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J L Fiadeiro 0.1 Maths vs Computer Science

matician by training but a practising computer
eminar presents (some) elements of category
thematical objects but as they can apply to

d as a crash course in category theory, but as
art of) what it offers for modelllng software
intfensive systems. It should prowy and
awareness to allow you fo pick up

o Full definitions, results and proof
"Categories for Software Engineer

o But other books exist... I tend to use “Catego
Working Mathematician” by S. MacLane, Springer 1971.
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J L Fiadeiro 0.2 Computations vs Systems

® Modelling computations

concerned with the
s is on the

proach: CS as
lonal ph
tio

@ Modelling systems
o “Putting theories together to make specifications”.

o "Given a category of widgets, the operation of putting a
system of widgets together to form a super-widget
corresponds to taking a colimit of the diagram of widgets that
shows how to interconnect them”.
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J L Fiadeiro 0.3 Typical areas of application

o ADT (algebraic specifications)
— Goguen and Burstall (Institutions)

EE oy 3o

o Concurrency

— Nielsen, Sassone, Winskel

— Montanari, Corradini, ...

o Parallel program design

— Superposition (Katz, Chandy&Misra, Forman&Francez)

n Software architecture

— Components and connectors (Garlan; Kramer&Magee)
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J L Fiadeiro 0.3 Typical areas of application

Service
- Java interface
- WSDL PortType !

Reference
i =Java interface
i - WSDL PortType
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J L Fiadeiro 1.1 Categories vs Sefts

0 What is CT good for? When should I use it?
Why should I bother learning CT?

D
|
= e
Explicit Implicit
Internal External
White-box Black-box
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J L Fiadeiro 1.1 Categories vs Sefts
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J L Fiadeiro 1.1 Categories vs Sefts

o " The meaning of things lies not in the things
themselves, but in our attitude towards them.”
Antoine de Saint-Exupéry

0 What is the social life of sets?
0 Who is the empty set?

0 Who are the singletons?

0 Where are the elements?

o What is an injective function?
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11

0 a collection Go is of nodes

0 a collection G; of arrows

o two maps src and trg from arrows to nodes (the
source and target of the arrow).

We usually write f:x—y to indicate that src(f)=x and
trg(f)=y.

Categories work on a less immediate social
relationship given by the paths of a graph.
<F1,...,Fn>:x1%x2%...%Xm-l = Gn
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J L Fiadeiro 1.2 Graphs
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o These are graphs whose nodes are object classes and for
which the existence of an arrow between two nodes (classes)
means that the source class inherits from the target class

address

insured_value . .
s In class inheritance

hierarchies, there
exists at most one
BUSINESS RESIDENCE arrow between two
nodes. However,
rename insured_value @Arrows can carry more

as residence_value . .
information.

rename insured value
as business_value

HOMF

BUSINESS
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J L Fiadeiro 1.2 Graphs

o Class inheritance graphs induce mappings between the sets of
features of each class

{address,insured_value}

S

{address,insured_value,A} {address,insured_value,B}

rename insured_value rename insured_value
as business value as residence_value

{address,residence_value,business_value,A,B,C}
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J L Fiadeiro 1.2 Graphs

o Every transition system constitutes a graph whose
nodes are the states and whose arrows are the

transitions
forks T 7@
@ forks |

‘

bc_hungry w
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0 a graph G
0O an associative composition law ;:G.—G;
(f;q);h=F;(g:h).
0 an identity map id:Go—G;
If f:xy, idet =if;ideEir
f
X Ty

1d f;g

X

o We denote by home(x,y) the morphisms from x to v.




Categorical structures for system modelling 1  WHhat CT is about 16
J L Fiadeiro 1.4 Examples

0 Every pre-order <S,<> defines a category: the
objects are the elements of S and there is an
arrow between any two objects x and vy iff xgy;

reflexivity provides identities; transitivity ensures
composition.

o Every monoid <M,*,1> defines a category: there is
only one object, which we can denote by “«”, and
the morphisms m:e—e are the elements of M; 1
provides the identity and * is the composition law.

