
Policy-driven Reconfiguration of
Service-targeted Business Processes

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Stephen Mark Gorton

Department of Computer Science

University of Leicester

April 2011

i

Abstract

Workflows are a key part of Business Process Management, offering the potential to au-

tomate a number of business activities. Workflows are though constrained to their de-

sign, i.e. workflow functionality does not extend outside its own specification. A rel-

atively small number of solutions to this inflexibility have been proposed. However, all

approaches so far are either at the orchestration level or are tightly-coupled with the work-

flow, whereas we consider that the problem is at the business level and needs to be loosely

coupled from the workflow.

Significant value can be gained from separating core functionality in a workflow from

variability to that core process. Both can be defined separately and yet still corporately

execute to provide a variety of execution states that match the given context. Functionality

of the workflow can be supplied by Service Oriented Architecture.

Thus we define StPowla as a combination of workflows, policies and Service Ori-

ented Architecture. Workflows define the core business process, policies define the possi-

ble variability of the processes and Service Oriented Architecture provides the underlying

functionality. We specifically present a set of reconfiguration functions that can be called

by policies on workflows and define each of these as graph transformation rules.

We provide an encoding from StPowla processes to SRML models, including core

workflow descriptions and variability, in order to make precise the relationship between

the constituent parts of StPowla. We apply the StPowla approach to an industrial case

study, provided by an industrial partner.

ii

Disclaimer

This work was carried out under the supervision of Dr Stephan Reiff-Marganiec at the

University of Leicester, funded by the IST-FET IST-2005-16004 project Sensoria (Soft-

ware Engineering for Service-Oriented Overlay Computers). All of the work herein has

been performed by the author except where otherwise indicated.

Work described in some sections has been previously published, in particular:

• The workflow notation in Chapter 3 has been published in [38] and, more exten-

sively in [39].

• The core policy language customization in Chapter 3 has been published in [36].

This was joint work with Dr Carlo Montangero, Dr Stephan Reiff-Marganiec and

Dr Laura Semini. The author’s role was to provide the descriptions of the workflow

notation and operators. Some initial work was presented in [40] and [37], both

principally written by the author.

• The encoding to SRML was published initially in [12] and, more extensively in [13].

The author’s role was to provide the policy descriptions and case study scenario.

The SRML transitions were principally developed by Dr Laura Bocchi. These were

updated by the author in Chapter 6 to reflect the updated case study.

The StPowla aspects of Chapter 6 are solely the author’s work. Material presented in

Chapters 2, 4 and 7 are solely the author’s work.

Stephen Gorton

Leicester, April 2011

iii

O God and Heavenly Father,

Grant to us the serenity of mind to accept that which cannot be changed;

courage to change that which can be changed,

and wisdom to know the one from the other,

through Jesus Christ our Lord.

Amen.

Reinhold Niebuhr

iv

Acknowledgements

I wish to express my sincerest thanks to Dr Stephan Reiff-Marganiec for all his help

throughout the duration of this research. His guidance, enduring patience and persistence

have certainly been invaluable and without his gentle pushing this research would never

have been completed. I am especially grateful for the assistance he provided towards the

end of this period, when he often gave feedback at short notice.

I also wish to thank the European Union for funding the Sensoria project, which pro-

vided me with financial support for the first two years of this work until I left to work for

ATX Technologies. I would also like to thank Prof. José Luiz Fiadeiro for his encourage-

ment to complete this work whilst working at ATX.

This work was conducted with the input and support of a number of others from the

Department of Computer Science in Leicester, including Laura Bocchi, Reiko Heckel and

Fer-Jan de Vries, plus colleagues on the Sensoria project, namely Dr Carlo Montangero

and Dr Laura Semini. Also, my fellow inhabitants of G1 (namely Dénes, Harry, Mark

and João) provided a great environment for conducting this work.

Finally I would like to thank Cathy for her support as I have strived to complete this

whilst still working full time. Her support has been invaluable.

Thanks!

Stephen

Contents

1 Introduction 1
1.1 Business Processes . 2
1.2 Service-Based Computing . 4
1.3 Variability in the Business Domain . 6
1.4 Inevitable Choice . 10
1.5 Research Questions . 11
1.6 Document Outline . 12

2 Background and Related Work 14
2.1 Introduction . 14
2.2 Service Oriented Architecture . 15

2.2.1 Related Technologies . 17
2.2.2 The Promise and Limit of SOA 18

2.3 Business Process Management . 20
2.3.1 Code-Based Descriptions . 21
2.3.2 BPEL . 22
2.3.3 Calculi-Based Descriptions . 25
2.3.4 Notation-Based Descriptions . 26
2.3.5 Adaptive Workflow Management 29
2.3.6 Evaluation of Workflow Specification Methods 30

2.4 Policies . 31
2.4.1 Combining Policies and SOA 33

2.5 Summary . 33

3 StPowla 35
3.1 Introduction . 35
3.2 Promoting Dynamicity . 36
3.3 Graphical Workflow Notation . 37

3.3.1 Start and End Points . 38
3.3.2 Process . 38
3.3.3 Task . 38
3.3.4 Flows and Scopes . 41
3.3.5 Operators . 42
3.3.6 Workflow Execution . 46

3.4 Policies . 47
3.4.1 Appel . 48
3.4.2 Policy Attributes . 49

v

vi

3.5 Tasks and Services . 51
3.6 The Service Level Agreement Language 56
3.7 Pragmatics of the Customization . 57
3.8 Summary . 57

4 Workflow Reconfiguration 59
4.1 Introduction . 59
4.2 Graph Transformation . 61
4.3 Workflow Ontology . 63
4.4 Reconfiguration Functions . 65

