
José Luiz Fiadeiro

University of Leicester

Categorical structures
for system modelling



Categorical structures for system modelling!

J L Fiadeiro ! !

Disclaimer
I am a mathematician by training but a practising computer 
scientist.  This seminar presents (some) elements of category 
theory not as mathematical objects but as they can apply to 
computer science.

It is not intended as a crash course in category theory, but as 
an exposition of (part of) what it offers for modelling software 
intensive systems.  It should provide enough background and 
awareness to allow you to pick up a book and start learning.

Full definitions, results and proofs can be obtained in 
“Categories for Software Engineers”, Springer 2004.

But other books exist…  I tend to use “Categories for the 
Working Mathematician” by S. MacLane, Springer 1971.

20! What this seminar is (not) about
0.1! Maths vs Computer Science

It is a personal 
view and trajectory: 

“my toolbox”

Many of the “must haves” of 
CT will not be covered



Categorical structures for system modelling!

J L Fiadeiro ! !

Modelling computations
The “classical” approach: CS as a discipline concerned with the 
study of computational phenomena where the focus is on the 
nature and organisation of computations. 

“proofs as types”, “computations as proofs”, …

The object of all other books.

Modelling systems
 “Putting theories together to make specifications”.

“Given a category of widgets, the operation of putting a 
system of widgets together to form a super-widget 
corresponds to taking a colimit of the diagram of widgets that 
shows how to interconnect them”.

3

Modularisation of code, 
designs, specifications.

Run-time 
architecture;

Dynamic 
reconfiguration

0! What this seminar is (not) about
0.2! Computations vs Systems

CT as the 
mathematics of 

complex systems



Categorical structures for system modelling!

J L Fiadeiro ! !

Typical areas of CS that we will subsume
ADT (algebraic specifications)

Goguen and Burstall (Institutions)

“CASL”

Concurrency
Nielsen, Sassone, Winskel

Montanari, Corradini, …

Parallel program design
Superposition (Katz, Chandy&Misra, Forman&Francez)

Software architecture
Components and connectors (Garlan; Kramer&Magee)

40! What this seminar is (not) about
0.3! Typical areas of application



Categorical structures for system modelling!

J L Fiadeiro ! !

Typical structures in CS that we will address

50! What this seminar is (not) about
0.3! Typical areas of application

MIL – 
Module Interconnection 

Language



Categorical structures for system modelling!

J L Fiadeiro ! !

Typical structures in CS that we will address

60! What this seminar is (not) about
0.3! Typical areas of application

ADL – Architecture 
Description Language



Categorical structures for system modelling!

J L Fiadeiro ! !

Typical structures in CS that we will address

70! What this seminar is (not) about
0.3! Typical areas of application

SCA – 
Service Component 

Architecture



Categorical structures for system modelling!

J L Fiadeiro ! !

FAQs
What is CT good for?  When should I use it? 
Why should I bother learning CT?

An alternative toolbox to Set Theory
 

81! What CT is about
1.1! Categories vs Sets

∈ →
= ≡

Explicit Implicit

Internal External

White-box Black-box



Categorical structures for system modelling!

J L Fiadeiro ! !

A power amplifier
In Set Theory

In Category Theory

91! What CT is about
1.1! Categories vs Sets



Categorical structures for system modelling!

J L Fiadeiro ! !

The “social metaphor”
“The meaning of things lies not in the things 
themselves, but in our attitude towards them.” 
Antoine de Saint-Exupéry

Sets in CT
What is the social life of sets?

Who is the empty set?

Who are the singletons?

Where are the elements?

What is an injective function?

101! What CT is about
1.1! Categories vs Sets



Categorical structures for system modelling!

J L Fiadeiro ! !

A Graph consists of
a collection G0 is of nodes

a collection G1 of arrows

two maps src and trg from arrows to nodes (the 
source and target of the arrow).

We usually write f:x→y to indicate that src(f)=x and 
trg(f)=y.  

Categories work on a less immediate social 
relationship given by the paths of a graph.
<f1,…,fn>:x1→x2→…→xn+1 ∈ Gn

111! What CT is about
1.2! Graphs



Categorical structures for system modelling!

J L Fiadeiro ! !

Class inheritance hierarchies
These are graphs whose nodes are object classes and for 
which the existence of an arrow between two nodes (classes) 
means that the source class inherits from the target class

121! What CT is about
1.2! Graphs

RESIDENCEBUSINESS

HOME_
BUSINESS

HOUSE

rename insured_value
as residence_value

rename insured_value
as business_value

address
insured_value In class inheritance 

hierarchies, there 
exists at most one 
arrow between two 
nodes.  However, 
arrows can carry more 
information. 



Categorical structures for system modelling!

J L Fiadeiro ! !

Class inheritance hierarchies
Class inheritance graphs induce mappings between the sets of 
features of each class

131! What CT is about
1.2! Graphs

rename insured_value
as residence_value

rename insured_value
as business_value

{address,insured_value,B}

{address,insured_value}

{address,insured_value,A}

{address,residence_value,business_value,A,B,C}



Categorical structures for system modelling!

J L Fiadeiro ! !

