its co-parties. For instance, the local state of
a mortgage agent is defined as follows:

– 16 –

local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,
 PROPOSAL_ACCEPTED, SIGNING, FINAL]
 lenders:setids
 needAccount, needInsurance:bool
 insuranceData:insurancedata, accountData:accountdata

We use s to model control flow, including the way the component reacts to trig-
gers. The other state variables are used for storing data that is needed at different
stages of the orchestration. Each transition has an optional name and a number of
possible features. For instance:

transition GetClientRequest
triggeredBy getProposal
guardedBy s=INITIAL
effects lenders’=getLenders(prefdata)
 ∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL
 ∧ empty(lenders’) ⊃ s’=FINAL
sends ¬empty(lenders’) ⊃ askProposal
 ∧ askProposal.idData=getProposal.idData
 ∧ askProposal.income=getProposal.income
 ∧ empty(lenders’) ⊃ getProposal
 ∧ getProposal.Reply=false

• A trigger is either the processing of an event, like in the example above, or a
state condition. The former means that the transition is triggered when the
component processes the event, and the latter when the condition changes
from false to true.

• A guard is a condition that identifies the states in which the transition can
occur – in GetClientRequest, the state INITAL. If the trigger is an event and
the guard is false, the event is processed but not executed (it is discarded).

• A sentence specifies the effects of the transition on the local state. Given a
state variable var, we use var’ to denote the value that it takes after the tran-
sition. In the case above, we change the value of s and store the identifica-
tion of the lenders that match the users-preferences. This data is obtained
from a co-party through the synchronous interaction getLenders. As already
mentioned, this co-party is not identified in the business role: we will see
that, because of the way components are wired, the co-party in this interac-
tion within the module GETMORTGAGE is RE of type Registry – the interface
of a persistent component.

• Another sentence specifies the events that are published during the transition,
including the values taken by their parameters. In this sentence, we use vari-
ables and primed variables as in the ‘effects’-section. In the example, if
there is at least one lender that matches the user-preferences, the interaction
askProposal is initiated in order to get a mortgage proposal from a lender.
Once again, the corresponding co-party is not named: we will see that, within
the module GETMORTGAGE, this is an external service provided by a bank or
building society that needs to be discovered and bound to the mortgage
agent. If no lenders are found that match the user-preferences, a negative
reply to getProposal is published.

– 17 –

Another example of a transition is GetLenderProposal:
transition GetLenderProposal

triggeredBy askProposal
guardedBy s=WAIT_PROPOSAL
effects needAccount’=askProposal.accountIncluded
 ∧ needInsurance’=askProposal.insuranceRequired
 ∧ askProposal.Reply ⊃ s’=WAIT_DECISION
 ∧ ¬askProposal.Reply ⊃ s’=FINAL
sends getProposal
 ∧ getProposal.Reply=askProposal.Reply
 ∧ getProposal.proposal=askProposal.proposal
 ∧ getProposal.cost=(CHARGE/100+1)*750

In this case, the transition is triggered by the processing of the reply to askProposal
and the effect is to send a reply to getProposal (the parameter Reply of askProposal
and the proposal received in proposal are both transmitted by the reply-event). The
transition also defines the cost of the mortgage-brokerage service for taking out the
loan if the customer accepts the proposal.

Specifications may also declare configuration variables, which are discussed in
Section 4.2.2. These variables are instantiated at run time, when a new session of the
service starts, possibly as a result of the negotiation process involved in the discovery
of the service. In the case of MortgageAgent, we declare the configuration variable
CHARGE that determines an additional charge over the base price of the mortgage-
brokerage service. In Section 4.2.2 we will see that, in the module GETMORTGAGE,
this extra-charge relates to the period of validity of the loan proposal offered by the
service, which is also subject to negotiation.

 SLA VARIABLES
 CHARGE:[0..100]

Notice that, through business roles, SRML offers a very flexible way to model con-
trol flow because transitions are decoupled from interactions and changes to state
variables, which offers a declarative style of defining orchestrations. For instance, the
transition TimeoutProposal defined below is triggered once the reply to getProposal
expires; in this situation, the component informs the lender that the proposal was not
accepted and moves to the final state.

 transition TimeoutProposal
 triggeredBy now>getProposal.UseBy
 guardedBy s=WAIT_DECISION
 effects s’=FINAL
 sends askProposal

Other aspects of this declarative style include the possibility of leaving certain as-
pects under-specified that can be refined at later stages of the development process.
This is why transitions are specified as sentences using a logical notation.

More traditional (control-oriented) notations can be used instead for defining or-
chestrations. In Figure 7 we show how part of the orchestration of MortgageAgent
can be defined using a UML statechart. Because statecharts focus only on control
flow, we would need to provide a separate specification for the data flow. In [14], we
have also shown how fragments of BPEL can be encoded in our language.

– 18 –

Figure 7: Using UML statecharts for defining orchestrations in business roles

– 19 –

4.1.3 Business protocols

In SRML, a module may declare a number of requires-interfaces, each of which pro-
vides an abstraction (type) for a service that will have to be procured from external
providers, if and when needed – what, in SCA, corresponds to an “External Service”.
In the case of a service module, a provides-interface is also declared for describing the
service that is offered by the module, corresponding to what in SCA is called an “En-
try Point”.

Both types of external interfaces are typed with what we call business protocols, or
just protocols if it is clear from the context what kind of protocols we are addressing.
Like business roles, protocols include a signature. The difference is that, instead of an
orchestration, we provide a set of properties. In the case of a requires-interface, these
are the properties required of the external service that needs to be procured. In the
case of a provides-interface, we specify the properties offered by the service orches-
trated by the module.

In the case of business protocols used for specifying the required services, we de-
clare the interactions in which the external entity (to be procured) must be able to be
involved as a (co-)party and we specify the protocol that it has to adhere to. For in-
stance, the service GETMORTGAGE expects the following behaviour from a lender:

BUSINESS PROTOCOL Lender is

 INTERACTIONS
 r&s requestMortgage
  idData:usrdata,

 income:moneyvalue,
  proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 r&s requestSignOut
  insuranceData:insurancedata,
 accountData:accountdata,
  contract:loancontract
 BEHAVIOUR
 initiallyEnabled requestMortgage?

 requestMortgage? enables requestSignOut?
 requestSignOut.Reply after requestSignOut?

Notice that the interactions are again named from the point of view of the party
concerned – the lender in the case at hand. The specified properties require the fol-
lowing:

• In the initial state, the lender is ready to engage in requestMortgage.
• After receiving the commitment to the mortgage proposal, the lender be-

comes ready to engage in requestSignOut.
• The reply to requestSignOut is always positive.

The language in which these properties are expressed uses a set of patterns that
capture commonly occurring requirements in the context of service-oriented interac-
tions. Their semantics have been defined in terms of formulas of the temporal logic
UCTL [6]. Intuitively, they correspond to traces of the form depicted in Figure 8:

– 20 –

• initiallyEnabled e: The event e is enabled (cannot be discarded) in the initial
state and remains so until it is executed.

• a after e: a holds forever after event e is executed.
• a enables e until b: The event e cannot be executed before a holds and remains

enabled after a becomes true until it is either executed or b becomes true (if
ever).

• a enables e: The event e cannot be executed before a holds and remains en-
abled after a becomes true until it is executed. It is easy to see that this pattern
is equivalent to a enables e until false.

• a ensures e: The event e cannot be published before a holds, and is published
sometime after a becomes true.