4.4.1 Insert . 67
4.4.2 Inserting Operators . 74
4.4.3 Delete . 87
4.4.4 Fail and Abort . 94
4.4.5 Block . 96

4.5 Summary . 98

5 From StPowla Processes to SRML Models 101
5.1 Introduction . 101
5.2 SRML Foundational Concepts . 104

5.2.1 Transitions . 107
5.2.2 Business Roles: the Interactions 109
5.2.3 Business Roles: the Orchestration 109
5.2.4 Constraints for Service Level Agreement in a SRML Module . . . 111

5.3 Basic Control Flow Encoding . 113
5.3.1 Sequence . 116
5.3.2 Flow Junction and Flow Merge (XOR) 117
5.3.3 Flow Split and Conditional Merge (AND) 118
5.3.4 Strict Preference . 119
5.3.5 Random Choice . 120
5.3.6 Scope . 121

5.4 Advanced Control Flow Encoding . 123
5.4.1 Refinement Policies . 123
5.4.2 Reconfiguration Policies . 124
5.4.3 Reconfiguring the Procurement Scenario 131

5.5 Summary . 131

6 Case Study 133
6.1 Introduction . 133
6.2 Scenario . 134
6.3 StPowla Representation . 136
6.4 Encoding to SRML . 142

6.4.1 Methodology . 143
6.4.2 Use Case Driven Example . 144

6.5 Summary . 149

vii

7 Evaluation 150
7.1 Introduction . 150
7.2 Capabilities and Limitations . 150
7.3 Workflow Patterns . 152
7.4 Critical Assessment . 153

7.4.1 Basic Patterns . 156
7.4.2 Advanced Branching and Synchronisation Patterns 159
7.4.3 Multiple Instance Patterns . 167
7.4.4 State-based Patterns . 168
7.4.5 Cancellation and Force Completion Actions 170
7.4.6 Iteration Patterns . 173
7.4.7 Termination Patterns . 175
7.4.8 Trigger Patterns . 177

7.5 Policy Conflict . 178
7.6 Business Value . 179
7.7 Summary . 182

8 Conclusion 183
8.1 Introduction . 183
8.2 Reflection on Research Questions . 184
8.3 Limitations and Further Research . 188
8.4 Beyond SOA . 190
8.5 Summary . 191

Chapter 1

Introduction

If you don’t like something change it; if you can’t change it, change the way you think

about it. (Mary Engelbreit).

The concept of us humans being able to work within rigid structures continuously is very

difficult. The very notion restricts any form of creative thought, self-improvement or even

innovation. Processes would become blindly followed with any hint of potential improve-

ment ignored. Conversely, computers thrive in situations where repeatable actions must

take place. Automation plays an increasing role in society, from product line management

to data management to process management. Combining the computational advantage of

automation and the human advantage of innovation might be considered as a holy grail of

sorts - humans delegate all possible activities to computers and consume the significantly

increased output volume.

However, matching automation to innovation is not straightforward. Put simply, getting

a computer to do exactly as humans want is extremely complex. Natural improvements

often occur as systems evolve, but to have a computer successfully execute a process

under every possible environmental and contextual variable is often impossible, save the

1

Chapter 1: Introduction 2

highly unlikely event that all possible scenarios are catered for.

Processes, rather than structures, are more likely to change based on environmental and

contextual variables, so our attention turns to incorporating these variables into existing

processes. We do not seek to redesign processes to cater for each scenario, but instead

find a way to enable processes to react to certain conditions in a way that separates the

reaction from the core process.

In this thesis, we take the concept of business processes and consider them as a sequence

of automated activities as an implementation of human design. We proceed to take such

processes and incorporate variability at a level which is overlaid on the process itself. We

seek to separate core functionality from variability and find a way to combine the two.

1.1 Business Processes

Business Process Management (BPM) is a term applied to the overall control of activities

performed by companies in pursuit of achieving their particular goals, generally making

gain by servicing a group of clients. Processes are considered “a generic factor in

all organizations. They are the way things get done” [21]. One common method of

managing processes is to document them in a structured way. The tool used for such a

thing is known as the workflow, which is defined as:

“...the automation of a business process, in whole or part, during which documents,

information or tasks are passed from one participant to another for action, according to

a set of procedural rules.” [79]

Typically detailing how and when certain tasks are to be carried out in relation to other

tasks, workflows can show even how and what information is transferred between tasks if

necessary.

Chapter 1: Introduction 3

Workflows enable a precise definition of processes and the constraints under which they

operate. This definition permits the use of computers to assist in automating the work-

flow in some way. Such assistance is given by a workflow system. Workflows, however,

have one significant constraint: they are fixed1. In order to change a workflow, one must

manually change it to the required degree. This is different from business process reengi-

neering [45], which seeks to redesign business processes in order to make them more

efficient, whilst still performing the same task (i.e. business process reengineering seeks

to create efficient, functionally-equivalent new workflows from older ones).

The concept of change in workflows is a powerful one. Even though processes themselves

may not change much, constraints around them may still change. For example, every busi-

ness process is, or should be, governed by corporate rules and guidelines. Furthermore,

every business is governed by state law and then by international law. A change in any of

these could lead to a change in the workflow. At present, that would require some manual

work to partly redesign and rewrite the workflow so that it conforms to new requirements.

Van der Aalst and Jablonski [91] identify issues and solutions of workflow change with re-

spect to workflow management systems (WFMS). Their solution is to modify the WFMS

and the workflow when change is required. At best, this still includes a manual rewrite of

the workflow. At worst, it requires arduous work to be done on the WFMS in order for it

to handle the updated workflow. Neither can be assumed to be “bad”, but the solution is

more like a work-around rather than a means to solving the problem in the first place.

In summary, without overly complex models it is difficult to capture all requirements for

each workflow. Furthermore, requirements often change over time and are even different

between cases, despite there being a core process. These differences can be captured in

a single workflow, but not without redesigning the workflow to capture all extra require-

ments. This leads to even more overly-complex models that are more difficult to design,

analyse and modify, especially when requirements change.