Transition systems
Every transition system constitutes a graph whose 
nodes are the states and whose arrows are the 
transitions

141! What CT is about
1.2! Graphs

hungry

eating

thinking

forks↑

forks↓

bc_hungry



Categorical structures for system modelling!

J L Fiadeiro ! !

A Category consists of
a graph G

an associative composition law ;:G2→G1

(f;g);h=f;(g;h).

an identity map id:G0→G1

If f:x→y, idx;f = f;idy = f.

We denote by homC(x,y) the morphisms from x to y. 

151! What CT is about
1.3! Categories

 f g 

  x y z 

 

 idx f;g 

many authors 
use functional 

composition o



Categorical structures for system modelling!

J L Fiadeiro ! !

Some mathematical structures
Every pre-order <S,≤> defines a category: the 
objects are the elements of S and there is an 
arrow between any two objects x and y iff x≤y; 
reflexivity provides identities; transitivity ensures 
composition.

Every monoid <M,*,1> defines a category: there is 
only one object, which we can denote by “•”, and 
the morphisms m:•→• are the elements of M; 1 
provides the identity and * is the composition law.

Every set S determines a category by defining, for 
every element s of S an identity •s:s→s.

161! What CT is about
1.4! Examples



Categorical structures for system modelling!

J L Fiadeiro ! !

SET
sets and total functions

LOGI
sentences and logical entailment A⊢B

PROOFS
sentences and proofs

171! What CT is about
1.4! Examples

 
A∧B A∨B C∧B 

 

 

A∧B 

A∨B 

B 

A∧B 

A∨B 

A 

A∨B 

A∧B 



Categorical structures for system modelling!

J L Fiadeiro ! !

GRAPH
a morphism ϕ:G→H 
is a pair of maps 
ϕ0:G0→H0, ϕ1:G1→H1 
such that each 
arrow f:x→y is 
mapped to 
ϕ1(f):ϕ0(x)→ϕ0(y).

181! What CT is about
1.4! Examples

a
b

c

d

e

f

g



Categorical structures for system modelling!

J L Fiadeiro ! !

Ancestor
In Eiffel, given an inheritance graph G between classes, the 
category ancestor(G)  is generated by completing the graph 
with the arrows that result from reflexivity (identities) and 
transitivity (compositions).

191! What CT is about
1.4! Examples

RESIDENCEBUSINESS

HOME_
BUSINESS

HOUSE



Categorical structures for system modelling!

J L Fiadeiro ! !

Category generated by a graph

Every graph G generates a category cat(G) as 
follows: 

objects: nodes 

arrows: paths 

identities: empty paths; 

composition: path concatenation.

For instance, every transition system T generates the 
category Run(T) of its runs.

201! What CT is about
1.4! Examples



Categorical structures for system modelling!

J L Fiadeiro ! !

Diagram in a category
Let C be a category and I a graph.  A diagram in C 
with shape I is a morphism δ:I→graph(C).  

A diagram δ:I→C is said to commute iff, for every 
pair x,y of nodes and every pair of paths w=u1...um, 
w'=v1...vn from x to y in I, δu1;...; δum= δv1;...;δvn

211! What CT is about
1.5! Diagrams



Categorical structures for system modelling!

J L Fiadeiro ! !

Adding structure
The most typical way of building a new category 
consists of adding structure to the objects of a 
given category (or a subset thereof).  

The morphisms of the new category are the 
morphisms of the old category that “preserve” the 
additional structure.

221! What CT is about
1.6! Adding structure



Categorical structures for system modelling!

J L Fiadeiro ! !

Automata
Every object is a (deterministic) automaton 
consisting of of an input set X, a state set S, an 
output set Y, a transition function f: XxS→S, an 
initial state s0∈S and an output function g: S→Y.

A morphism from <X,S,Y,s0,f,g> to <X',S',Y',s'0,f',g'> 
consists of three functions <h:X→X',i:S→S',j:Y→Y'> 
such that

1. i(s0)=s'0.       2. f;i=h×i;f'.        3. g;j=i;g'.

231! What CT is about
1.6! Adding structure

The output 
functions “agree”

The transition 
functions “agree”

The initial 
states “agree”



Categorical structures for system modelling!

J L Fiadeiro ! !

Expressing the properties with diagrams

3. g;j=i;g'

241! What CT is about
1.6! Adding structure

The output 
functions “agree”

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Expressing the properties with diagrams

2. f;i=h×i;f'

251! What CT is about
1.6! Adding structure

The transition 
functions “agree”

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Expressing the properties with diagrams

1. i(s0)=s'0

261! What CT is about
1.6! Adding structure

The initial 
states “agree” 



Categorical structures for system modelling!

J L Fiadeiro ! !

Proving composition with diagrams
f;(i;i’)=(h;h)’x(i;i’);f”

g;(j;j’)=(i;i’);g”

(i;i’)(s0)=s”0

271! What CT is about
1.6! Adding structure

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Pointed sets SET⊥
Its objects are the pairs <A,⊥A>, where A is a set 
and ⊥A is an element of A called the designated 
element.  

The morphisms between <A,⊥A> and <B,⊥B> are the 
total functions f:A→B such that f(⊥A)=⊥B.

The composition law and the identiy map are 
“inherited” from SET.

Pointed sets have been used for modelling the 
alphabets of concurrent process.