Figure 8: The traces that correspond to the patterns

– 21 –

Business protocols are also used for modelling the behaviour that requesters can
expect from a service. This subsumes what, in [5], are called external specifications:

In particular, a trend that is gathering momentum is that of including, as part
of the service description, not only the service interface, but also the business
protocol supported by the service, i.e. the specification of which message ex-
change sequences are supported by the service, for example expressed in terms
of constraints on the order in which service operations should be invoked.

For instance, the provides-interface of GETMORTGAGE is typed by the following busi-
ness protocol:

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 r&s getProposal
  idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
  proposal:mortgageproposal,
 cost:moneyvalue

 snd confirmation
  contract:loancontract
 SLA VARIABLES
 CHARGE:[0..100]
 BEHAVIOUR
 initiallyEnabled getProposal?
 getProposal.cost≤750*(CHARGE/100+1) after
 getProposal! ∧ getProposal.Reply
 getProposal? ensures confirmation!

This business protocol specifies that the service offered by GETMORTGAGE relies on
two asynchronous interactions — getProposal and confirmation. The properties
offered by the service are:

• A request for getProposal is enabled when the service is activated.
• The service brokerage has a base price that can be subject to an extra charge,

subject to negotiation.
• A confirmation carrying the loan contract will be issued upon receipt of the

commit to getProposal.

4.1.4 Layer protocols

A module in SRML may also declare one or more uses-interfaces. These provide
abstractions of components corresponding to resource-actors as discussed in Section
2.1 – the components with which the service needs to interact in order to ensure per-
sistent effects.

Uses-interfaces are specified through what we call layer protocols. Like business
protocols, layer protocols are defined by a signature and a set of properties. However,
where the interactions used in business protocols are asynchronous, those declared in
a layer protocol can be synchronous and blocking.

– 22 –

As an example, consider the following specification of the layer protocol fulfilled
by a registry. It defines that a registry can be queried – through the interaction
getLenders – about the registered lenders that meet given users preferences, and is
able to register a new contract through the operation registerContract.

LAYER PROTOCOL Registry is

 INTERACTIONS
 rpl getLenders(prefdata):setids
 prf registerContract(loandata,loancontract)

The properties of synchronous interactions are typically in the style of pre/post-
condition specifications of methods.

4.1.5 Interaction protocols

A module consists of a number of interfaces connected through wires. Wires are
labelled by connectors that coordinate the interactions in which the parties are jointly
involved. In SRML, we model the interaction protocols involved in these connectors
as separate, reusable entities.

Just like business roles and protocols, an interaction protocol is specified in terms
of a number of interactions. Because interaction protocols establish a relationship
between two parties, the interactions in which they are involved are divided in two
subsets called roles – A and B. The semantics of the protocol is provided through a
collection of sentences – what we call interaction glue – that establish how the inter-
actions are coordinated. This may include routing events, superposing protocols for
secure communication, or transforming sent data to the format expected by the re-
ceiver, inter alia.

As an example, consider the following protocol used in the wire that connects
MortgageAgent and Insurance:

INTERACTION PROTOCOL Straight.I(d1,d2)O(d3) is

 ROLE A
 s&r S1

  i1:d1, i2:d2
  o1:d3

 ROLE B
 r&s R1

  i1:d1, i2:d2
  o1:d3

 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.i2=R1.i2
 S1.o1=R1.o1

This is a ‘straight’ protocol that connects directly two entities over two conversa-
tional interactions that have two -parameters and one -parameter. The property
S1 ≡ R1 establishes that the events associated with each interaction are the same, for
example that S1 is the same as R1.

– 23 –

The names used in interaction protocols are generic to facilitate reuse. In fact, the
specification itself is parameterised by the data sorts involved in the interactions.
Parameterisation (which is also available for business roles and protocols) provides
the means for defining families of specifications. The parameters are instantiated at
design time when the specifications are used in the definition of a module. This can
be seen in Section 4.1.6.

Two other families of straight protocols are presented below. These families de-
fine the connection of two synchronous interactions with two parameters; in the first
protocol, the interaction involves a return value.

INTERACTION PROTOCOL Straight.A(d1,d2)R(d3) is

 ROLE A
 ask S1(d1,d2):d3

 ROLE B
 rpl R1(d1,d2):d3

 COORDINATION
 S1(d1,d2)=R1(d1,d2)

INTERACTION PROTOCOL Straight.T(d1,d2) is

 ROLE A
 tll S1(d1,d2)

 ROLE B
 prf R1(d1,d2)

 COORDINATION
 S1(d1,d2)≡R1(d1,d2)

The first interaction protocol establishes that the values returned by the synchro-
nous interaction are the same, while the second protocol synchronises the two oper-
ations without any conversion of data.

Interaction protocols are first-class objects that can be (re)used to assign properties
to wires, which reflect constraints on the underlying run-time environment. These
may concern data transmission, synchronous/asynchronous connectivity, distribution,
and other non-functional properties such as security. In such cases, the specifications
are not as simple as those of straight protocols.

4.1.6 Connectors

After having chosen the protocols that coordinate the interactions between two par-
ties, we use them as the ‘glue’ (in the sense of [40]) of the connectors that label the
wires that link the corresponding parties. In a connector, the interaction protocol is
bound to the parties via ‘attachments’: these are mappings from the roles to the signa-
tures of the parties identifying which interactions of the parties perform which roles in
the protocol. The use of attachments allows us to separate the definition of the inter-
action protocols from their use in the wires, which promotes reuse: typically, one
defines a connector by choosing from a repository of (types of) protocols that have
proved to be useful in other situations.

Summarising, connectors are triples <μA,P,μB> where:

– 24 –

• P is an interaction protocol. We use roleAP and roleBP to designate its roles
and glueP for the role.

• μA and μB are attachments that connect the roles of the protocol to the signa-
tures of the entities (business roles, business protocols or layer protocols) be-
ing interconnected.

For instance, both Straight.A(prefdata)R(setids) and Straight.T(loandata, loancon-
tract) are used in the following wire to connect different interactions between Mort-
gageAgent and Registry:

MA
MortgageAgent

c4 BE d4
RE
Registry

ask getLenders S1 Straight.
A(prefdata)R(setids)

R1 rpl getLenders

tll regContract

S1

Straight.
T(loandata,loancontract)

R1

prf registerContract

In the specification of a wire, each row describes one connector. The first two col-
umns define the attachment between roleA of the interaction protocol (specified in the
middle column) and the signature of MortgageAgent. In the same way, the last two
columns define the attachment between roleB of the interaction protocol and the sig-
nature of Registry.

We use the same notation for specifying the wires that connect module compo-
nents to requires-interfaces. However, the specification of these wires is subject to
an additional correctness condition that restricts the signature of the requires-
interfaces to the interactions used in the corresponding wires. This is to ensure that
all the interactions of the services that are bound to the module through the requires-
interface have a corresponding co-party.

For instance, the only wire that connects LE in GETMORTGAGE is CL (with MA).
Its specification is as follows:

MA

MortgageAgent c1 CL d1
LE
Lender

s&r askProposal
  idData
 income
  proposal
 loanData
 accountIncluded
 insuranceRequired

S1

i1
i2

o1

o2

o3

o4

Straight.
I(usrdata,
moneyvalue)

O(mortgageproposal,
loandata,
bool,bool)

R1

i1
i2

o1

o2

o3

o4

r&s requestMortgage
  idData
 income
  proposal
 loanData
 accountIncluded
 insuranceRequired

r&s signOutLoan
  insuranceData
 accountData
  contract

S1

i1
i2

o1

Straight
I(insurancedata,

accountdata)
O(loancontract)

R1

i1
i2

o1

s&r requestSignOut
  insuranceData
 accountData
  contract

The correctness condition is satisfied because the signature of Lender is isomor-
phic to the sum of the interactions of the roles connected to it, i.e. all the interactions
of Lender are mapped to a port.