1by “fixed”, we presume it to mean final, incapable of change by itself and static.

Chapter 1: Introduction 4

1.2 Service-Based Computing

One potential solution to this problem can be seen through the advent of Service Ori-

ented Architecture (SOA). This relatively new software development paradigm works on

a publish-find-bind mechanism, i.e.:

• A service author first develops, then publishes the service on a network, publicising

its availability through some form of directory.

• A service consumer then searches for and finds the service they require using this

directory.

• That consumer then binds their system to that service in order for the functionality

of the service to be made available to the consumer.

Whilst at the moment industrial use of SOA is often on an intra-enterprise level, there is

the prospect of many more services being released and the emergence of a competitive

service marketplace, shifting the attention from service infrastructure to service manage-

ment [19].

One of the key features of SOA is that it is technology-agnostic, i.e. it does not matter

which technology one uses to access a service, since communication is based on an open

standard. A benefit of SOA is that services are considered as computational components

that can be used in a software application that is exposed to the network in which ser-

vices are made available. This can include a workflow management system. As such,

systems can be developed heavily based upon such services, (re-)using functionality that

has already been published and having the potential to swap over services as and when

necessary.

This last point is important when coupled with the concept of change in workflows. Sup-

posing that a manual rewrite of the workflow is static, i.e. it must be done offline, then the

Chapter 1: Introduction 5

alternative is to make the change dynamically, i.e. whilst the workflow is executing. In

order to retain operational efficiency, this change should be automated. SOA helps here

in that the functionality of an activity within the workflow may already be implemented

by an existing service. The challenges are now twofold:

1. How to map workflow tasks to services?

2. How to dynamically modify workflows?

If SOA can fulfil the functional requirement of the workflow, then the first challenge is to

combine SOA with BPM in some way. An illustration of this can be seen in Figure 1.1,

where tasks in the workflow are associated with a service in the technology domain.

Although a new problem has been introduced, it serves to lessen the impact of the second,

original problem. The expected result is described clearly as follows:

“The BPM-SOA combination allows services to be used as reusable components that can

be orchestrated to support the needs of dynamic business processes. The combination

enables businesses to iteratively design and optimize business processes that are based on

services that can be changed quickly, instead of being hard-wired. This has the potential

to lead to increased agility, more transparency, lower development and maintenance

costs and a better alignment between business and IT.” [52]

Step 1

Step 2

Step 3

Service A Service D

Service B Service C

Business

Domain

Technology

Domain

Figure 1.1: Domain separation between business and technology

Chapter 1: Introduction 6

Attempts to bridge the gap between the business domain and the service domain are of-

ten made by expressing business logic through composition or other technologies, but

there is a distinct lack of tools which can express precise user requirements at the busi-

ness level. While existing solutions tackle aspects such as functionality and sequencing

of business activities, none are complete to encompass all information required at the

business level [39].

1.3 Variability in the Business Domain

It has previously been identified that there exists a degree of variability within the busi-

ness domain. A business process may have a standard core model, but it is possible and

even likely that there will be multiple variations to this model, including the potential for

changing constraints that govern it. Flexibility in workflows is thus required to handle

changes at a number of different levels of abstraction, from fine-grained changes (such as

a new requirement to pause at one stage) to overarching concerns (such as state law).

There is an obvious need for flexibility in the modelling formalisms for business pro-

cesses. Flexibility permits the customization of a core model in order to adapt it to various

requirements, and to accommodate the variability of a business domain [36]. However,

since most processes are long and complex, neither manual intervention nor process ter-

mination are satisfactory solutions [43].

We consider a simple example to illustrate the point. A typical supplier business sells

products to its customers and the workflow consists of the following steps2:

1. Supplier receives order.

2. Supplier collects items in order.

2We make assumptions that the client is known to the supplier and that there are no problems with stock
inventory or shipping.

Chapter 1: Introduction 7

3. Supplier ships items to client.

4. Supplier bills client.

This workflow is a smaller part of the full workflow shown in Figure 1.2. This work-

flow is a description of the control flow between a number of different activities, known

as tasks. These are positioned in sequence following a Start position and before an End

position, which show the workflow entry and completion points. This diagram shows two

participants to the workflow: firstly the supplier whose tasks are in the left “swimlane”

and secondly the client whose tasks are in the right “swimlane”. The solid arrows be-

tween tasks show the control flow progression whilst the dashed double arrows between

cross-swimlane tasks show a synchronisation (i.e. a point at which two tasks execute con-

currently, normally as two sides of a communication). Control flow cannot continue to the

next task until synchronisation has occurred (i.e. the two tasks involved in synchronisation

have completed).

Receive
Order

Collect Items

Ship Items

Bill Client

Send Order

Receive
Items

Receive Bill

Pay Bill
Receive
Money

start

end

Create Order

Supplier Lane Client Lane

Figure 1.2: The full workflow for the supplier.

Now we consider that an order can be of small value (e.g. less than £1,000), or of sig-

nificant value (e.g. £1,000 or more). Since the supplier may have to order in new stock

Chapter 1: Introduction 8

to handle larger orders, they may want security on orders of significant value. Therefore,

they will modify the above workflow to incorporate an extra step for orders of significant

values as follows:

1. Supplier receives order.

2. Supplier bills client for part of the order value.

3. Supplier collects items in order.

4. Supplier ships items to client.

5. Supplier bills clients for remainder.

The new step is straightforward, but such a modification would lead to two workflows

in place to do almost the same thing (the variation of which is shown in full in Figure

1.3). This leads to needless duplication in the workflow and potential difficulties during

maintenance. An alternative option would be to incorporate conditional activities inside

the workflow using well-known if/else operators (see Figure 1.4). However, this will lead

to rewrites of the workflow whenever a new condition is identified. If not carried out care-

fully, this could lead to an explosion in the size of the workflow and multiple duplications

of tasks. Furthermore it could lead to difficulty in understanding the workflow, if it has

become too large.