281! What CT is about
1.6! Adding structure

Each 
element represents 

an event whose 
occurrence may be 
witnessed during the 

lifetime of the 
process.

an 
event of the 

environment, i.e. an 
event in which the 

process is not 
involved.

every morphism 
identifies the way 

in which the target is 
embedded, as a 

component, in the 
source. 

The environment of 
the system is part of 
the environment of 

every component.



Categorical structures for system modelling!

J L Fiadeiro ! !

Comma Categories
Given a category C and an object a:C we define the 
category of “objects under a” – a↓C

objects are the pairs <f,x>, where f:a→x is a morphism in C.

the morphisms between f:a→x and 
g:a→y are all the morphisms h:x→y 
such that f;h=g.

291! What CT is about
1.6! Adding structure

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Isomorphisms 
A morphism f:x→y is an isomorphism iff there is a 
morphism g:y→x such that: f;g=idx and g;f=idy.  

In these conditions, x and y are said to be 
isomorphic. 

What are the isomorphisms in the categories 
identified so far?

301! What CT is about
1.7! Kinds of morphisms



Categorical structures for system modelling!

J L Fiadeiro ! !

Mono/Epimorphisms 
A morphism f:x→y is a monomorphism (or a mono or 
monic) iff, for every pair of morphisms g,h:z→x,  
g;f=h;f implies g=h.

monos do not interfere with interactions at the source

A morphism f:x→y is an epimorphism (or an epi or 
epic) iff, for every pair of morphisms g,h:y→z,  
f;g=f;h implies g=h.  

311! What CT is about
1.7! Kinds of morphisms

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Subcategories 
A category D is a subcategory of a category C iff

D0⊆G0

homD(x,y)⊆homC(x,y) for all objects x and y of D

A subcategory D of C is full iff homD(x,y)=homC(x,y) 
for all objects x and y of D

This means that the structure of the objects is preserved (same 
social life but among a smaller population)

SET is a subcategory of the category PAR of sets and partial 
functions, but not a full one.

The category fSET of finite sets is a full subcategory of SET.

321! What CT is about
1.8! Subcategories



Categorical structures for system modelling!

J L Fiadeiro ! !

REACH⊆AUTOM
Reachable automata give rise to a full subcategory 
REACH of AUTOM.

their states can be reached through the transition function from 
the initial state and some input sequence

Every automaton A=<X,S,Y,s0,f,g> is related to a 
“canonical” reachable automaton R=<X,SR,Y,s0,fR,gR> 
through a morphism c:R→A such that, given any 
reachable automaton R' and simulation h:R'→A, 
there is a unique morphism of reachable automata 
h':R'→R such that h=h';c.  This means that R is the 
reachable automaton that is “closest” to A.

331! What CT is about
1.8! Subcategories



Categorical structures for system modelling!

J L Fiadeiro ! !

(Co)Reflections

Let D be a subcategory 
of a category C.

A D-coreflection for c:C 
is i:d→c for d:D such 
that, for any f:d'→c 
where d':D, there is a 
unique f':d'→d in D such 
that f=f';i

341! What CT is about
1.8! Subcategories

 



Categorical structures for system modelling!

J L Fiadeiro ! !

(Co)Reflective Subcategories
We say that D is a coreflective subcategory of C iff 
every C-object admits a D-coreflection.

Co-reflections are essentially “unique”: if i:d→c and 
j:e→c are both D-coreflections for c, then there is 
a D-isomorphism f:e→d such that j=f;i.

If i:d→c is a D-coreflection for c, and f:e→d is a D-
isomorphism, then f;i:e→c is also a  D-coreflection 
for c. 

Let D be a coreflective subcategory of a category 
C.  Then, D is a full subcategory of C iff, for every 
D-object d, idd is a D-coreflection for d. 

351! What CT is about
1.8! Subcategories



Categorical structures for system modelling!

J L Fiadeiro ! !

Initial objects in a category
An object x is initial iff, for every object y, there is 
a unique morphism from x to y. 

Any two initial objects are isomorphic

We usually denote “the” initial object, if one exists, 
by 0.  The unique morphism from 0 into an object a 
is denoted by 0a:0→a

Which are the initial objects of the categories 
identified so far?

362! Universal constructions
2.1! Initial/Terminal objects



Categorical structures for system modelling!

J L Fiadeiro ! !

Terminal objects in a category
An object x is terminal iff, for every object y, 
there is a unique morphism from y to x. 

Any two terminal objects are isomorphic

We usually denote “the” terminal object, if one 
exists, by 1.  The unique morphism from an object a 
into 1 is denoted by 1a:a→1

Which are the terminal objects of the categories 
identified so far?

372! Universal constructions
2.1! Initial/Terminal objects



Categorical structures for system modelling!

J L Fiadeiro ! !

Eiffel’s Inheritance Structure
Eiffel has an initial object  
– the class NONE that 
inherits from every other 
class. 

And also a terminal object 
– the class GENERAL from 
which every other class 
inherits.

382! Universal constructions
2.1! Initial/Terminal objects

CA

NONE

ANY

GENERAL

PLATFORM

B

D E

developer-defined
classes

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Dual of a category C
Cop has the same objects and arrows as C.