0 Every set S defermines a category by defining, for
every element s of S an identity es:s—s.
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o sets and total functions

o sentences and logical enfailment A-B

AAB b AvB é C/\B

? JAVN =
0 sentences and proofs
JAUN= JAVN=
B A
AvB AvB

AvB
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J L Fiadeiro 1.4 Examples

0 a morphism ¢:G—H
is a pair of maps
Po:Go—Ho, ¢1:G1—H;
such that each
arrow f:x—y is

mapped to
@1(F):po(x)—=poly). / 2 e

/

<—————— -

L

fhe e )

N |- -

U <— —/— -_—ees = (D
Q
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o In Eiffel, given an inheritance graph G between classes, the
category ancestor(G) is generated by completing the graph
with the arrows that result from reflexivity (identities) and
transitivity (compositions).
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n Every graph G generates a category cat(G) as
follows:

— objects: nodes

— arrows: paths

— identities: empty paths;

— composition: path concatenation.

o For instance, every transition system T generates the
category Run(T) of its runs.
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D0 Let C be a category and I a graph. A diagram in C
with shape I is a morphism d:I—graph(C).

0 A diagram 0:I—C is said to commute iff, for every
pair x,y of nodes and every pair of paths w=u;...un,
w'=zvi..Vp from x to y in I, Ou;...; Oum= OVi;...;OVn
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J L Fiadeiro 1.6 Adding structure

0 The most typical way of building a new category
consists of adding structure fo the objects of a
given category (or a subset thereof).

0 The morphisms of the new category are the
morphisms of the old category that “preserve” the
additional structure.
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J L Fiadeiro 1.6 Adding structure

n Every object is a (deterministic) automaton
consisting of of an input set X, a state set S, an
output set Y, a transition function f: XxS—S, an
initial state so€S and an output function g: S—Y.

o A morphism from <X,S,Y,s,,f,g> to <X',S'Y's' ,f,g>

consists of three functions <h:X—X',i:S—S',j:Y—=Y'>
such that

1T i(s; =5, 2. f;i=hxi;f'. Sedepiic o
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J L Fiadeiro 1.6 Adding structure

3. g;j=iig
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J L Fiadeiro 1.6 Adding structure

2. f;i=hxi;f

X xS P S » S

X' xS
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%

. i(s)=8
C

/N

S!

|
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J L Fiadeiro

1  What CT is about

1.6 Adding structure

27

o f;(i;i)=(b:hoili-1):F
o g:(j:j)=(i;i"):q”

o (i;i")(s0)=s"0

X xS

XN
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J L Fiadeiro 1.6 Adding structure

® Pointed sets SET .

o Its objects are the pairs <A,La>, where A is a set

the

alphabets o
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J L Fiadeiro 1.6 Adding structure

0 Given a category C and an object a:C we define the
category of “objects under a” - a|C

— objects are the pairs <f,x>, where f:a—x is a morphism in C.

— the morphisms between f:a—x and
g:a—y are all the morphisms h:x—vy
such that f;h=g. a
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J L Fiadeiro 1.7 Kinds of morphisms

0 A morphism f:x—y is an isomorphism iff there is a
morphism g:y—x such that: f;g=idx and g;f=id,.

o In these conditions, x and y are said fo be
iIsomorphic.

What are the isomorphisms in the categories
identified so far?
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J L Fiadeiro 1.7 Kinds of morphisms

@ morphisms

o A morphism f:x—y is a monomorphism (or a mono or
monic) iff, for every pair of morphisms g,h:z—x,
g;f=h;f implies g=h.

— monos do not interfere with interactions at the source

g %
Vi >X > v

o A morphism f:x—y is an epimorphism (or an epi or
epic) iff, for every pair of morphisms g,h:y—z,
f;g=f;h implies g=h.
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J L Fiadeiro 1.8 Subcategories

o A category D is a subcategory of a category C iff
— DoEGo

— homp(x,y)Shomc(x,y) for all objects x and y of D
o A subcategory D of C is full iff homp(x,y)=homc(x,y)
for all objects x and y of D

— This means that the structure of the objects is preserved (same
social life but among a smaller population)

— SET is a subcategory of the category PAR of sets and partial
functions, but not a full one.

— The category fSET of finite setfs is a full subcategory of SET.
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J L Fiadeiro 1.8 Subcategories

d -

0 Reachable automata give rise to a full subcategory
REACH of AUTOM.

— their states can be reached through the transition function from
the initial state and some input sequence

o Every automaton A=<X,S,Y,so,f,g> is related to a
“canonical” reachable automaton R=<X,Sg,Y,s0,fr,gr>
through a morphism c:R—A such that, given any
reachable automaton R' and simulation h:R'—A,
there is a unique morphism of reachable automata
h':R'=R such that h=h';c. This means that R is the
reachable automaton that is “closest” to A.
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J L Fiadeiro 1.8 Subcategories

)
i Let D b bcat

e e a subcategory

d p C of a category C.