A more intuitive solution for end users is to be able to describe the business process in

terms of its core model first, then its variability separately. This enables a clear focus

on the core process and a separation for those aspects which can affect it. For example,

we could have the workflows in Figure 1.2 together with a statement that says “for large

orders a deposit is required before the collection of items”.

A functional change to a workflow is defined as a modification to the control flow speci-

fication and this may include the insertion of a new task, the deletion of an existing task

or a combination of both. Furthermore, any workflow task may be cancelled, blocked or

Chapter 1: Introduction 9

Receive
Order

Collect Items

Ship Items

Bill Client

Send Order

Receive
Items

Receive Bill

Pay Bill
Receive
Money

start

end

Create Order

Supplier Lane Client Lane

Bill Client for
Deposit

Receive
Initial Bill

Receive
Payment

Pay Initial Bill

Figure 1.3: This is one possible solution
to the request for a deposit when the or-
der value is significant. There is simply
a new set of tasks inserted into the work-
flow but there exists the requirement to
manage which workflow to be executed.

Receive
Order

Collect Items

Ship Items

Bill Client

Send Order

Receive
Items

Receive Bill

Pay Bill
Receive
Money

start

end

Create Order

Supplier Lane Client Lane

Bill Client for
Deposit

Receive
Initial Bill

Receive
Payment

Pay Initial Bill

O
rd

er
 v

al
u

e
le

ss
 t

h
an

 1
0

0
0

O
rd

er valu
e less th

an
 1

0
0

0

Figure 1.4: Alternative to Figure 1.3,
this workflow incorporates both but uses
a condition statement. For simplicity,
the full if/else operation has not been de-
scribed but there are two output routes to
two tasks, and these are chosen depend-
ing on the given condition.

aborted without it being removed from the control flow. Such a change is known as a

workflow reconfiguration.

A non-functional change concerns how the workflow operates, in terms of the qualities

required from the services it associates with each task. Since a workflow is dependent

upon services for its execution, it follows that any quality requirements must be passed

on to the services being invoked. Thus, a service that does not fulfil a given quality

requirement should not be selected. If each task specifies the functionality of the service

it requires, a non-functional change is reflected in this specification. Such a change is

known as a workflow refinement.

The result of these possible changes is twofold: a workflow that can change and the

Chapter 1: Introduction 10

services underneath that can be selected according to non-fixed criteria. Overall, the

possibility is to have a workflow that is as “dynamic” as possible, i.e. almost anything can

change in the workflow at runtime.

1.4 Inevitable Choice

Consider the two extremes. Workflow A specifies no tasks at all and the control flow

is thus empty. This represents the core business process and this is accompanied by a

variability specification that is external to the process but defined in association with it.

This variability specification has the ability to modify all of the workflow as it is being

executed, so tasks can be loaded in a particular order according to the specification.

Workflow B is a significantly complex workflow with every single possible condition

identified and embedded into the control flow. Variability is specified separately to the

workflow but since everything has already been taken into account, this specification is

empty.

Clearly both of these extremes have significant disadvantages. In the first case, a lot of

effort will be required in the design and development of the variability specification, es-

pecially since there is no core process on which to base any change. Variability is then

designed according to other variability and the possibility of conflict between specifica-

tions arise.

In the second case where there is no requirement for variability, the old problem of re-

design and rewriting appears3. As such, the very reason variability is allowed to be pre-

sented separate to the core process is ignored.

Thus there exists a choice for the workflow designer in terms of how much of a core pro-

cess they wish to define. Returning to the supplier example above, the core process could

3Where a business process must change, we consider that the appropriate exercise is Business Process
Reengineering, wherein a process model is potentially redesigned

Chapter 1: Introduction 11

vary in a number of ways. For example, the billing task at the end could be removed

from this workflow and placed in another workflow. Alternatively, a variability specifi-

cation could say that at the end of the process, if the client has an outstanding balance

remaining, they are billed for it.

1.5 Research Questions

Having understood that business processes cannot cover every eventuality and variability

is the only way to cater for this, we now identify three research aspects that we tackle in

this thesis:

1. On design:

• How to effectively design or model business processes for the business do-

main?

• How to express variability over a business process?

2. On scope:

• What kind of variability is required?

• In what way can the business process be changed?

• What limitations should there be?

3. On combination of business processes and variability:

• How can we achieve this combination in a generalized way?

• How can we combine an arbitrary number of variability items with a single

business process?

• What limits the combination in terms of capability, i.e. what can we express

and what can we not express?

Chapter 1: Introduction 12

Several other research questions can be asked, including questions on rollback and com-

pensation on the event of failure. Although we will briefly look into these questions inside

this thesis, they are not the main focus of this research. Thus we limit our work to finding

a solution for expressing workflows with variability over Service Oriented Architecture.

Thesis Statement: We desire the capability to express variability over a core business

process at an abstract level for the business domain. We present an approach that provides

this capability and demonstrate the scope and effect of such variability over a workflow

model, where each activity is defined with requirements only and those requirements are

eventually implemented by Service Oriented Architecture.

1.6 Document Outline

The following chapter discusses a number of topics that surround the subject matter of this

thesis. In particular, it covers Business Process Management, Service Oriented Architec-

ture, process variability and policies. For each, we will discuss what they are and why

they are important in this context. Following this discussion, we introduce StPowla in

Chapter 3. StPowla is a combination of workflows, SOA and policies, aimed at solving

the problems identified.