The arrows of Cop go in the reverse direction: if 
f:A→B in C then f:B→A in Cop.

Arrow composition is in the reverse direction: f;g in 
Cop is g;f in C.

Duality principle
Every concept has a dual, which is the concept that 
is obtained by reversing the direction of the arrows.

Every result in category theory has a dual that 
holds for the dual concepts.  

392! Universal constructions
2.2! Duality



Categorical structures for system modelling!

J L Fiadeiro ! !

Sum in a category C
An object z is a sum (or 
coproduct) of x and y with 
injections ix:x→z and iy:y→z 
iff for any object v and pair 
of morphisms fx:x→v, fy:y→v 
there is a unique morphism 
k:z→v, usually denoted [fx,fy] 
such that ix;k=fx and iy;k=fy.

If a sum of x and y exists, it 
is unique up to isomorphism 
and is denoted by x+y.

402! Universal constructions
2.3! Sums and products

 x y 

x+y  

v 

[fx,fy] 

fx fy 

ix iy 

The dual concept 
is the product x×y of 

x and y



Categorical structures for system modelling!

J L Fiadeiro ! !

Sum in PROOF
Sums correspond to disjunctions.

The categorical definition of sum actually provides, 
through the morphisms the usual rules of natural 
deduction for OR introduction and elimination.

412! Universal constructions
2.3! Sums and products

iA:A!A"B  iB:B!A"B 
 

! 

fA :A"C, fB :B"C

[ fA, fB] :A#B"C
 

  



Categorical structures for system modelling!

J L Fiadeiro ! !

Eiffel’s Inheritance Structure
Eiffel has a notion of inheritance without name clashes 
that corresponds to a product.

The corresponding construction on sets of features 
corresponds to a sum.

422! Universal constructions
2.3! Sums and Products

 

COLOURSFRUITS

FRUITS_&_
COLOURS

COCKTAIL

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Pushout in a category C
A pushout of f:x→y and g:x→z consists of two 
morphisms f':y→w and g':z→w such that 
(1) f;f'=g;g' and 
(2) for any other 
f":y→v and g":z→v 
st f;f"=g;g", there
is a unique 
k:w→v st 
f';k=f" and 
g';k=g".

432! Universal constructions
2.4! Pushouts and pullbacks

The dual concept 
is the pullback of 

f and g

 

x 

y 

z 

w v 
k 

f" 

g"  

g' 

f' 

g 

f 

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Eiffel’s Interitance Structure
Pushouts allows us to join (merge) features during 
multiple inheritance, as in 
the construction of 
HOME_BUSINESS.

442! Universal constructions
2.4! Pushouts and pullbacks

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Coequaliser in a category C
A coequaliser of f:x→y and g:x→y consists of a 
morphism e:y→z such that (1) f;e=g;e and 
(2) for any other e’:y→v st f;e’=g;e’, there is a unique 
k:z→v st e;k=e’.

452! Universal constructions
2.5! (Co)Equaliser

 

x y 

f 

g 

z 
e 

v 

e’ 
k 

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Co-cone in a category C
Let δ:I→C be a diagram.  A 
cocone with base δ is an 
object z (the vertex) 
together with a family 
{pa:δa→z}a∈I0 of morphisms 
(edges), usually denoted by 
p:δ→z.  

A cocone p with base δ 
vertex z is said to be 
commutative iff for every 
arrow s:a→b of I, δs;pb=pa.

462! Universal constructions
2.5! (Co)Limit

 z 

 

a b 

s 

pa pb 

p 

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Colimit of a diagram
Let δ:I→C be a diagram.  
A colimit of δ is a 
commutative cocone 
p:δ→z such that, for 
every other commutative 
cocone p’:δ→z’ there is 
a unique morphism 
f:z→z’ such that 
pa;f=p’a.

472! Universal constructions
2.5! (Co)Limit

 z 

 

a 

pa 

p 

z' 

p' 

p'a 

f 

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Cocomplete category
A category is (finitely) cocomplete if all (finite) 
diagrams have colimits.

Generating finite colimits
A category is finitely cocomplete iff it has initial 
objects and pushouts of all pairs of morphisms with 
common source.

482! Universal constructions
2.6! (Co)Completeness



Categorical structures for system modelling!

J L Fiadeiro ! !

PROC
The set of trajectories over a pointed set A⊥=<A,⊥A> 
is tra(A⊥)={λ:ω→A}

Every morphism f:A⊥→A’⊥ extends to tra(A⊥) by 
pointwise application tra(f)(λ)=λ;f:ω→A’.
A process is a pair <A⊥,Λ⊆tra(A⊥)>
A process morphism f:<A⊥,Λ>→<A’⊥,Λ’> is a morphism 
of alphabets f:A⊥→A’⊥ such that tra(f)(Λ)⊆Λ’
PROC is complete and cocomplete.

492! Universal constructions
2.7! Processes



Categorical structures for system modelling!

J L Fiadeiro ! !