O o A D-coreflection for c:C

is i:d—c for d:D such

I f that, for any f:d'—c

I where d:D, there is a

d unique f:d'—d in D such
Fhal’ P=f;i
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J L Fiadeiro 1.8 Subcategories 3

0 We say that D is a coreflective subcategory of C iff
every C-object admits a D-coreflection.

n Co-reflections are essentially “unique”: if i:d—c and
j:e—c are both D-coreflections for c, then there is
a D-isomorphism f:e—d such that j=f;i.

n If i:d—c is a D-coreflection for ¢, and f:e—d is a D-

isomorphism, then f;i:e—c is also a D-coreflection
for c.

0 Let D be a coreflective subcategory of a category
C. Then, D is a full subcategory of C iff, for every
D-object d, idq is a D-coreflection for d.
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J L Fiadeiro 2.1 Initial/Terminal objects

o An object x is initial iff, for every object y, there is
a unique morphism from x tfo v.

0 Any two initial objects are isomorphic

o We usually denote “the” initial object, if one exists,
by 0. The unique morphism from O into an object a
is denoted by 0,:0—a

Which are the initial objects of the categories
identified so far?
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J L Fiadeiro 2.1 Initial/Terminal objects

o An object x is terminal iff, for every object v,
there is a unique morphism from y to x.

0 Any two terminal objects are isomorphic

o We usually denote “the” terminal object, if one
exists, by 1. The unique morphism from an object a
into 1 is denoted by 1.:a—1

Which are the terminal objects of the categories
identified so far?
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J L Fiadeiro 2.1 Initial/Terminal objects

o Eiffel has an initial object @
- the class NONE that
inherits from every other
class.

o And also a terminal object
- the class GENERAL from

developer-defined

WhiCh every O"'her Class classes
inherits.
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o C°? has the same objects and arrows as C.

0 The arrows of C° go in the reverse direction: if
f:A—B in C then f:B—A in C°P.

0 Arrow composition is in the reverse direction: f;g in
CoPlis grk in &

0 Every concept has a dual, which is the concept that
is obtained by reversing the direction of the arrows.

0 Every result in category theory has a dual that
holds for the dual concepts.
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J L Fiadeiro 2.3 Sums and products

o An object z is a sum (or
coproduct) of x and y with
injections ix:x—z and iy:y—z
iff for any object v and pair
of morphisms fx:x—v, fy:y—v
there is a unique morphism
k:z—v, usually denoted [fx,f]

SUCh '|'hCl1' ix;szx Clnd iy;szy. [fX’fy]I

o If a sum of x and y exists, it -
is unique up to isomorphism | v
%

and is denoted by x+v.
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J L Fiadeiro 2.3 Sums and products

0 Sums correspond to disjunctions.

0 The categorical definition of sum actually provides,
through the morphisms the usual rules of natural
deduction for OR introduction and elimination.

faA:A—=C,fB:B—=C
[ fA, fB]:AvB —=C
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J L Fiadeiro 2.3 Sums and Products

o Eiffel has a notion of inheritance without name clashes
that corresponds to a product.

0 The corresponding construction on sets of features
corresponds to a sum.

{orange, apple} {red,orange}

A b

FRUITS_&_ orange_fruit, apple, red, orange_colour
COLOURS { e i 25 '

{orange_fruit, apple, red, orange_colour,gin}
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Tt 'Fiadeing 2.4 Pushouts and pullbacks 4
% ]

o A pushout of fix—y and g:x—z ¢
morphisms f:y—w and g:z—w su
(1) f;f'=g:g' and
(2) for any other
f":y—=v and g":z—v
st f;f"=q;g", there
IS @ unique
Kiw—v st
fRefald
g .K=gtt
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J L Fiadeiro 2.4 Pushouts and pullbacks

o Pushouts allows us to join (merge) features during
multiple inheritance, as in
the construction of

HOME_BUSINESS.
{address}
O

{address,insured_value A} {address insured_value,B}

{address resrdence _value,
business_value,A,B}

{address,residence_value,business_value,A,B,C}

{address,insured_value}
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J L Fiadeiro 2.5 (Co)Equaliser

0 A coequaliser of f:x—y and g:x—y consists of a
morphism e:y—z such that (1) f;e=g;e and
(2) for any other e:y—v st f;e'=g;e’, there is a unique
k:z—v st e;k=e’.