After, we extend StPowla concepts to include the means to express variability through

policy functions. Furthermore, we identify a set of functions and map each one to a graph

transformation rule. In Chapter 5, we formalize StPowla by providing an encoding to

SRML.

Having provided a comprehensive overview to StPowla, including its relationship to

SRML, we proceed in Chapter 6 to applying StPowla concepts to a real case study, pro-

vided by an industrial partner on the Sensoria project.

Chapter 1: Introduction 13

In Chapter 7, we take an objective view of the material presented in this thesis and thus

evaluate this work to determine adequacy, effectiveness and business value. Finally, we

draw our conclusions in Chapter 8.

Chapter 2

Background and Related Work

There is nothing wrong with change, if it is in the right direction. (Winston Churchill).

2.1 Introduction

In the previous chapter, we identifed the role of workflows in business process manage-

ment. We also discussed how workflows are essentially static, i.e. during execution they

do not change and therefore they generally do not take into account every single pos-

sible process outcome. In this chapter, we consider existing work relating to this area,

including descriptions of Business Process Management, Service Oriented Architecture

and business rules.

We will also argue that no one technology currently exists to provide a suitable solution

for our problem. We will identify that each of the above technologies has a role to play,

but that each by itself does not offer a comprehensive solution or indeed the majority part.

In addition, we will also review some approaches to introducing flexibility in workflows

and provide discussions as to how they fit with our problem.

14

Chapter 2: Background and Related Work 15

2.2 Service Oriented Architecture

Service Oriented Architecture (SOA) is a conceptual model for the design, development

and deployment of software as distributed, loosely-coupled and technology-agnostic com-

ponents accessible over a network. It has been referred to as the next evolution in software

development [35]. Aad van Moorsel writes entertainingly about the future he foresaw for

the business web [94]. He remarks that Web Services play a significant role in all (busi-

ness) domains, describing them as the “Final Layer in the Internet Stack”.

The concept of a Service is understood better as a computational unit that offers some

functionality, without saying how it will do it. A suitable analogy is (ironically) a soft-

ware development firm who offers a service to design, develop and deliver software ap-

plications. Clients are not often concerned with how this firm achieves this goal, but more

that they do indeed achieve it.

Services are typically created and deployed according to a publish-find-bind mechanism

shown in Figure 2.1. The overall benefit of SOA is the exposure of application units as

self-contained and discoverable functions to the world, regardless of technology. Thus, a

PHP application running on an Apache server can invoke a Java Web Service, hosted on

a Tomcat server half way around the world. SOA removes the constraints of geography

and technology, and encourages interoperability.

Our interest in SOA is because the workflows we will consider are at the business level,

i.e. abstract from technical implementation details. As such, the functionality of the work-

flow must come from somewhere and SOA fits the model particularly well in the absence

of real alternatives. For example, tasks can communicate with services by passing open-

standard messages, whereas services can be interchangeably used throughout an entire

workflow.

Our business level workflows should not be confused with lower level technical work-

flows. For example, since Services can be orchestrated to form a composite service, there

Chapter 2: Background and Related Work 16

is a natural requirement for analyzing the workflow at the orchestration level. Moving

towards the business level, we can also consider the workflow that defines how activities

in the business workflow interact with services. So for clarity, we are concerned with

workflows at the business level, and with SOA in general as it offers an implementation

strategy for those workflows.

Service
Publisher

Discovery
Service

Service

Service
Description

1. Publish

(a) Step 1: Service description published to the Dis-
covery service.

Service
Requester

Service
Publisher

Discovery
Service

Service

Service
Description

1. Publish2. Find

Service
Description

(b) Step 2: Service requester finds service through
Discovery service.

Service
Requester

Service
Publisher

Discovery
Service

Service

Service
Description

1. Publish2. Find

3. Bind

Service
Description

(c) Step 3: Service requester binds to the service.

Figure 2.1: The publish-find-bind mechanism of SOA.

Chapter 2: Background and Related Work 17

Web Services [4] is the most common implementation of SOA and is widely used in

industry1. The technology can be concisely described as follows:

“A Web Service is a (computational) component deployed on a Web accessible platform

provided by a service provider to be discovered and invoked over the Web by a service

requester.” [46]

Apart from the basic requirements for a service in a SOA, a Web Service should also

be describable (in terms of its available functions, their input parameters and return ob-

jects) and discoverable (i.e. information about the Web Service should be published in a

directory-like system, such as UDDI [8]).

2.2.1 Related Technologies

SOA is often spoken of in relation to, and sometimes in confusion with, Grid Computing

and Cloud Computing. True, these technologies may take elements of SOA, but they are

not to be taken as direct implementations of SOA. The former refers mainly to an organi-

sation of computing resources whereas the latter refers mainly to computing platform.

Grid computing can be defined as a collection of loosely-coupled, self-sufficient compu-

tational resources which connect via a network to perform collaborative, often technical,

computations, usually over a significant quantity of data that would ordinarily be too

much for one computer. IBM defines Grid Computing as:

“...the ability, using a set of open standards and protocols, to gain access to applications

and data, processing power, storage capacity and a vast array of other computing

resources over the Internet. A grid is a type of parallel and distributed system that

enables the sharing, selection, and aggregation of resources distributed across multiple

administrative domains based on their (resources) availability, capacity, performance,

1The term “E-Services” has also been used (e.g. [9, 55, 88]), mainly by industry, but usage has generally
receded in preference to the phrase “Web Services”.

Chapter 2: Background and Related Work 18

cost and users’ quality-of-service requirements.” [50]

Grid Computing is different to SOA in that it focuses more on computational resources

and has greater synergies with a super computer, where a key difference is that the grid

components are self-sufficient and connected via a network whereas in a super computer,

all resources are shared and connected via the main computational bus. Modern literature

on grid computing has often described a “grid” as a virtual super computer.