The specification of the wires that connect module components to the provides-
interface of the module uses a slightly different syntax. This is because what we need
to declare is the set of interactions that the components make available to the cus-

– 25 –

tomer of the service, and the protocols through which the corresponding events are
transmitted. In this sense, we do not model the customer proper, which in SRML is
reflected by omitting the corresponding column of the table that defines the wire.

For instance, the wire CC that interconnects Customer and MortgageAgent in
GETMORTGAGE module is specified as follows:

c1 CC d1
MA
MortgageAgent

S1

i1
i2

i3

o1

o2

Straight.
I(usrdata,

moneyvalue,prefdata)
O(mortageproposal,

moneyvalue)

R1

i1
i2

i3

o1

o2

r&s getProposal
  idData
 income
 preferences
  proposal
 cost

R1

i1
Straight.

O(loancontract)

S1

i1
snd confirmation
  contract

In this case, each row also describes one connector, whose interaction protocol is
specified in the second column. The difference is that the entities that will be con-
nected to the roleA’s of their interaction protocols are unknown (these will belong to
the services that will bind to GETMORTGAGE). As before, the last two columns define
the attachment between roleB of the interaction protocol and the signature of Mort-
gageAgent.

4.2 Configuration policies

Whereas business roles, business protocols, layer protocols and interaction protocols
deal with functional aspects of the behaviour of a (complex) service or activity, con-
figuration policies address aspects that relate to the processes of discovery, selection
and instantiation of services. In SRML, we distinguish between internal and external
configuration policies. The former concern aspects related with service instantiation
such as the initialisation of service components and the triggering of the discovery of
required services. The latter address aspects related with the selection of partner
services and negotiation of contracts.

4.2.1 Internal configuration policy

The internal configuration policy of a service module concerns the triggering of the
discovery and selection process associated with its requires-interfaces, and the instan-
tiation of its component and wire interfaces.

A trigger is usually associated with the occurrence of one or more events and addi-
tional conditions on the state of the components in which the events occur. For in-
stance, GETMORTGAGE defines that the lender has to be discovered as soon as getPro-
posal is executed (by the workflow). There is a default trigger condition: the publi-

– 26 –

cation of the initiation event of the first interaction connected to the requires-interface.
In our example, this is the case of the bank and insurance external services.

 LE: Lender
 intLE trigger: getproposal?
 BA: Bank

 intBA trigger: default
 IN: Insurance

 intIN trigger: default

In a module, each service component has an associated initialisation condition,
which is guaranteed to hold when the component is instantiated, and a termination
condition, which determines when the component stops executing and interacting
with the rest of the components (in which case it can be removed from the state con-
figuration to which it belongs). Typically, both conditions relate to the state variables
of the component, but they can also include the publication of given events. For in-
stance, in the case of MortgageAgent, these conditions are defined only in terms of
the local variable s:

 MA: MortgageAgent
 intMA init: s=INITIAL
 intMA term: s=FINAL

Notice that these conditions can be underspecified, leaving room for further re-
finement. For instance, we may force the termination of the component after a certain
date without specifying exactly when.

4.2.2 External policies

The external policy concerns the way the module relates to external parties: it declares
the set of variables that can be used for negotiation and establishing a service level
agreement (SLA), and a set of constraints that have to be taken into account during
discovery and selection.

SLA variables include all the configuration variables declared in the specifications
(except in the provides-interface). For instance, in GETMORTGAGE, MortgageAgent
declares the configuration variable CHARGE. These variables are local to the inter-
faces to which they are attached and instantiated when the corresponding component
is created. Because constraints apply to the module as a whole, we refer to these
variables by preceding them with the name of the entity to which they belong. Hence,
in GETMORTGAGE, we refer to MA.CHARGE.

SRML also provides a set of standard configuration variables – availability, re-
sponse time, message reliability, service identification, inter alia. Some of them, e.g.
response time, are associated with requires or provides-interfaces, and other, e.g.
message reliability, apply to the wires.

The standard configuration variables used in GETMORTGAGE are:
• interaction, for every interaction of type r&s; its value is the length of

time the pledge is valid after interaction is issued.

– 27 –

• wire.Delay, for every wire; it defines the maximum delivery delay for events
transmitted through that wire.

• ServiceId, for every external-interface; it represents the identification of the
service that is bound to that interface (for instance, a URI).

Notice that, although these variables are standard, they need to be declared in a mod-
ule if the designer wants them to be involved in the service discovery negotiation
process. For instance, in GETMORTGAGE we have:

 SLA VARIABLES
 MA.CHARGE, MA.getProposal,
 LE.ServiceId, LE.COST, LE.requestMortgage

The approach that we adopt in SRML for SLA negotiation is based on the con-
straint satisfaction and optimization framework presented in [8], in which constraint
systems are defined in terms of c-semirings. As explained therein, this framework is
quite general and allows us to work with constraints of different kinds – both hard and
‘soft’, the latter in many grades (fuzzy, weighted, and so on). The c-semiring ap-
proach also supports selection based on a characterisation of ‘best solution’ supported
by multi-dimensional criteria, e.g. minimizing the cost of a resource while maximiz-
ing the work it supports.

In this framework:
• A c-semiring is a semiring 〈A,+,×,0,1〉 in which A represents a space of de-

grees of satisfaction, e.g. the set {0,1} for yes/no or the interval [0,1] for
intermediate degrees of satisfaction. The operations × and + are used for
composition and choice, respectively. Composition is commutative, choice
is idempotent and 1 is an absorbing element (i.e. there is no better choice
than 1). That is, a c-semiring is an algebra of degrees of satisfaction. Notice
that every c-semiring S induces a partial order ≤S (of satisfaction) over A as
follows: a≤ Sb iff a+b=b. That is, b is better than a iff the choice between a
and b is b.

• A constraint system is a triple 〈S,D,V〉 where S is a c-semiring, V is a totally
ordered set (of configuration variables), and D is a finite set (domain of pos-
sible elements taken by the variables).

• A constraint consists of a selected subset con of variables and a mapping
def:D|con|→S that assigns a degree of satisfaction to each tuple of values taken
by the variables involved in the constraint.

The external configuration policy of a module involves a constraint system based
on a fixed c-semiring and a set of constraints over this constraint system. Because we
want to handle constraints that involve different degrees of satisfaction, it makes
sense that we work with the c-semiring <[0..1],max,min,0,1> of soft fuzzy con-
straints [8]. In this c-semiring, the preference level is between 0 (worst) and 1 (best).

For instance, the external configuration policy of GETMORTGAGE includes the fol-
lowing constraints:

– 28 –

C1: {MA.CHARGE,MA.getProposal},

def(c,t)=

€

1 if t ≤ 10 ∗c

1 + 2 ∗ c − 0.2 ∗ t if 10 ∗ c < t ≤ 5 + 10 ∗ c

0 otherwise






 

That is, the more CHARGE is applied to the base price of the brokerage service
the longer is the interval during which the proposal is valid.

C2: {LE.ServiceId}, def(s)=

€

1 if s ∈ MA .lenders

0 otherwise





That is, the choice of the lender is constrained by the service identifier, which
must belong to the set MA.lenders (recall that, according to the orchestration
of MortgageAgent, this set contains the identification of the services provided
by trusted lenders that were found to be appropriate for the request at hand).

C3: {MA.getProposal,LE.requestMortgage},

def(t1,t2)=

€

1 if t2 > t1+ CC.Delay + CL.Delay

0 otherwise





That is, the choice of the lender is also constrained by the period of validity as-
sociated with its loan proposals. This period must be greater than the sum of
the validity period offered by the brokerage service to its clients and the pos-
sible delays that may affect the transmission through the wires involved (no-
tice that CC.Delay and CL.Delay are not declared as SLA variables and,
hence, they are used like constants).