f
e
X : y > Z
> 0
g [ k
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J L Fiadeiro 2.5 (Co)Limit

o Let 0:I—-C be a diagram. A
cocone with base 0 is an
object z (the vertex)
together with a family
{Pa:0a—2}a€Ip of morphisms
(edges), usually denoted by
p:0—z.

o A cocone p with base 0
vertex z is said to be
commutative iff for every
arrow s:a—b of I, Os;pb=Ppa.
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J L Fiadeiro

2 Universal constructions
2.5 (Co)Limit

o Let 0:I—-C be a diagram.
A colimit of O is a
commutative cocone
p:0—z such that, for
every other commutative
cocone p':0—z' there is
a unique morphism
f:z—2z' such that

Pa;{::P'a.
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J L Fiadeiro 2.6 (Co)Completeness

o A category is (finitely) cocomplete if all (finite)
diagrams have colimits.

o A category is finitely cocomplete iff it has inifial
objects and pushouts of all pairs of morphisms with
common source.
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J L Fiadeiro 2.7 Processes

0 The set of trajectories over a pointed set Ai=<A,Lp>
is tra(AL)={A\:0—A}

n Every morphism f:A,—A | extends to tra(A.) by
pointwise application tra(f)(A)=\;f:w—A.

o A process is a pair <Ay, AStra(AL)>

o A process morphism f:<A,A>—<A 1, A’> is a morphism
of alphabets f:A1—A| such that tra(f)(A)cA’

0 PROC is complete and cocomplefe.
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J L Fiadeiro 2.7 Processes

0 The terminal process is <Lg,tra(Llg)>
o The initial process is <Lg,®@>

o A pullback of gi:<A1 Ai>—<A N>, gai<Az No>—=<ALN>
is g'1<A LN >—=><A N>, §ai<ALN>—<As N2> where
guAL—A, g2:A1—>A2, is a pullback of g1 and g

and A'=g'1(A1)Ng'27}(A2).

This corresponds to parallel composition in trace-
based semantics.
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J L Fiadeiro 2.7 Processes

process VM is
alphabet co, ca, ci
behaviour
Azu=10| 1"cole | (L'col™{ca,cil)A

process VM is
alphabet co, ca, ci
behaviour
A =10 1"cole | (L'col’ca)A
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0 A functor ¢:C—D between two categories is a graph
homomorphism between their underlying graphs
that preserves the composition law and the

identities, i.e. @(f;g)=¢(f):;p(g) and @(idx)=idqyx)

o Functors compose in the obvious way and admit the
obvious identity, leading fo the category CAT of
categories and functors.

o alph:PROC—SET. mapping processes to their
alphabets is a (forgetful) functor.
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J L Fiadeiro 3.1 Functors

53

o A functor is an isomorphism iff it admits an inverse.
0 A functor is an embedding iff it is injective.

o A functor is faithful iff all the restrictions
@:homc(x,y)—homc(p(x),9(y)) are injective.

o A functor is full iff all the restrictions
@:homc(x,y)— homc(qp(x),p(y)) are surjective.

alph:PROC—SET. is faithful but not full.
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J L Fiadeiro 3.1 Functors

0 Let D be a reflective subcategory of C. We define
a functor p:C—D by mapping each object c:C to the
target of its reflection nc:c—d=p(c) and every
morphism h:c—c’ to the

' i N
unique morphism
p(h):p(c)—p(c’) % > p(c)
such that
ne;p(h)=hinc h 6 o(h)

[

[
o This functor is called I
a reflector for the \ 4 > v
inclusion of D in C C Ne p(c)




Categorical structures for system modelling 3 Functor-structured categories 55

J L Fiadeiro 3.2 Spas

o tra(AL)={\:wo—A} defines a functor tra:SET,—>SET.

o Given a functor @:C—SET, we define spa(p) whose
objects are pairs <c,SS¢(c)> and whose morphisms

f:<c,5>—<d,T> are the morphisms f:c—=>d such that
tra(f)(S)cT.

o PROC is spa(tra).
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J L Fiadeiro 3.2 Spas

0 The terminal object is <1,p(1)>

o The initial object is <0,@>
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3.2 5pdS 57

J L Fiadeiro

0 The products

<Ci, > <Cy,D,> o CH

NG o

<c,g, (S))iig) (S ©




Categorical structures for system modelling 3 Functor-structured categories

58

J L Fiadeiro 3.2 Spas

0 The sums

<Ci, > <Cr,5,> Cq CH
N 07 e
<C,g(S)uUgs(S,)> C
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3.2 5pdS 59

J L Fiadeiro

o The pullbacks

<Cp,So> o
/ V\fz | > f1/1 V\fz
E<cl,Sl <C,S,> Cy CH
<Cp,dp> o

<c S>/’ VSZ S,> <:| cfl/' V\fzc
BN Y.