Cloud Computing is defined as:

“... a model for enabling convenient, on-demand network access to a shared pool of

configurable computing resources (e.g. networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction.” [31]

Cloud computing takes elements of SOA in that computational units inside the Cloud

can be made available as services. The name “Cloud” is derived from a cloud, where

people can see the external appearance, but are unable to see the internal structure or

activities (if indeed there are any). Thus, these units are not seen by the end user and

therefore may make use of further resources available in the Cloud in order to perform

its specified purpose (see Figure 2.2). Services can be hosted inside the cloud as well as

normal applications. As such, a service available in the Cloud appears no differently to a

service available through other (public) means.

2.2.2 The Promise and Limit of SOA

SOA promises dynamicity. Since services are loosely-coupled, they can run continually

in isolation and ignorance of others. An orchestration technology will co-ordinate the

execution of services as required. Services can be continually published and found, thus

Chapter 2: Background and Related Work 19

The “Cloud”
(contains computational

resources, often as services)

Figure 2.2: The Cloud as a platform for computing

providing the capacity for the satisfaction of almost any computing requirement. Further-

more, Web Services are composable. If a single service cannot fulfil a requirement, it may

be that the requirement is a composite action, for which the broken-down atomic actions

themselves may be satisfied by an existing service. In this way, a composite service can

satisfy a complex (i.e. contains two or more atomic actions) requirement.

What SOA lacks is the dynamic finding of services that automatically matches service

functionality to service requester, or end-user, requirements. Some inroads have been

made into this field, such as ontologies and the semantic web initiative. A context-based

approach for service selection has been proposed in [103, 105, 104]. One of the difficul-

ties is to accurately describe non-functional requirements and then match those to non-

functional properties of services. A suitable starting point for the latter is found in [67]

and [69].

Business Process Management provides a high-level (i.e. abstract from technological im-

plementation) to orchestration, but it does not solve the dynamic matching problem.

Chapter 2: Background and Related Work 20

2.3 Business Process Management

Business Process Management (BPM) is the overall governance and monitoring of exe-

cuting business processes. Business processes may be defined as structured workflows

and the execution of these may be automated through a workflow management system

(WFMS). Thus there are three aspects that are considered here.

We start by considering and expanding on the topic of workflows and workflow modelling.

These structured activities can be defined informally (e.g. through natural language such

as English) or formally. Since informally specified workflows are usually ad-hoc and

lack structure, we use them only for the abstract description of processes and focus on

more formal workflow specifications. Even so, there are degrees of formality that can be

applied to workflows and different details that can be expressed.

Evaluation of workflow specification methods varies greatly. Since many methods are

specific to a particular situation, it is difficult to compare one with another. However,

a set of workflow patterns, which can be understood as design patterns for workflows,

have been established in [93] as a general criteria set to which each workflow or process

modelling language is compared to for determinations of its capability (i.e. how many

patterns it can express) and expressibility (i.e. how well can it express).

It could be argued that modelling notations for business processes exist in their 10,000s,

ranging from implementation level to the business level. The distance from implementa-

tion level reveals the amount of abstraction (i.e. the closer to the business level, the more

abstraction is needed).

The value of BPM is automation of business. In the last 20 years, automation has been

increasingly introduced within IT infrastructures as systems are increasingly designed to

interact and integrate with others. Customer Relationship Management (CRM) systems

are frequently linked with email systems and shared document systems, and new portals

are created for each system to expose their functionality to new devices, such as mobile

Chapter 2: Background and Related Work 21

phones. What results is that one function’s completion can trigger the next function in a

logical path. Such a trigger is natural from a human perspective, but slow. It traditionally

requires the human to complete the original task and then chose to start the next one (as-

suming the next task has already been identified), potentially passing it to another person

who might be in a remote location. Automation helps remove this delay. We consider

that as business gets more complicated, automation plays an increasingly significant role

in enabling companies to remain efficient in their activities, with regard to time, effort and

cost.

In a recent white paper [64], Jasmine Noel notes that the future of enterprises is in BPM

suites, therefore we consider the various BPM approaches as significant in this research.

The following subsections discuss the types of workflow specification currently avail-

able, from low-level technical implementations that use a structured computer language,

to formal implementations that use mathematical languages, to high level (or abstract)

languages that use graphical representations. Although a description of each category is

provided with specific examples, it is our aim to focus on the final category which may be

considered “in the business domain” compared to the other categories.

2.3.1 Code-Based Descriptions

Code-based workflow descriptions use a recognised and/or developed computational lan-

guage for expressing workflows. In terms of Web Services, the Business Process Execu-

tion Language (BPEL) is one of the most widely used process languages, even though it

was designed for service composition. Other solutions include WSCL [7] and WSCI [6].

The main problem with these solutions is that they all represent implementation-level ap-

proaches to describing service interaction2. While they perform their respective roles as

required, they are not able to express high-level user requirements. They are suitable to

model processes within which details about each involved service are already known. A

2We note that BPEL engines exist from different vendors, but the BPEL standard is common to all

Chapter 2: Background and Related Work 22

comparison of ebXML, XLANG, WSFL and BPML can be found in [66].

Modelling generic processes requires a more holistic view. YAWL [92] is a workflow lan-

guage that extends Petri nets to provide a powerful formal language with defined syntax

and semantics. YAWL was created as a reference language for evaluating workflow im-

plementations and it has an interesting capability known as Worklets [3]. These worklets

are “small, self contained, complete workflow processes which handle specific tasks (ac-

tions) in larger, composite processes (activities)”. YAWL enables a prescribed workflow

to call, in a service oriented way, a worklet for each activity in the workflow, allowing the

use of contextual information to substitute standard work items. This approach certainly

has a number of merits, not least that tasks are dynamically determined based on infor-

mation available. However, each worklet is still designed (not selected) statically and this

is one area we are trying to improve upon.