C4: {LE.COST,LE.requestMortgage}, def(c,t)=

€

1

c
+

t

100
 if c < 500

0 otherwise





 

That is, the cost to be paid by the brokerage service to the lender must be less
than 500, and the preference between lenders charging the same value will
take into account the validity period of the loan proposals.

The value of SLA variables is negotiated during the service discovery/binding.
Details on negotiation of constraints and SLAs are further discussed in Section 5.3.

4.3 Module declaration

SRML makes available a textual language for defining modules, which involves the
specification of the module external interfaces, service components, wires and poli-

– 29 –

cies, as discussed in the previous sections. The full definition of GETMORTGAGE can
be seen in Appendix B.

In the case of a service module, we have to map the interactions and SLA variables
of the provides-interface to corresponding interactions and variables of the entities
that provide the service. This is because the business protocol of the provides-
interface represents the service that is offered by the module (behavioural properties
and negotiable SLA variables), not the activity to which the service will be bound.

In the case of GETMORTGAGE, only MA is connected to CR, so the mapping is ac-
tually an identity. This is specified as follows:

PROVIDES

 CR: Customer
CR
Customer

MA
MortgageAgent

r&s getProposal
  idData
 income
 preferences
  proposal
 cost

r&s getProposal
  idData
 income
 preferences
  proposal
 cost

snd confirmation
  contract

snd confirmation
  contract

 SLA VARIABLES
 CHARGE

 SLA VARIABLES
 CHARGE

Formally:
A service module M consist of:
• A graph graph(M).
• A distinguished subset of nodes requires(M)⊆nodes(M).
• A distinguished subset of nodes uses(M)⊆nodes(M).
• A node provides(M)∈ nodes(M) distinct from requires(M) and uses(M).
• A labelling function labelM such that

o labelM(n)∈BROL if n∈components(M), where by components(M) we de-
note the set of nodes(M) that are not serves(M) nor in requires(M) or
uses(M).

o labelM(n)∈BUSP if n∈requires(M)
o labelM(provides(M))∈BUSP
o labelM(n)∈LAYP if n∈uses(M)
o labelM(e:n↔m)∈CNCT.

• An internal configuration policy.
• An external configuration policy.

– 30 –

5 The Configuration-Management Model

In this section, we provide an overview of the model that supports the dynamic as-
pects of SOC as captured in SRML. Full details of the mathematical semantics can be
found in [27].

5.1 Layered state configurations of global computers

As already mentioned, we take SOC to be about applications that can bind to other
applications discovered at run time in a universe of resources that is not fixed a priori.
As a result, there is no structure or ‘architecture’ that one can fix at design-time for an
application; rather, there is an underlying notion of configuration of a global computer
that keeps being redefined as applications execute and get bound to other applications
that offer required services. As is often the case (e.g. [40]), by ‘configuration’ we
mean a graph of components (applications deployed over a given execution platform)
linked through wires (e.g. interconnections between components over a given com-
munication network) in a given state of execution. Typically, wires deal with the
heterogeneity of partners involved in the provision of the service, performing data (or,
more, generally, semantic) integration. See Figure 9 for an example, over which we
will later recognise three business activities (instances).

Summarising, a state configuration F is defined to consist of:
• A simple graph G, i.e. a set nodes(F) and a set edges(F); each edge e is asso-

ciated with a (unordered) pair n↔m of nodes. We take nodes(F)⊆COMP (i.e.
nodes are components) and edges(F)⊆WIRE (i.e. edges are wires).

• A (configuration) state S as defined in 3.2.
An important aspect of our model is the fact that we view SOC as providing an ar-

chitectural layer that interacts with two other layers (see Figure 10). This can be
noticed in Figure 9 where shadows are used for indicating that certain components
reside in different layers: AliceRegUI, BobEstateUI and CarolEstateUI (three user
interfaces) in the top layer, and MyRegistry (a database) in the bottom layer. Layers
are architectural abstractions that reflect different levels of organisation and change,
i.e. one looks at a configuration as a (flat) graph as indicated above but, in order to
understand how such configurations evolve, it is useful to distinguish different layers.

In our model, the bottom layer consists of components that are persistent as far as
the service layer is concerned, i.e. those that in Section 2 we identified as resource-
actors. More precisely, when a new session of a service starts (e.g. a mortgage broker
starts putting together a proposal on behalf of a client), the components of the bottom
layer are assumed to be available so that, as the service executes, they can be used as
(shared) ‘servers’ – for instance the registry, which is shared by all sessions of the
mortgage broker, or a currency converter. In particular, the bottom layer can be used
for making persistent the effects of services as they execute.

– 31 –

Figure 9: The graph of a state configuration with 11 components and 10 wires

Figure 10: A 3-layered architecture for configurations

The components that execute in the service layer are created when the session of
the corresponding service starts, i.e. as fresh instances that last only for the duration of
the session – for instance, the workflow that orchestrates the mortgage-brokerage
service for a particular client. In component-based development (CBD) one often
says that the bottom layer provides ‘services’ to the layer above. As we see it in this
paper, an important difference between CBD and SOC is precisely in the way such
services are procured, which in the case of SOC involves identifying (possibly new)
providers and negotiating terms and conditions for each new instance of the activity,
e.g. for each new user of a mortgage agent. SOA middleware supports this service
layer by providing the infrastructure for the discovery and negotiation processes to be
executed without having to be explicitly programmed as (part of) components.

The top layer is the one responsible for launching business activities in the service
layer. The user of a given activity – identified through a user-actor as discussed in

– 32 –

Section 2 – resides in the top layer; it can be an interface for human-computer interac-
tion, a software component, or an external system (e.g. a control device equipped with
sensors). When the user launches an activity, a component is created in the service
layer that starts executing a workflow that may involve the orchestration of services
that will be discovered and bound to the workflow at run time.

5.2 Business activities and configurations

In our model, state configurations change as a result of the execution of business
processes. More precisely, changes to the configuration graph result from the fact
that the discovery of a service is triggered and, as a consequence, new components are
added and bound to existing ones (and, possibly, other components and wires disap-
pear because they finished executing their computations). The information about the
triggers and the constraints that apply to service discovery and binding are not coded
in the components themselves: they are properties of the ‘business activities’ that are
active and determine how the configuration evolves. Thus, in order to capture the
dynamic aspects of SOC, we need to look beyond the information available in a state.

In our approach, we achieve this by making configurations ‘business reflective’,
i.e. by labelling the sub-configurations that correspond to instances of business activi-
ties by the corresponding activity module.

Figure 11: The sub-configurations corresponding to an instance of UPDATEREGISTRY

For instance, we should be able to recognise an activity in Figure 9 whose sub-
configuration is as depicted in Figure 11. Intuitively, it corresponds to an instance of
UPDATEREGISTRY. In order to formalise this notion of typed subconfiguration, we
start by providing a formal definition of activity modules. We denote by BROL the
set of business roles (see 4.1.2), by BUSP the set of business protocols (see 4.1.3), by
LAYP the set of layer protocols (see 4.1.4), and by CNCT the set of connectors (see
4.1.6).

An activity module M consist of:
• A graph graph(M).
• A distinguished subset of nodes requires(M)⊆nodes(M).
• A distinguished subset of nodes uses(M)⊆nodes(M).
• A node serves(M)∈ nodes(M) distinct from requires(M) and uses(M).
• A labelling function labelM such that

– 33 –

o labelM(n)∈BROL if n∈components(M), where by components(M) we de-
note the set of nodes(M) that are not serves(M) nor in requires(M) or
uses(M).

o labelM(n)∈BUSP if n∈requires(M)
o labelM(n)∈LAYP if n∈serves(M)∪uses(M)
o labelM(e:n↔m)∈CNCT.