<C,g, (S )mgz (S,)> ©
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210)
7 L Fiadeiro 3
0 The pushsmts 0= WS T -
<Co,So> CO
£ / \Afz [ f;/ \@
<C,S > <Cp,5,> of CH
<C0,So> Co
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J L Fiadeiro 3.3 Lifting universal constructions

o v:spa(p)—C “forgets” the SET-component

o A functor v:A—B lifts limits (uniquely) iff for any
diagram O in A and limit p:b—0;v in B there is a
(unique) cone p:a—d that is a limit of ® and p'=v(p).

o v:spa(p)—C lifts limits uniquely:
Any limit p:c—0;v with di=<c;,Si> is lifted uniquely to
U:(C,S>%6 where S=ﬂicp(ui)'l(5i)

o v:spa(p)—C lifts colimits uniquely:
Any colimit p:0;v—c with 0i=<c;,Si> is lifted uniquely
to p:0—<c,S> where S=Uip(Hi)(Si)
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J L Fiadeiro 4.1 Specifications

O Linear temporal language PROP(X) over a set
¢::=beg | a€Z | ¢ | ¢, D0, 1 ¢, U ¢,

n translation defined by f:—3'
f(9) ::= beg | f(a) | ~f(9) | f(9,) D f(9,) | flo,) U (o,)




Categorical structures for system modelling 4  Fibrations

63

J L Fiadeiro 4.1 Specifications

A=la iff a€\(i)

) =beg iff i=0

A=ia¢ iff it is not the case that A=
AE'Q, D, iff A='d; implies A='d,,

AM='O,Ud, iff, for some j>i, AE'g, and, for every i<k<j,
M=K,

M=o iff AEQ for every i
®=¢ iff, for every A, AE® implies A=¢
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YA

J L Fiadeiro 4.1 Specifications

objects: <, ®> such that @ is closed - c(P)=P
arrows: f:<<,®>—<<", 0> is f:X—3 s.t. PROP(f)(D)CD’

objects: theory presentations <=,®>

arrows: f:<<,0>—<’ 0> is f:2—=3" s.t. f(P)Cc(D')

where c(®)={¢: P=o}
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J L Fiadeiro 4.1 Specifications

Specification vending machine is
signature coin, cake, cigar

axioms
beg O -cakea-cigar A (coinv(-cakea-cigar)Wcoin)

coin O (ncoin)W(cakevcigar)
(cakevcigar) O (ncakea-cigar)Wcoin
cake D —cigar
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J L Fiadeiro 4.1 Specifications

Specification vending machine is
signature coin, cake, cigar

axioms
beg O -cake A ~cigar A
(coinv (ncakea—-cigar)Wcoin)
coin O (ncoin)W(cakevcigar)

(cakevcigar) D (ncakea-cigar)Wcoin
cake D —cigar

token D —cigar
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J L Fiadeiro 4.1 Specifications

0 sign:THEO—SET and sign:PRES—SET forget the
axioms/theorems and retain the signature

o Both functors lift limits:
Any limit H:Z—0;v with 0;=<Z;,®@;> is lifted to
U:<Z,P>—0 where =Ny }(P;) for THEO and
®=Nipi(c(Ddi)) for PRES

o Both functors lift colimits:
Any colimit p:0;v—=2 with 0i=<Z;,®> is lifted to
H:0—<Z, D> where ®=c(Uipi(P;))

(For PRES this is isomorphic to ®=U;pi(®))
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J L Fiadeiro 4.1 Specifications

Specification regulator is
signature trigger, ted, tor

axioms
beg D —~tor

trigger D (—ted)Wtor
tor O —ted

Specification bichannel is

signature ci, C
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J L Fiadeiro 4.1 Specifications

0 The specification of the regulated vending machine
can be obtained (up to isomorphism) as a pushout of
the following diagram:

bichannel

c,—cigar c, —ted

c, —trigger

regulator
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n Consider a functor v:D—C.