Further languages include SMAWL [82], GAT [62], XRL (initial blueprints in [56]) and

WSFL [57]. These solutions are considered better in terms of describing processes since

they abstract away composition details that would be included in those solutions previ-

ously discussed. Although they describe processes, they are unable to define high-level

requirements for activities or events that occur in the workflow.

2.3.2 BPEL

We reserve a specific discussion on the Business Process Execution Language (BPEL)

[32] as it is widely acknowledged as the leading Web Service orchestration language.

Derived from IBM’s WSFL [57] and Microsoft’s XLANG [86], the use of BPEL has

grown significantly to having implementations from a number of vendors, including Ac-

tive Endpoints (Active VOS), ASF (Apache ODE), Microsoft (BizTalk), Magic Software

Enterprises (iBolt), JBoss (JBPM), Oracle (Open ESB and BPEL Process Manager), OW2

(OW2 Orchestra), Parasoft (BPEL Maestro), Petals Link (Petals BPEL Engine), SAP AG

Chapter 2: Background and Related Work 23

(SAP Exchange Infrastructure), OpenLink Software (Virtuoso Universal Server) and IBM

(WebSphere).

As a business process modelling language, BPEL has been evaluated against the set of

workflow patterns [101], where the authors positioned Web Service composition lan-

guages as variants of traditional process modelling languages [90]. The conclusion was

that whilst BPEL performed favourably against BPML, WSCI and XPDL (which them-

selves only support about half the tested workflow patterns), there were still a number of

patterns that it did not support and a few negative comments such as “it lacks orthogonal-

ity” and “the semantics are not always clear”.

Yet BPEL still plays an important role in identifying the scope of our work. Despite its

name including the term “business”, it is not business as we understand it. More precisely,

for BPEL the term “business” refers mainly to functionality sequence at the orchestration

level, including information on binding and sending/receiving variables. Already this is

too detailed information for our domain. Thus, our interpretation of “business” is more

at the user level, where the role of a business analyst is to define requirements for appli-

cations rather than implementing them. Clearly though, there exists a gap between our

interpretation of “business” and BPEL’s, but that remains out of scope for this work. For

ease of understanding, we assume there exists a means to map our business domain to

more technical layers such as BPEL.

Combining Variability with BPEL

At the time of writing, a low number of proposals for adding variability to business pro-

cesses have been offered by the research community. Typically, their scope is constrained

to the orchestration level (i.e. BPEL) and even then the amount of variability that is pos-

sible is still limited. A common approach is to provide a variation to Aspect Oriented

Programming, where cross-cutting concerns can be defined independently of the core

system. Such capability is useful for logging, authentication, etc., but provides limited

Chapter 2: Background and Related Work 24

usefulness for our problem. In this section, we provide a brief discussion of some of

those proposals and discuss how they compare against the problems we have identified.

In Courbis and Finkelstein’s position paper [23], the authors propose the use of dynamic

aspects, à la Aspect Oriented Programming [54], to introduce variability at the orchestra-

tion level. Indeed their paper shares some assumptions with this thesis, namely that Web

Services can be selected at runtime rather than design time and that the BPEL engine

should be “minimal but easy to configure” (we can consider the BPEL engine concept is

similar to the WFMS concept). Their approach is to introduce a BPEL interpreter, which

reads normal BPEL scripts and has the ability to execute a limited set of instructions ca-

pable of, for example, modifying the engine’s behaviour through so-called “hot-fixes”.

We consider this a potential solution for our problem, yet it is not at the business level

(business analysts are not expected to know how to program in Java). One could also

consider that this approach is not fully in keeping with the service oriented nature of the

overall context.

Charfi and Mezini present AO4BPEL, a fully aspect-oriented extension to BPEL [20].

The authors argue, as we would, that process oriented languages like BPEL lack support

for dynamic adaptation of the composition even though that may be a frequent require-

ment (e.g. in the event of unavailability or variations in critical QoS requirements). Fur-

thermore, business rules are identified as cross-cutting several BPEL specifications and

are not well modularized in BPEL specifications. As before, advice could be the addi-

tional execution of a BPEL activity. AO4BPEL supports before, after and around advice

types but it is not clear the extent to which the business process can be changed. For ex-

ample, it does not appear possible to enforce a change on a change, i.e. modify a process

specifically at a point where it had been previously modified.

Karastoyanova and Leymann combine BPEL with WS-Policy to achieve adaptive orches-

tration logic to boost flexibility and promote reuse [53]. WS-Policy is used to define the

aspects and their functionality, which is limited to Web Service operations. Again, advice

Chapter 2: Background and Related Work 25

is either before, after or around a BPEL activity. We note there is no direct support for

“instead of” the BPEL activity. The authors recognize the problem of compensating for

dynamically introduced activities and thus cannot model situations with them. The issue

extends further than compensation as with the previous solution, it limits the capability of

this solution to affect changes that were already dynamically introduced.

Rosenberg and Dustdar describe the relatively straightforward integration of business

rules with BPEL [77]. Using a business rules engine alongside an orchestration engine,

the execution of the BPEL script is always subject to what the business rules engine de-

termines. The process involves interceptors for each incoming and outgoing BPEL Web

Service call and, as required, calling the business rules engine (via a transformation pro-

cess) to enforce any necessary changes. The main difference with this work to ours is the

focus on BPEL, although the conceptual difference is that only Web Service calls can be

changed at runtime, whereas we are looking to introduce dynamic change in the process

itself, i.e. modifying the BPEL script.