PROC
The terminal process is <⊥Ø,tra(⊥Ø)>

The initial process is <⊥Ø,Ø>

A pullback of g1:<A1⊥,Λ1>→<A⊥,Λ>, g2:<A2⊥,Λ2>→<A⊥,Λ> 
is g’1:<A’⊥,Λ’>→<A1⊥,Λ1>, g’2:<A’⊥,Λ’>→<A2⊥,Λ2> where 
g’1:A’⊥→A1⊥, g’2:A’⊥→A2⊥ is a pullback of g1 and g2

and Λ’=g’1-1(Λ1)⋂g’2-1(Λ2).

This corresponds to parallel composition in trace-
based semantics.

502! Universal constructions
2.7! Processes



Categorical structures for system modelling!

J L Fiadeiro ! !

PROC – examples
process VM is
alphabet co, ca, ci 
behaviour
   Λ ::= ⊥ω  |  ⊥*co⊥ω   |  (⊥*co⊥*{ca,ci})Λ

process RVM is
alphabet co, ca, ci, co|to 
behaviour

       Λ ::= ⊥ω  |  ⊥*co⊥ω   |  (⊥*co⊥*ca)Λ 

                                    | ⊥*co|to⊥* | (⊥*co|to⊥*ci)Λ

512! Universal constructions
2.7! Processes



Categorical structures for system modelling!

J L Fiadeiro ! !

Functors
A functor ϕ:C→D between two categories is a graph 
homomorphism between their underlying graphs 
that preserves the composition law and the 
identities, i.e. ϕ(f;g)=ϕ(f);ϕ(g) and ϕ(idx)=idϕ(x) 

Functors compose in the obvious way and admit the 
obvious identity, leading to the category CAT of 
categories and functors.

Process alphabets
alph:PROC→SET⊥ mapping processes to their 
alphabets is a (forgetful) functor.

523! Functor-structured categories
3.1! Functors



Categorical structures for system modelling!

J L Fiadeiro ! !

Classes of functors
A functor is an isomorphism iff it admits an inverse.

A functor is an embedding iff it is injective.  

A functor is faithful iff all the restrictions 
ϕ:homc(x,y)→homc(ϕ(x),ϕ(y)) are injective.  

A functor is full iff all the restrictions 
ϕ:homc(x,y)→homc(ϕ(x),ϕ(y)) are surjective.  

alph:PROC→SET⊥ is faithful but not full.

533! Functor-structured categories
3.1! Functors



Categorical structures for system modelling!

J L Fiadeiro ! !

Reflector
Let D be a reflective subcategory of C.  We define 
a functor ρ:C→D by mapping each object c:C to the 
target of its reflection ηc:c→d=ρ(c) and every 
morphism h:c→c’ to the
unique morphism
ρ(h):ρ(c)→ρ(c’) 
such that
ηc;ρ(h)=h;ηc’

This functor is called
a reflector for the
inclusion of D in C

543! Functor-structured categories
3.1! Functors

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Example
tra(A⊥)={λ:ω→A} defines a functor tra:SET⊥→SET.

Spa-categories
Given a functor ϕ:C→SET, we define spa(ϕ) whose 
objects are pairs <c,S⊆ϕ(c)> and whose morphisms 

f:<c,S>→<d,T> are the morphisms f:c→d such that 
tra(f)(S)⊆T.

PROC is spa(tra).

553! Functor-structured categories
3.2! Spas



Categorical structures for system modelling!

J L Fiadeiro ! !

If C is (co)complete so is spa(ϕ)
The terminal object is <1,ϕ(1)>

The initial object is <0,Ø>

563! Functor-structured categories
3.2! Spas



Categorical structures for system modelling!

J L Fiadeiro ! !

The products

573! Functor-structured categories
3.2! Spas

<c1,S1> <c2,S2> c1 c2

<c1,S1> <c2,S2> c1 c2

g1 g2 g1 g2

<c,g1
-1
(S1)∩g2-1(S2)> c

spa(ϕ) C



Categorical structures for system modelling!

J L Fiadeiro ! !

The sums

583! Functor-structured categories
3.2! Spas

<c1,S1> <c2,S2> c1 c2

<c1,S1> <c2,S2> c1 c2

g1 g2 g1 g2

<c,g1(S1)∪g2(S2)> c

spa(ϕ) C



Categorical structures for system modelling!

J L Fiadeiro ! !

The pullbacks

593! Functor-structured categories
3.2! Spas

<c0,S0> c0
f1 f2 f1 f2

<c1,S1> <c2,S2> c1 c2

<c0,S0> c0
f1 f2 f1 f2

<c1,S1> <c2,S2> c1 c2

g1 g2 g1 g2

<c,g1
-1
(S1)∩g2-1(S2)> c

spa(ϕ) C



Categorical structures for system modelling!

J L Fiadeiro ! !

The pushouts

603! Functor-structured categories
3.2! Spas

<c0,S0> c0
f1 f2 f1 f2

<c1,S1> <c2,S2> c1 c2

<c0,S0> c0
f1 f2 f1 f2

<c1,S1> <c2,S2> c1 c2

g1 g2 g1 g2

<c,g1(S1)∪g2(S2)> c

spa(ϕ) C



Categorical structures for system modelling!

J L Fiadeiro ! !