The fibre of c:C is the subcategory of D that
consists of all the objects d that are mapped to c,

i.e. such that v(d)=c, together with the morphisms
f:di—d2 such that idc=v(f).

o All the theories for a given signature;

0 All the processes over a given alphabet.
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J L Fiadeiro 4.2 Fibres

71

n Consider a functor ¢:D—C, f:c—c', and d":D(c’). A
Cartesian morphism for f and d' is g:d—d' st:

p(g)=f. ¢(d") 0(g)
For every g:d“—d’ and \A\‘

f:p(d")—c such that 3 3 X
@(g')=f";f, there is a
unique h:d”—d st
¢(h)=f" and g'=h;gq.

h

We use ¢i(d") for d. v *

D(c) ()
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n Consider a functor ¢:D—C, f:c—c', and d:D(c). A co-
Cartesian morphism for f and d is g:d—d’ st:

¢(d")

p(g)=F. (g
For every g:d—d" and //V'

f.c'=p(d") such that y . 3
¢(g')=f:f', there is a
unique h:d'—d" st
¢(h)=f' and g'=g;h.

D(c) D(c)
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73

o Given f:X—=X’,
<, c(f(®))> is co-cartesian for <=,d> in THEO
< f(P)> is co-cartesian for <=,®> in PRES
and so is <X’,c(f(D))>: there is no uniqueness!
<, fY(D’)> is cartesian for <=’,®’> in THEO
<, (c(d’))> is cartesian for <=’,®’> in PRES

o In spa(p), given fic—c’,
<c’,o(F)(S)> is co-cartesian for <c,S>
<c,o(f)(S')> is cartesian for <c’,S>
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J L Fiadeiro 4.3 Split Fibrations

o A fibration is a functor @:D—C such that there is a
Cartesian morphism for every f:c—c' and d":D(c’).

o A cofibration is a functor ¢:D—C such that there is
a coCartesian morphism for every f:c—c' and d:D(c).

o A choice of a Cartesian morphism for every fic—c'
and d":D(c’) is called a cleavage. A fribration
equipped with a cleavage is said to be cloven.

0 Co-cleavages are defined by duality.
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J L Fiadeiro 4.3 Split Fibrations

0 A cloven fibration defines, for every f:c—c', a
functor £ 1:D(c')—D(c)

C C
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J L Fiadeiro 4.3 Split Fibrations

0 A cloven fibration is said to be fibre-complete if, for
every C-object c, its fibre D(c) is complete and, for
every morphism f:c—c', the functor f:D(c')—D(c)
preserves limifs.

0 A functor v:A—B preserves limits iff for any limit
p:0—a in A the cocone v(p):0;p—P(a) is a limit of
0;P.
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J L Fiadeiro 4.3 Split Fibrations

0 A cloven fibration is said to be split if, for every C-
object ¢, id.™! is idp«) and, for every decomposition
f=f1;f2, ! is the composition fz;f7;.

0 Every split fibration ¢:D—C defines the functor
ind(¢p):CP—CAT that maps every object c to its
fibre D(c) and every morphism f:c—=c' to the functor
£ 1:D(c) = Dlc):
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o Every split fibre-complete
fibration lifts limits.
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J L Fiadeiro 4.3 Split Fibrations

0 A concrete category is a faithful functor @:D—C.

0 The fibres of a concrete category are pre-orders.
Those of a cloven fibration are partial orders.

o In a concrete fibre-complete split fibration, any limit
Hu:c—0;q is lifted to p:Nipi~(d;)—0.

o THEO and PRES are concrete fibre-(co)complete
split (co)fibrations.

o Every spa-category is a concrete fibre-(co)complete
split (co)fibration.
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J L Fiadeiro 5.1 Structured morphisms

o

o Given a functor :D—C, a p-structured morphism is a
C-morphism of the form f:c—q(d).

0 We generalise the notion

of comma-category ¢

to structured

morphisms, i.e. f f C
given an object O

R > o(d:)

c| @ whose objects h)

are the structured P ?
morphisms whose h

domain is c. d, > o D
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J L Fiadeiro 5.1 Structured morphisms

o Given a category PROG of programs and a category
SPEC of program specifications, we can think of a
functor spec:PROG—SPEC that maps programs to
the strongest specification that they satisfy.