• An internal configuration policy.
• An external configuration policy.

We denote by body(M) the (full) sub-graph of graph(M) that forgets the nodes in
requires(M) and the edges that connect them to the rest of the graph.

We can now formalise the typing of state configurations with activity modules that
we discussed around Figure 11, which accounts for the coarser business dimension
that is overlaid by services on global computers. That is, we define what corresponds
to a state configuration of a service overlay computer, which we call a business con-
figuration. We consider a space A of business activities to be given, which can be
seen to consist of reference numbers (or some other kind of identifier) such as the
ones that organisations automatically assign when a service request arrives.

A business configuration consists of:
• A state configuration F.
• A partial mapping B that assigns an activity module B(a) to each activity

a∈A – the workflow being executed by a in SF. We say that the activities in
the domain of this mapping are those that are active in that state.

• A mapping C that assigns an homomorphism C(a) of graphs body(B(a))→F
to every activity a∈A that is active in F. We denote by F(a) the image of
C(a) – the sub-configuration of F that corresponds to the activity a.

A homomorphism of graphs is just a mapping of nodes to nodes and edges to edges
that preserves the end-points of the edges. In other words, the homomorphism binds
the components and wires of the state configuration to the business elements (inter-
faces labelled with business roles, layer protocols and connectors) that they fulfil in
the activity. For instance, in the example discussed above, we have an activity – that
we call Alice – for which B(Alice) is UPDATEREGISTRY (as in Figure 2), F(Alice) is
the sub-configuration in Figure 11, and C maps RM to AliceRegUI, MC to Alice-
Manag, RE to MyRegistry, MR to AMR, and RM to ARM.

The fact that the homomorphism is defined over the body of the activity module
means that business protocols are not used for typing components of the state configu-
ration: requires-interfaces are used for identifying dependencies that the activity has,
in that state, on external services. In particular, this makes requires-interfaces differ-
ent from uses-interfaces as the latter are indeed mapped through the homomorphism
to a component of the bottom layer of the state configuration.

– 34 –

5.3 Run-time discovery and binding

In order to illustrate how a business configuration evolves through service discovery
and binding, we are going to consider another business activity type that supports the
purchase of a house. The corresponding module is depicted in Figure 12.

Figure 12: The HOUSEBUYING activity module

That is, the orchestration of the purchase of a house is performed by a component
EA of type (business role) EstateAgent, which may need to discover and bind to a
mortgage dealer MO and a lawyer LA.

Figure 13: A configuration

Consider the configuration depicted in Figure 13, and the business configuration
that consists of Alice (as defined in Section 5.2) and of the activity Bob typed HOUSE-
BUYING mapped to the configuration by the homomorphism that associates GH with
BobEstateUI, EA with BobEstateAG and HE with BEA. Assume that, in the current
state, intMO trigger holds, i.e. that the execution of the workflow associated with

– 35 –

EA requires the discovery of a mortgage dealer. Let us consider what is necessary for
GETMORTGAGE to be selected and bound to HOUSEBUYING as a result of the trigger
(see Figure 14).

Figure 14: The elements involved in unification

In our setting, this process involves three steps, outlined as follows:
• Discovery. For GETMORTGAGE to be discovered, it is necessary that the prop-

erties of its provides-interface Customer entail the properties of the requires-
interface Mortgage, and that the properties of the interaction protocol of CC
entail those of EM.

• Ranking. If it is discovered, GETMORTGAGE is ranked among all services that
are discovered by calculating the most favourable service-level agreement that
can be achieved – the contract that will be established between the two parties
if GETMORTGAGE is selected. This calculation uses a notion of satisfaction that
takes into account the preferences of the activity HOUSEBUYING and the service
GETMORTGAGE.

• Selection. Finally, GETMORTGAGE can be selected if it is one of the services
that maximises the level of satisfaction offered by the corresponding contract.

These steps are formalised in [27]. If GETMORTGAGE is selected then it is unified
with HOUSEBUYING, giving rise to another activity module. As depicted in Figure 15,
the resulting activity module is obtained by replacing the requires-interface and cor-
responding wire of HOUSEBUYING by those that connect the provides-interface of
GETMORTGAGE to its body.

At the level of the configuration, we add the new instances of the components of
GETMORTGAGE and corresponding wires, making sure that instances of the uses-
interfaces are components of the bottom layer (already present in the configuration).
This can be witnessed in Figure 16 where the instance of RE is the component
MyRegistry, which is shared with other activities. Notice that the type of the activity
Bob is now the activity module in Figure 16, and that the homomorphism now maps
MA to BobMortBR, RE to MyRegistry, EM to BAM and BE to BCR. It is in this sense
that the activity is reconfigured as new services are discovered and bound to its re-
quires-interfaces. A full formalisation of this process of reconfiguration is also pre-
sented in [27].

– 36 –

Figure 15: The result of the unification

Figure 16: The result of the binding

6 Related Approaches

SRML was developed to respond to a general lack of formal support for SOC. Essen-
tially, this new paradigm has been dominated by languages and standards developed
by organisations such as OASIS (www.oasis-open.org) and W3C (www.w3.org) for
Web Services. Languages such as WSDL, BPEL or BPMN address the need for

– 37 –

developing applications over service-oriented architectures but they lack proper math-
ematical foundations. The fact that the modelling framework that we are building
around SRML is equipped with a formal semantics makes it possible to support the
analysis of services, a direction that we are pursuing through the use of model-
checking techniques [4] and stochastic process algebra [9]. On the other hand, other
formal approaches to SOC such as recent proposals for service calculi (e.g.,
[16,20,21,33]) have focused on the need for specialised language primitives for pro-
gramming in this new paradigm. Such calculi can be seen to provide operational
foundations for SOC (in the sense of how services compute), namely a mathematical
semantics for the mechanisms that support ‘choreography’ or ‘orchestration’ – ses-
sions, message/event correlation, compensation, inter alia. Our approach addresses
instead the engineering foundations of SOC, i.e. those aspects (both technical and
methodological) that concern the way applications can be developed to provide busi-
ness solutions, independently of the languages in which services are programmed.

As discussed in Section 3, SRML is based on a logic for specifying and reasoning
about interactions in the conversational mode that characterises services [1,3]. The
primitives that we propose take into account proposals that have been made for Web-
Service Conversation [7], in other modelling languages such as ORC [36], and in a
number of process calculi (e.g. [16,20,33]). More specifically, they take into account
that interactions are stateful and provide first-class notions such as reply, commit,
compensation and pledge, which leads to a formalism that addresses the specific
needs of service-oriented modelling.

In what concerns the specification of service interfaces (also known as service con-
tracts [22]), we should point out that the style of specification that we adopt is quite
different from recent proposals in the area of Semantic Web-Services (METEOR-S,
OWL-S, SWSL, WSMF), which go little beyond a black-box, transformational ap-
proach based on concepts like pre- and post-conditions for services. These contribute
to some extent towards a behavioural description of services but are confined to
static/transformational aspects of black-box behaviour that only takes into account
initial and final states of service execution. An exception is [42], which adopts an
assumption/commitment style of specification as used for concurrent and distributed
processes. Richer service interfaces found in other approaches that encompass busi-
ness protocols often rely on process-oriented formalisms such as state machines
[7,15,30], process calculus [16,20,21], Petri nets [34,38] or patterns (e.g., message
exchange patterns included in WSDL 2.0). In such cases, the service description
includes the message exchange sequences that are supported by the service, abstrac-
ting from the exchanged data. Hence, it is not possible to specify constraints over the
values of exchanged data.