The forgetful functor
ν:spa(ϕ)→C “forgets” the SET-component

A functor ν:A→B lifts limits (uniquely) iff for any 
diagram δ in A and limit μ’:b→δ;ν in B there is a 
(unique) cone μ:a→δ that is a limit of δ and μ’=ν(μ).
ν:spa(ϕ)→C lifts limits uniquely:
Any limit μ:c→δ;ν with δi=<ci,Si> is lifted uniquely to 
μ:<c,S>→δ where S=∩iϕ(μi)-1(Si) 

ν:spa(ϕ)→C lifts colimits uniquely:
Any colimit μ:δ;ν→c with δi=<ci,Si> is lifted uniquely 
to μ:δ→<c,S> where S=∪iϕ(μi)(Si)

613! Functor-structured categories
3.3! Lifting universal constructions



Categorical structures for system modelling!

J L Fiadeiro ! !

Temporal specification
Linear temporal language PROP(Σ) over a set 
φ ::= beg | a∈Σ | ¬φ | φ1 ⊃ φ2 | φ1 U φ2

translation defined by f:Σ→Σ’
f(φ) ::= beg | f(a) | ¬f(φ) | f(φ1) ⊃ f(φ2) | f(φ1) U f(φ2)

624! Fibrations
4.1! Specifications



Categorical structures for system modelling!

J L Fiadeiro ! !

Semantics of PROP(Σ) over (2Σ)ω

λ⊨ia iff a∈λ(i)

λ ⊨ibeg iff i=0
λ⊨i¬φ iff it is not the case that λ⊨iφ

λ⊨iφ1⊃φ2 iff λ⊨iφ1 implies λ⊨iφ2,

λ⊨iφ1Uφ2 iff, for some j>i, λ⊨iφ2 and, for every i<k<j, 
λ⊨kφ1

λ⊨φ iff λ⊨iφ for every i

Φ⊨φ iff, for every λ, λ⊨Φ implies λ⊨φ

634! Fibrations
4.1! Specifications



Categorical structures for system modelling!

J L Fiadeiro ! !

THEO

objects: <Σ,Φ> such that Φ is closed – c(Φ)=Φ

arrows: f:<Σ,Φ>→<Σ’,Φ’> is f:Σ→Σ’ s.t. PROP(f)(Φ)⊆Φ’

PRES

objects: theory presentations <Σ,Φ>

arrows: f:<Σ,Φ>→<Σ’,Φ’> is f:Σ→Σ’ s.t. f(Φ)⊆c(Φ’)

where c(Φ)={φ: Φ⊨φ}

644! Fibrations
4.1! Specifications



Categorical structures for system modelling!

J L Fiadeiro ! !

Example

Specification vending machine is

signature coin, cake, cigar 

axioms
beg ⊃ ¬cake∧¬cigar ∧ (coin∨(¬cake∧¬cigar)Wcoin)
coin ⊃ (¬coin)W(cake∨cigar)
(cake∨cigar) ⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar 

654! Fibrations
4.1! Specifications



Categorical structures for system modelling!

J L Fiadeiro ! !

Example

Specification regulated vending machine is

signature coin, cake, cigar, token

axioms
beg ⊃ ¬cake ∧ ¬cigar ∧ ¬token ∧ 
    (coin∨(¬cake∧¬cigar)Wcoin)
coin ⊃ (¬coin)W(cake∨cigar)
coin ⊃ (¬cigar)Wtoken
(cake∨cigar) ⊃ (¬cake∧¬cigar)Wcoin
cake ⊃ ¬cigar
token ⊃ ¬cigar

664! Fibrations
4.1! Specifications



Categorical structures for system modelling!

J L Fiadeiro ! !

The forgetful functors
sign:THEO→SET and sign:PRES→SET forget the 
axioms/theorems and retain the signature

Both functors lift limits:
Any limit μ:Σ→δ;ν with δi=<Σi,Φi> is lifted to 
μ:<Σ,Φ>→δ where Φ=∩iμi-1(Φi) for THEO and
  Φ=∩iμi-1(c(Φi)) for PRES

Both functors lift colimits:
Any colimit μ:δ;ν→Σ with δi=<Σi,Φi> is lifted to 
μ:δ→<Σ,Φ> where Φ=c(∪iμi(Φi)) 

(For PRES this is isomorphic to Φ=∪iμi(Φi))

674! Fibrations
4.1! Specifications



Categorical structures for system modelling!

J L Fiadeiro ! !

Example

Specification regulator is

signature trigger, ted, tor

axioms
beg ⊃ ¬tor
trigger ⊃ (¬ted)Wtor
tor ⊃ ¬ted

Specification bichannel is

signature c1, c2

684! Fibrations
4.1! Specifications



Categorical structures for system modelling!

J L Fiadeiro ! !

Pushout in PRES
The specification of the regulated vending machine 
can be obtained (up to isomorphism) as a pushout of 
the following diagram:

694! Fibrations
4.1! Specifications

bichannel

c1  

! 

acigar! c1  

! 

ated

c2  

! 

acoin! c2  

! 

atrigger

vending machine regulator
 



Categorical structures for system modelling!

J L Fiadeiro ! !

Fibres
Consider a functor ν:D→C.
The fibre of c:C is the subcategory of D that 
consists of all the objects d that are mapped to c, 
i.e. such that ν(d)=c, together with the morphisms 
f:d1→d2 such that idc=ν(f).

Examples
All the theories for a given signature;

All the processes over a given alphabet.