0 A realisation of a specification S can be identified
by a structured morphism 0:S—spec(P), which
expresses how P satisfies/refines S.
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T iademe 5.1 Structured morphisms 8 2
B
i : (| S,
o This notion can
be extended to s\ol
u 1 MZ
configurations of 0 s
complex systems o v O SPEC
expressed as spec(P,) o,
diagrams. Sl
spec(P)
o The fact that \ 2
: spec(P,) spec
spec if a functor
ensures : .
oip e . 1 1
compositionality. wee
P PROG
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D
. o
0 What proper’rles. . S .
should a synthesis St ¢
functor i L R o
synt:SPEC—2PROG
have? Yo
spec(synt(S))
I 8 and p are spec
; synt
not necessarily . A
isomorphisms! A
o' /// P
/,’ o) PROG

synt(S) —P» synt(spec(P))
synt(o)
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J L Fiadeiro 5.2 Reflective functors

Let ¢:D—C be a functor.

0 A g-reflection for c:C is a structured morphism
o:c—¢(d) such that, for any f:c—=>¢(d’) there is a

unique f':d—d’ 0
in D st ¢ > (p(d) d
f=0;q(f"). i
o @ is reflective O @(t) f' 1
iff every c:C has f '
a ¢-reflection. M
(p(dV) dl

¢

P e D
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J L Fiadeiro 5.2 Reflective functors

Let :D—C be a reflective functor. We define a
functor p:C—D by mapping every c:C to the target
of its g-reflection nc:c—¢(p(c)), and every h:c—c’ to
the unique

: M
h':p(c)—=p(c’) c > 9(p(c)) p(c)
that makes
the diagram h ®) @ (h') h'
commute. v \ 4
c » ¢(p(c)) p(c)
Tlc‘

¢
B ———— D
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J L Fiadeiro 5.2 Reflective functors

Let ¢:D—C be a reflective functor.

o Its reflector p:C—D is co-reflective and @ is the
co-reflector of p.

o ¢ preserves limits.

o @ is faithful iff each p-co-reflection €q4:p(p(d))—d is
an epi.
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J L Fiadeiro 5.3 Adjunctions
D

0 An adjunction from a category C to a category D
consists of a reflective functor ¢:D—C together
with is reflector p:C—D.

o @ is called the right adjoint (or adjoint or the
“forgetful” functor).

n p is called the left adjoint (or co-adjoint or the
“free” functor).

o Other more “standard” characterisations exist...
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J L Fiadeiro 5.3 Adjunctions

0 Every reflective subcategory defines an adjunction
in which the inclusion is the right adjoint.

o Given a functor @:C—SET, the forgetful functor
spa(p)—C has a left adjoint that maps c:C to <c,@>
and a right adjoint that maps it to <c,q(c)>.

o The forgetful functor THEO—SET has a left adjoint
that maps 2:SET to <Z,c(¢)> and a right adjoint that
maps it to <X,PROP(X)>.
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J L Fiadeiro 5.3 Adjunctions

n The contravariant powerset functor 27:SETP—SET

is reflective and its left adjoint computes powersets
of proper elements and inverse images.

o This functor extends fha
to an adjunction SET, <4 ® SET
between THEO®P A A
and PROC. alph o sign’’
o o
PROC & =7 ® THEO®
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J L Fiadeiro 5.3 Coordinated categories

o Given a faithful functor (concrete category) @:D—C,
a discrete lift for c:C is d:D such that c=p(d) and id.
is a ¢(d)-reflection, i.e. for every f:c—q¢(d’), there is
a (unique) g:d—d’ such that ¢(g)=f.

n The functor (concrete category) is said to have
discrete structures whenever every c:C has a
discrete lift.

o A concrete category with discrete structures is
reflective and the co-reflections are epis.




Categorical structures for system modelling 5 Adjunctions

91

J L Fiadeiro 5.3 Coordinated categories

0 Consider a functor int:SYS—INT mapping system
models to interfaces that is faithful and has
discrete structures, with reflector sys:INT—SYS.

— morphisms C—int(S) and sys(C)—S

are essentially “the same”. SYS(int(S))
— the following diagrams admit the
same pushouts, i.e. connections are €g

performed through interfaces.

S S
Sl 82 Sl Sz
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J L Fiadeiro 5.3 Coordinated categories

o A faithful functor (concrete category) @:D—C is said
to be coordinated (or that D is coordinated over C)
if it has discrete structures and lifts colimits.

o THEO is coordinated over SET
o PROC is (co)coordinated over SET,