Another distinctive characteristic of SRML in what concerns service interfaces is
the fact that it makes it possible to express business level properties encompassing
(non-functional) aspects that can be open to negotiation. An example can be found in
Section 4.2.2: the property that relates the charge applied to the base price of GET-
MORTGAGE service and the validity of the offered proposal. In fact, none of the ap-
proaches mentioned above addresses the dynamic aspects – discovery and binding –
as offered by SRML.

– 38 –

The same holds for other approaches that have been proposed for service model-
ling and design such as [17,23,44,41]. For instance, the architectural framework
proposed in [44], which was designed to be close to SCA [46], offers a meta-model
that covers service-oriented modelling aspects such as interfaces, wires, processes and
data, but none of the dynamic aspects: as in SCA, interfaces are syntactic and bind-
ings are established at design time, whereas our interfaces are behavioural and bind-
ing occurs at run time. A more comprehensive meta-model for services is defined by
the modelling language SoaML [41], which is based on the definition of new UML
profiles. The definition of the external structure of services is also aligned with SCA
and hence similar to what we proposed in SRML. While in SRML the external struc-
ture of a service is defined by one provides and a number of requires-interfaces,
SoaML defines one service-point interface and a number of request-point interfaces.
Those interfaces add to UML interfaces the definition of the partners that can initiate
an interaction (by defining provided and required operations) and may specify a be-
haviour protocol (any UML behaviour specification can be used for this purpose).
However, bindings are established at deployment time, when defining so-called “de-
ployable participants”. SENSORIA is also producing a more global approach to
modelling service orchestrations in UML2 – called UML4SOA – and utilising these
models for code generation (including BPEL code) [35,45] but, again, without sup-
port for service discovery and binding.

7 Concluding Remarks

We presented a formal approach for modelling service-oriented applications. This is
part of an on-going effort that we are pursuing within the SENSORIA project towards
a methodological and mathematical characterisation of the service-oriented comput-
ing paradigm [39]. Our approach is built around a prototype language called SRML
– the SENSORIA Modelling Reference Language – and offers an engineering envi-
ronment that includes abstraction mappings from workflow languages (such as BPEL
[14]) and policy languages (such as StPowla [13]), model-checking techniques that
support qualitative analysis [4] and support for quantitative analysis through the use
of stochastic process algebra [9]. A mathematical semantics is available for all as-
pects of the approach as partially illustrated in the paper (see [1,3,25,26,27,28] for a
more comprehensive account).

SRML fills in an important gap in the way SOC is being supported, namely the fact
that languages and models that have been proposed for service modelling and design
do not address the higher level of abstraction that is associated with business solu-
tions, in particular the key characteristic aspects of SOC that relate to the way those
solutions are put together dynamically in reaction to the execution of business pro-
cesses —run-time discovery, instantiation and binding of services. The overall meth-
odology that we have in mind for developing software for global computers was dis-
cussed and illustrated through a fragment of the financial case study being investi-

– 39 –

gated in SENSORIA. Applications of SRML in other domains can be found in [2]
(telco), [3] (travel), [11] (automotive) and [25] (procurement).

Acknowledgments

We would like to thank our colleagues in the SENSORIA project for many useful
discussions on the topics covered in this paper. We are also indebted to Colin Gil-
more from Box Tree Mortgage Solutions (Leicester) for taking us through the mort-
gage business.

References

 1. J. Abreu (2009) Modelling Business Conversations in Service Component Architectures.
PhD thesis.

 2. J. Abreu, L. Bocchi, J. L. Fiadeiro, A. Lopes (2007) Specifying and composing interaction
protocols for service-oriented system modelling. In: J. Derrick, J. Vain (eds) Formal
Methods for Networked and Distributed Systems. LNCS, vol 4574. Springer, pp 358–373

 3. J. Abreu, J. Fiadeiro (2008) A coordination model for service-oriented interactions. In: D
Lea, G. Zavattaro (eds) Coordination Languages and Models. LNCS, vol 5052. Springer,
pp 1–16

 4. J. Abreu, F. Mazzanti, J. Fiadeiro, S Gnesi (2009) A model-checking approach for service
component architectures. In: D. Lee, A. Lopes, A. Poetzsch-Heffter FMOODS-FORTE’09.
LNCS, vol 5522, Springer, 212–217

 5. G. Alonso, F. Casati, H. Kuno, V. Machiraju (2004) Web Services. Springer
 6. M. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti (2008) An action/state-based model

checking approach for the analysis of communication protocols for Service-Oriented Ap-
plications. In: S. Leue, P. Merino (eds) Formal Methods for Industrial Critical Systems,
LNCS, vol 4916. Springer, pp 133–148

 7. B. Benatallah, F. Casati, F. Toumani (2004) Web services conversation modeling: A
cornerstone for e-business automation. IEEE Internet Computing 8(1): 46–54

 8. S. Bistarelli, U. Montanari, F. Rossi (1997) Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44(2): 201–236

 9. L. Bocchi, J. Fiadeiro, S. Gilmore, J. Abreu, M. Solanki, V. Vankayala (2009) A Formal
Model for Timing Aspects of Service-Oriented Systems. (Available from
www.cs.le.ac.uk/people/jfiadeiro).

10. L. Bocchi, J. Fiadeiro, A. Lopes (2008) A use-case driven approach to formal service-
oriented modelling. In: T. Margaria, B Steffen (eds) Leveraging Applications of Formal
Methods, Verification and Validation. CCIS, vol 17. Springer, pp 155–169

11. L. Bocchi, J. Fiadeiro, A. Lopes (2008) Service-oriented modelling of automotive systems.
In: Proc. 32nd IEEE Int. Computer Software and Applications Conference (COMPSAC).
IEEE, pp 1059–1064

12. L. Bocchi, J. Fiadeiro, N. Rajper, S. Reiff-Marganiec (2009) Structure and behaviour of
virtual organisation breeding environments. In: J. Bryans, J. Fitzgerald (eds) Formal As-
pects of Virtual Organisations (FAVO 2009). University of Newcastle Technical Report
(Available from www.cs.le.ac.uk/people/jfiadeiro)

– 40 –

13. L. Bocchi, S. Gorton, S. Reiff-Marganiec (2008) Engineering service-oriented applica-
tions: From StPowla processes to SRML models. In: J. Fiadeiro, P. Inverardi (eds)
Fundamental Aspects of Software Engineering. LNCS, vol 4961. Springer, pp 163–178

14. L. Bocchi, Y. Hong, A. Lopes, J. Fiadeiro (2007) From BPEL to SRML: a formal trans-
formational approach. In: M. Dumas, R. Heckel (eds) Web Services and Formal Methods.
LNCS, vol 4937. Springer, pp 92–107

15. L. Bordeaux et al (2005) When are two web services compatible? In: Technologies for E-
Services. LNCS, vol 3324. Springer, pp 15–28

16. M. Boreale et al (2006) SCC: a service centered calculus. In: M. Bravetti, M. Nunez, G.
Zavattaro (eds) Web Services and Formal Methods. LNCS, vol 4184. Springer, pp 38–57

17. M. Broy, I. Krüger, M. Meisinger (2007) A formal model of services. ACM TOSEM 16(1):
1–40

18. M. Broy (2007) From “Formal Methods” to System Modelling. In Bjorner/Zhou Fest-
schrift. LNCS, vol 4700. Springer, pp 24–44

19. L. Camarinha-Matos, H. Afsarmanesh (2003) Elements of a base VE infrastructure. Jour-
nal of Computers in Industry 51(2): 139–163

20. M. Carbone, K. Honda, N. Yoshida (2007) Structured communication-centred program-
ming for web services. In R. De Nicola (ed) ESOP’07. LNCS, vol 4421. Springer, pp 2–17

21. G. Castagna, N. Gesbert, L. Padovan (2009) A theory of contracts for Web services, ACM
Trans. Program. Lang. Syst. 31(5):1–61

22. F. Curbera (2007) Component Contracts in Service-Oriented Architectures. IEEE Com-
puter 40(11): 74–80

23. R. M. Dijkman and M. Dumas (2004) Service-oriented design: a multi-viewpoint ap-
proach. International Journal of Cooperative Information Systems 13(4): 337–368.