704! Fibrations
4.2! Fibres



Categorical structures for system modelling!

J L Fiadeiro ! !

Cartesian morphisms
Consider a functor ϕ:D→C, f:c→c', and d’:D(c’). A 
Cartesian morphism for f and d’ is g:d→d' st: 

ϕ(g)=f.

For every g':d”→d’ and 
f':ϕ(d")→c such that 
ϕ(g')=f’;f, there is a 
unique h:d”→d st 
ϕ(h)=f' and g'=h;g.

We use ϕ-1(d’) for d.

714! Fibrations
4.2! Fibres

ϕ(d") ϕ(g')

f' c c'

f

g

d d'

  h

d" g'

D(c) D(c')



Categorical structures for system modelling!

J L Fiadeiro ! !

(Co)Cartesian morphisms
Consider a functor ϕ:D→C, f:c→c', and d:D(c). A co-
Cartesian morphism for f and d is g:d→d' st: 

ϕ(g)=f.

For every g':d→d" and 
f':c'→ϕ(d") such that 
ϕ(g')=f;f', there is a 
unique h:d'→d" st 
ϕ(h)=f' and g'=g;h.

724! Fibrations
4.2! Fibres

ϕ(g') ϕ(d")

c c' f'

f

g

d f(d) h

g'
d"

D(c) D(c')



Categorical structures for system modelling!

J L Fiadeiro ! !

Examples
Given f:Σ→Σ’,
<Σ’,c(f(Φ))> is co-cartesian for <Σ,Φ> in THEO
<Σ’,f(Φ)> is co-cartesian for <Σ,Φ> in PRES 
   and so is <Σ’,c(f(Φ))>: there is no uniqueness!
<Σ,f-1(Φ’)> is cartesian for <Σ’,Φ’> in THEO
<Σ,f-1(c(Φ’))> is cartesian for <Σ’,Φ’> in PRES

In spa(ϕ), given f:c→c’,
<c’,ϕ(f)(S)> is co-cartesian for <c,S>
<c,ϕ(f)-1(S’)> is cartesian for <c’,S’>

734! Fibrations
4.2! Fibres



Categorical structures for system modelling!

J L Fiadeiro ! !

(Co)Fibrations
A fibration is a functor ϕ:D→C such that there is a 
Cartesian morphism for every f:c→c' and d’:D(c’).

A cofibration is a functor ϕ:D→C such that there is 
a coCartesian morphism for every f:c→c' and d:D(c).

Cleavages
A choice of a Cartesian morphism for every f:c→c' 
and d’:D(c’) is called a cleavage.  A fribration 
equipped with a cleavage is said to be cloven.

Co-cleavages are defined by duality.

744! Fibrations
4.3! Split Fibrations



Categorical structures for system modelling!

J L Fiadeiro ! !

Induced functors
A cloven fibration defines, for every f:c→c', a 
functor f–1:D(c')→D(c) 

754! Fibrations
4.3! Split Fibrations

f

c c'

ϕf,d
2

f
-1
(g) f

-1
(d2) d2

f
-1
(d1) d1 g

ϕf,d
1

D(c) D(c')

f
-1



Categorical structures for system modelling!

J L Fiadeiro ! !

Fibre-completeness
A cloven fibration is said to be fibre-complete if, for 
every C-object c, its fibre D(c) is complete and, for 
every morphism f:c→c', the functor f–1:D(c')→D(c) 
preserves limits.

A functor ν:A→B preserves limits iff for any limit 
p:δ→a in A the cocone ν(p):δ;ϕ→ϕ(a) is a limit of 
δ;ϕ.

764! Fibrations
4.3! Split Fibrations



Categorical structures for system modelling!

J L Fiadeiro ! !

Split
A cloven fibration is said to be split if, for every C-
object c, idc–1 is idD(c) and, for every decomposition 
f=f1;f2, f–1 is the composition f–12;f–11.

Every split fibration ϕ:D→C defines the functor 
ind(ϕ):Cop→CAT that maps every object c to its 
fibre D(c) and every morphism f:c→c' to the functor 
f–1:D(c')→D(c).

774! Fibrations
4.3! Split Fibrations



Categorical structures for system modelling!

J L Fiadeiro ! !

Lifting limits
Every split fibre-complete 
fibration lifts limits. 

784! Fibrations
4.3! Split Fibrations

µ ϕ(dj)

ϕ(g)

c ϕ(di) C

ϕ
ϕµ

j
d

j
δ

β µ-1
j(dj) dj

  ϕµ
i
d

i
;g/ϕµ

j
d

j
g D

d µ-1
i(di) di

ϕµ
i
d

i



Categorical structures for system modelling!

J L Fiadeiro ! !

Concrete
A concrete category is a faithful functor ϕ:D→C.

The fibres of a concrete category are pre-orders.  
Those of a cloven fibration are partial orders.

In a concrete fibre-complete split fibration, any limit 
μ:c→δ;ϕ is lifted to μ:∩iμi-1(δi)→δ.

THEO and PRES are concrete fibre-(co)complete 
split (co)fibrations.

Every spa-category is a concrete fibre-(co)complete 
split (co)fibration.

794! Fibrations
4.3! Split Fibrations



Categorical structures for system modelling!