24. A. Elfatatry (2007) Dealing with change: components versus services. Communications of
the ACM 50(8): 35–39

25. J. L. Fiadeiro, A. Lopes, L. Bocchi (2006) A formal approach to service-oriented architec-
ture. In: M. Bravetti, M. Nunez, G. Zavattaro (eds) Web Services and Formal Methods.
LNCS, vol 4184. Springer, pp 193–213

26. J. L. Fiadeiro, A. Lopes, L. Bocchi (2007) Algebraic semantics of service component
modules. In: J. L. Fiadeiro, P. Y. Schobbens (eds) Algebraic Development Techniques.
LNCS, vol 4409. Springer, pp 37–55

27. J. L. Fiadeiro, A. Lopes, L. Bocchi (2008) An Abstract Semantics of Service Discovery and
Binding. Submitted. (Available from www.cs.le.ac.uk/people/jfiadeiro)

28. J. L. Fiadeiro, V. Schmitt (2007) Structured co-spans: an algebra of interaction protocols.
In T. Mossakowski, U. Montanari, M. Haveraaen (eds) Algebra and Coalgebra in Com-
puter Science. LNCS, vol 4624. Springer, pp 194–20

29. I. Foster, C. Kesselman (eds) (2004) The Grid 2: Blueprint for a New Computing Infra-
structure. Morgan Kaufmann

30. H. Foster, S. Uchitel, J. Magee, J. Kramer (2006) WS-Engineer: A Tool for Model-Based
Verification of Web Service Compositions and Choreography. In ICSE 2006, ACM Press.

31. Q. Gu, P. Lago (2007) A stakeholder-driven service life-cycle model for SOA. In IW-
SOSWE’07. ACM Press 1–7

32. J. Hillston (1996) A Compositional Approach to Performance Modelling. Cambridge
University Press

33. A. Lapadula, R. Pugliese, F. Tiezzi (2007) Calculus for orchestration of web services. In:
R. De Nicola (ed) ESOP’07. LNCS, vol 4421. Springer, pp 33–47

34. A. Martens (2005). Analyzing Web Service Based Business Processes. In: M. Cerioli (ed),
FASE 2005. LNCS, vol. 3442. Springer, 19–33.

– 41 –

35. P. Mayer, N. Koch, A. Schröder (2008) A Model-Driven Approach to Service Orchestra-
tion. In: Proceedings of IEEE International Conference on Services Computing (SCC
2008). IEEE Press, pp 533–536

36. J. Misra, W. Cook (2006) Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Modelling 6(1): 83–110

37. C. Peltz (2003) Web services orchestration and choreography. IEEE Computer 36(10):46–
52

38. W. Reisig (2005) Modeling and analysis techniques for web services and business pro-
cesses. In: FMOODS 2005, LNCS, vol 3535. Springer, pp 243–258

39. SENSORIA consortium (2007) White paper available at http://www.sensoria-
ist.eu/files/whitePaper.pdf

40. M. Shaw, D. Garlan (1996) Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, London

41. SoaML. Service oriented architecture Modeling Language. Publications and specifications
available from www.omgwiki.org/SoaML/

42. M. Solanki, A. Cau and H. Zedan (2004) Augmenting semantic web service description
with compositional specification. In WWW’04. ACM Press, New York, pp 544–552

43. UDDI Spec TC (2004) UDDI Specification Technical Committee Draft. Technical report,
OASIS, available at uddi.org/pubs/uddi v3.htm/

44. W. van der Aalst, M. Beisiegel, K. van Hee, D. Konig (2007) An SOA-based architecture
framework. Journal of Business Process Integration and Management 2(2): 91–101

45. M. Wirsing, A. Clark, S. Gilmore, M. Hölzl, A. Knapp, N. Koch, A. Schröder (2006)
Semantic-based development of service-oriented systems. In: E. Najn et al. (eds) Formal
Methods for Networked and Distributed Systems. LNCS, vol 4229. Springer, pp 24–45

46. The Open Service Oriented Architecture collaboration. Whitepapers and specifications
available from www.osoa.org (see also oasis-opencsa.org/sca)

– 42 –

Appendix A – The Iconography

icon represents type sections

component interface
(instantiated when a new
session starts; the lifetime
is that of the session)

business role
(orchestration of inter-
actions)

requires-interface
(bound during service
execution after discovery)

business protocol
(properties required of
external services)

provides-interface
(bound when a new ses-
sion starts)

business protocol
(properties offered by
the service)

uses/serves-interface
(bound to a component in
the bottom/top layer when
a new session starts)

layer protocol (proper-
ties assumed of the
components in the
bottom or top layer)

wire interface
(instantiated together with
the second party)

connector (interaction
protocol and attach-
ments)

external configuration
policy

constraint system

internal configuration
policy

state conditions

– 43 –

Appendix B – The Example

MODULE GETMORTGAGE is

DATATYPES

sorts: usrdata, prefdata,
 moneyvalue, mortgageproposal,
 loandata, loancontract,
 insurancedata, accountdata,
 setids, bool, nat

PROVIDES

 CR: Customer
CR
Customer

MA
MortgageAgent

r&s getProposal
  idData
 income
 preferences
  proposal
 cost

r&s getProposal
  idData
 income
 preferences
  proposal
 cost

snd confirmation
  contract

snd confirmation
  contract

 SLA VARIABLES
 CHARGE

 SLA VARIABLES
 CHARGE

REQUIRES

 LE: Lender
 intLE trigger: getproposal?
 BA: Bank

 intBA trigger: default
 IN: Insurance

 intIN trigger: default

– 44 –

COMPONENTS

 MA: MortgageAgent
 intMA init: s=INITIAL
 intMA term: s=FINAL

USES

 RE: Registry

EXTERNAL POLICY

 SLA VARIABLES
 MA.CHARGE, MA.getProposal,
 LE.ServiceId, LE.COST, LE.requestMortgage

 CONSTRAINTS

 C1: {MA.CHARGE,MA.getProposal}

 def(c,t)=

€

1 if t ≤ 10 ∗c

1 + 2 ∗ c − 0.2 ∗ t if 10 ∗ c < t ≤ 5 + 10 ∗ c

0 otherwise






 

C2: {LE.ServiceId}

 def(s)=

€

1 if s ∈ MA .lenders

0 otherwise





 C3: {MA.getProposal,LE.requestMortgage},

def(t1,t2)=

€

1 if t2 > t1+ CC.Delay + CL.Delay

0 otherwise





C4: {LE.COST,LE.requestMortgage}

 def(c,t)=

€

1

c
+

t

100
 if c < 500

0 otherwise





 

WIRES

MA

MortgageAgent
c4 BE d4

RE
Registry

ask getLenders S1 Straight.
A(prefdata)R(setids)

R1 rpl getLenders

tll regContract

S1

Straight.
T(loandata,loancontract)

R1

prf registerContract

MA

MortgageAgent c1 CB d1
BA
Bank

s&r openAccount
  idData
 loanData

S1

i1
i2

Straight.
I(usrdata,
loandata)

R1

i1
i2

r&s newMortgageAccount
  idData
 loanData

– 45 –

  accountData o1 O(accountdata) o1  accountData

MA

MortgageAgent c1 CI d1
IN
Insurance

s&r getInsurance
  idData
 loanData
  insuranceData

S1

i1
i2

o1

Straight.
I(usrdata,
loandata)

O(insurancedata)

R1

i1
i2

o1

r&s newMortgageInsurance
  idData
 loanData
  insuranceData

MA

MortgageAgent c1 CL d1
LE
Lender

s&r askProposal
  idData
 income
  proposal
 loanData
 accountIncluded
 insuranceRequired

S1

i1
i2

o1

o2

o3

o4

Straight.
I(usrdata,
moneyvalue)

O(mortgageproposal,
loandata,
bool,bool)

R1

i1
i2

o1

o2

o3

o4

r&s requestMortgage
  idData
 income
  proposal
 loanData
 accountIncluded
 insuranceRequired

r&s signOutLoan
  insuranceData
 accountData
  contract

S1

i1
i2

o1

Straight
I(insurancedata,

accountdata)
O(loancontract)

R1

i1
i2

o1

s&r requestSignOut
  insuranceData
 accountData
  contract

c1 CC d1

MA
MortgageAgent

S1

i1
i2

i3

o1

o2

Straight.
I(usrdata,

moneyvalue,prefdata)
O(mortageproposal,

moneyvalue)

R1

i1
i2

i3

o1

o2

r&s getProposal
  idData
 income
 preferences
  proposal
 cost

R1

i1
Straight

O(loancontract)

S1

i1
snd confir-
mation
  contract

END MODULE

– 46 –

SPECIFICATIONS

LAYER PROTOCOL Registry is

 INTERACTIONS
 rpl getLenders(prefdata):setids
 prf registerContract(loandata,loancontract)
 BEHAVIOUR

BUSINESS ROLE MortgageAgent is

INTERACTIONS
 r&s getProposal
  idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
  proposal:mortgageproposal
 cost:moneyvalue

 s&r askProposal
  idData:usrdata,

 income:moneyvalue,
  proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 s&r getInsurance
  idData:usrdata,
 loanData:loandata,
  insuranceData:insurancedata
 s&r openAccount
  idData:usrdata,
 loanData:loandata,
  accountData:accountdata
 s&r signOutLoan
  insuranceData:insurancedata,
 accountData:accountdata,
  contract:loancontract
 snd confirmation

  contract:loancontract
 ask getLenders(prefdata):setids
 tll regContract(loandata,loancontract)

 SLA VARIABLES
 CHARGE:[0..100]

 ORCHESTRATION

local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,
 PROPOSAL_ACCEPTED, SIGNING, FINAL],
 lenders:setids,
 needAccount, needInsurance:bool,
 insuranceData:insurancedata, accountData:accountdata

– 47 –

transition GetClientRequest
triggeredBy getProposal
guardedBy s=INITIAL
effects s’=WAIT_PROPOSAL
 ∧ lenders’= getLenders(prefdata)
sends askProposal
 ∧ askProposal.idData=getProposal.idData
 ∧ askProposal.income=getProposal.income

 transition GetProposal
triggeredBy askProposal
guardedBy s=WAIT_PROPOSAL
effects needAccount’=askProposal.accountIncluded
 ∧ needInsurance’=askProposal.insuranceRequired
 ∧ askProposal.Reply ⊃ s’=WAIT_DECISION
 ∧ ¬askProposal.Reply ⊃ s’=FINAL
sends getProposal
 ∧ getProposal.Reply=askProposal.Reply
 ∧ getProposal.proposal=askProposal.proposal
 ∧ getProposal.cost=(CHARGE/100+1)*750

 transition TimeoutProposal
triggeredBy now>getProposal.UseBy
guardedBy s=WAIT_DECISION
effects s’=FINAL
sends askProposal

 transition ProposalNotAccepted
triggeredBy getProposal
guardedBy s=WAIT_DECISION
 ∧ now<askProposal.UseBy
effects s’=FINAL
sends askProposal

 transition ProposalAccepted
triggeredBy getProposal
guardedBy s=WAIT_DECISION
 ∧ now<deadline
effects needAccount ∨ needInsurance ⊃ s’=PROPOSAL_ACCEPTED
 ∧ ¬needAccount ∧ ¬needInsurance ⊃ s’=SIGNING
sends askProposal
 ∧ needAccount ⊃ openAccount
 ∧ openAccount.idData=getProposal.idData
 ∧ openAccount.loanData=getProposal.loanData
 ∧ needInsurance ⊃ getInsurance
 ∧ getInsurance.idData=getProposal.idData
 ∧ getInsurance.loanData=getProposal.loanData
 ∧ ¬needAccount ∧ ¬needInsurance ⊃ signOutLoan
 ∧ signOutLoan.insuranceData=insuranceData
 ∧ signOutLoan.accountData=accountData

 transition GetAccount
triggeredBy openAccount
guardedBy s=PROPOSAL_ACCEPTED
effects needAccount’=false
 ∧ ¬needInsurance ⊃ s’=SIGNINING
 ∧ accountData=openAccount.accountData
sends ¬needInsurance ⊃ signOutLoan
 ∧ signOutLoan.insuranceData=insuranceData
 ∧ signOutLoan.accountData=accountData

– 48 –

 transition GetInsurance
triggeredBy getInsurance
guardedBy s=PROPOSAL_ACCEPTED
effects needInsurance’=false
 ∧ ¬needAccount ⊃ s’=SIGNING
 ∧ insuranceData=getInsurance.insuranceData
sends ¬needAccount ⊃ signOutLoan
 ∧ signOutLoan.insuranceData=insuranceData
 ∧ signOutLoan.accountData=accountData

 transition Conclude
triggeredBy signOutLoan
guardedBy s=SIGNING
effects s’=FINAL
sends confirmation
 ∧ confirmation.contract=signOutLoan.contract
 ∧ regContract(askProposal.loanData,signOutLoan.contract)

BUSINESS PROTOCOL Lender is

 INTERACTIONS
 r&s requestMortgage
  idData:usrdata,

 income:moneyvalue,
  proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 r&s requestSignOut
  insuranceData:insurancedata,
 accountData:accountdata,
  contract:loancontract
 BEHAVIOUR
 initiallyEnabled requestMortgage?

 requestMortgage? enables requestSignOut?
 requestSignOut.Reply after requestSignOut?

BUSINESS PROTOCOL Bank is

 INTERACTIONS
 r&s newMortgageAccount
  idData:usrdata,
 loanData:loandata,
  accountData:accountdata

 BEHAVIOUR
 initiallyEnabled newMortgageAccount?
 newMortgageAccount.Reply after newMortgageAccount!

– 49 –

BUSINESS PROTOCOL Insurance is

 INTERACTIONS
 r&s newMortgageInsurance
  idData:usrdata,
 loanData:loandata,
  insuranceData:insurancedata

 BEHAVIOUR
 initiallyEnabled newMortgageInsurance?
 newMortgageInsurance.Reply after newMortgageInsurance!

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 r&s getProposal
  idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
  proposal:mortgageproposal
 cost:moneyvalue

 snd confirmation
  contract:loancontract
 SLA VARIABLES
 CHARGE:[0..100]
 BEHAVIOUR
 initiallyEnabled getProposal?
 getProposal.cost≤750*(CHARGE/100+1) after getProposal!
 getProposal? ensures confirmation!

END SPECIFICATIONS