J L Fiadeiro ! !

Structured morphisms
Given a functor ϕ:D→C, a ϕ-structured morphism is a 
C-morphism of the form f:c→ϕ(d). 

We generalise the notion 
of comma-category 
to structured 
morphisms, i.e. 
given an object
c:C we define
c↓ϕ whose objects
are the structured
morphisms whose
domain is c.

805! Adjunctions
5.1! Structured morphisms

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Programs and specifications
Given a category PROG of programs and a category 
SPEC of program specifications, we can think of a 
functor spec:PROG→SPEC that maps programs to 
the strongest specification that they satisfy.

A realisation of a specification S can be identified 
by a structured morphism σ:S→spec(P), which 
expresses how P satisfies/refines S.

815! Adjunctions
5.1! Structured morphisms



Categorical structures for system modelling!

J L Fiadeiro ! !

Realisations of complex systems
This notion can 
be extended to 
configurations of 
complex systems 
expressed as 
diagrams.

The fact that
spec if a functor
ensures 
compositionality.

825! Adjunctions
5.1! Structured morphisms

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Synthesising specifications
What properties 
should a synthesis 
functor 
synt:SPEC→PROG 
have?

ηS and εP are
not necessarily
isomorphisms!

835! Adjunctions
5.1! Structured morphisms

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Reflections
Let ϕ:D→C be a functor.

A ϕ-reflection for c:C is a structured morphism 
o:c→ϕ(d) such that, for any f:c→ϕ(d’) there is a 
unique f':d→d’ 
in D st 
f=o;ϕ(f’).

ϕ is reflective
iff every c:C has
a ϕ-reflection.

845! Adjunctions
5.2! Reflective functors

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Reflectors
Let ϕ:D→C be a reflective functor.  We define a 
functor ρ:C→D by mapping every c:C to the target
of its ϕ-reflection ηc:c→ϕ(ρ(c)), and every h:c→c’ to 
the unique 
h':ρ(c)→ρ(c’) 
that makes 
the diagram 
commute.

855! Adjunctions
5.2! Reflective functors

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Properties
Let ϕ:D→C be a reflective functor.

Its reflector ρ:C→D is co-reflective and ϕ is the 
co-reflector of ρ.

ϕ preserves limits.

ϕ is faithful iff each ρ-co-reflection εd:ρ(ϕ(d))→d is 
an epi.

865! Adjunctions
5.2! Reflective functors



Categorical structures for system modelling!

J L Fiadeiro ! !

Adjunctions
An adjunction from a category C to a category D 
consists of a reflective functor ϕ:D→C together 
with is reflector ρ:C→D.

ϕ is called the right adjoint (or adjoint or the 
“forgetful” functor).

ρ is called the left adjoint (or co-adjoint or the 
“free” functor).

Other more “standard” characterisations exist…

875! Adjunctions
5.3! Adjunctions



Categorical structures for system modelling!

J L Fiadeiro ! !

Examples
Every reflective subcategory defines an adjunction 
in which the inclusion is the right adjoint.

Given a functor ϕ:C→SET, the forgetful functor
spa(ϕ)→C has a left adjoint that maps c:C to <c,ø> 
and a right adjoint that maps it to <c,ϕ(c)>.

The forgetful functor THEO→SET has a left adjoint 
that maps Σ:SET to <Σ,c(ø)> and a right adjoint that 
maps it to <Σ,PROP(Σ)>.

885! Adjunctions
5.3! Adjunctions



Categorical structures for system modelling!

J L Fiadeiro ! !

Examples
The contravariant powerset functor 2–:SETop→SET⊥ 

is reflective and its left adjoint computes powersets 
of proper elements and inverse images.

This functor extends 
to an adjunction 
between THEOop 
and PROC.

895! Adjunctions
5.3! Adjunctions

 



Categorical structures for system modelling!

J L Fiadeiro ! !

Discrete lifts
Given a faithful functor (concrete category) ϕ:D→C, 
a discrete lift for c:C is d:D such that c=ϕ(d) and idc 
is a ϕ(d)-reflection, i.e. for every f:c→ϕ(d’), there is 
a (unique) g:d→d’ such that ϕ(g)=f.

The functor (concrete category) is said to have 
discrete structures whenever every c:C has a 
discrete lift.

A concrete category with discrete structures is 
reflective and the co-reflections are epis.

905! Adjunctions
5.3! Coordinated categories



Categorical structures for system modelling!

J L Fiadeiro ! !

Interfaces
Consider a functor int:SYS→INT mapping system 
models to interfaces that is faithful and has 
discrete structures, with reflector sys:INT→SYS. 

morphisms C→int(S) and sys(C)→S 
are essentially “the same”.

the following diagrams admit the 
same pushouts, i.e. connections are 
performed through interfaces.

915! Adjunctions
5.3! Coordinated categories

             



Categorical structures for system modelling!

J L Fiadeiro ! !

Coordinated categories
A faithful functor (concrete category) ϕ:D→C is said 
to be coordinated (or that D is coordinated over C) 
if it has discrete structures and lifts colimits.

THEO is coordinated over SET

PROC is (co)coordinated over SET⊥

925! Adjunctions
5.3! Coordinated categories