In summary, the problem we identified is a top-down issue: we are looking for users to be

able to express what they need and build a solution around it. Thus, the solution starts at

the high level business workflow. The variability solutions proposed work at a lower level

and might be considered more bottom-up approaches, where the technical implementation

decides what users can achieve. In the end, a combination of approaches may well offer

a rounded, if not comprehensive solution. In the meantime, we continue to determine an

adequate solution for our top-down problem.

2.3.3 Calculi-Based Descriptions

A sister approach to the code-based descriptions, process calculi offer a formal, mathe-

matical method in which to express processes. Whilst not including enough information

for actual composition, this approach allows one to model a (composition) process so that

Chapter 2: Background and Related Work 26

it can be verified and reasoned over (i.e. the semantics are well-defined).

Semantics are required for this formality and process calculi such as Petri Nets (already

used for YAWL), π-calculus and CCS all possess structured operational semantics. Ex-

amples of this approach are described in [44] and [33]. However, process modelling in

a service oriented context is not straightforward. Loose coupling of services, communi-

cation latency and open-endedness (services appearing and disappearing unannounced,

geographically-responsible changes in service quality, workload distribution between se-

mantically equivalent services, etc.) are key issues [16]. We are not concerned so much

with loose coupling or communication latency, but we are concerned with open-endedness

in the sense that new activities could be introduced at any time.

In the case of BPEL, a transformation to Petri Nets has been proposed [48], with the full

semantics defined in [80].

2.3.4 Notation-Based Descriptions

Graphical notations generally provide an intuitive method in which analysts can define

processes by a sequence of activities or tasks. As with code-based approaches, there are

a number of vendor-specific solutions, e.g. IBM’s WebSphere Business Modeller3. How-

ever, they conveniently abstract away more implementation level details which make them

more suitable for use in the business domain. Indeed, business analysts have long been

using flow charts to define processes, so a similar modelling notation that is adaptable to

SOA is desirable.

The Business Process Modeling Notation (BPMN) [65] is a widely-accepted graphical no-

tation for the specification of workflows representing business processes. A core BPMN

workflow may consist of the following elements:

3http://www-306.ibm.com/software/integration/wbimodeler/

Chapter 2: Background and Related Work 27

• Flow Objects: Events, Activities and Gateways;

• Connecting Objects: Sequence Flow, Message Flow and Association;

• Swimlanes: Pool and Lanes within a Pool;

• Artifacts: Data Objects, Text Annotations and Groups.

A BPMN workflow starts with a Pool, in which the workflow is described. This Pool may

be divided into swimlanes, with one swimlane per entity participating in the workflow.

Each activity specific to an entity appears in only their respective swimlane. Events and

Activities are self-explanatory items within the workflow whilst Gateways are decision

points, where the next item in the workflow differs depending on a condition. Flow Ob-

jects are connected by sequence flows and message flows provide a means of expressing

data input into a flow object. One flow object may be associated to another. Data objects

provide a description of the requirement or output of an activity. Text annotations are in-

formal notes added to the workflow and groups are collections of elements within a given

boundary (e.g. if the boundary is from the start event to the end event, the group contains

all elements in the workflow).

Figure 2.3 shows an example BPMN workflow for the earlier supplier example.

BPMN itself is a specification, rather than an implementation. The BPMN website4 notes

that there are, as of 19 April 2011, 76 implementations and 4 planned implementations.

One significant benefit of BPMN is that it maps to BPEL specifications [68, 98]. Fur-

thermore, it has been argued that BPMN provides a user friendly interface to lower level

BPEL code, though some debate still remains over conceptual mismatches between the

two languages [71].

BPMN is an example of a static workflow specification method. Returning to the example

given in the opening chapter, if the author wished to change the workflow, they would

4www.bpmn.org

Chapter 2: Background and Related Work 28

0
,0

5
0
,0

1
0
0
, 0

0
,5

0

0
,1

0
0

5
0
,1

0
0

1
0
0
,1

0
0

2
0
0

4
0
0

8
0
0

Figure 2.3: An example BPMN specification.

have to rewrite it to the required degree. This could lead to a small number of vastly

complex models or a larger quantity of models that include a lot of duplication. The

BPMN specification also states that it was “constrained to support only the concepts of

modeling that are applicable to business processes”, thus not supporting organisational

structures and resources, functional breakdowns, data and informational models, strategy

and business rules. Such extra concerns are those that can ultimately affect the design and

Chapter 2: Background and Related Work 29

implementation of a workflow.

Alternatively, another notation-based description is the Activity Diagram component of

the Unified Modelling Language (UML) [51]. This diagram expresses the dynamic be-

haviour of systems in a clear and intuitive way. However, UML often suffers from a lack

of clear semantics, though the syntax is clear. Further research goes into adding seman-

tics for UML (e.g. [26, 27, 28, 83, 84, 102]). Also, while the syntax of the diagram is

intuitive, it is sometimes unclear as to what a particular layout would do. For example, in

Figure 2.4, it is unclear when D is executed. Does it occur after B and C, or once after

either? This problem arises when B and C take different amounts of time to complete.

B

C

D

Figure 2.4: UML fork and join example

2.3.5 Adaptive Workflow Management

Having considered BPM together with some of its implementations, we also consider

current efforts to permit variability in the workflow.

AGENTWORK [61] is an adaptive workflow system that supports predictive and reactive

rule-based adaptation subject to failures in the process execution. Predictive implies that

the system must guess that there will be a failure based on current information whereas

reactive adaptation occurs when predictive adaptation is not possible (i.e. based on cur-

rent tests, etc.). Event-Condition-Action rules are used to describe the required change.

Possible changes include adding activities (in sequence or parallel), dropping activities

and adding loops.

ADEPTflex [72] is an extension to ADEPT, a graph-based workflow modelling system,

Chapter 2: Background and Related Work 30

that permits dynamic changes to the control flow using a minimal set of operations (in-

serting/deleting activities, skipping activities, passing over activities and changing activity

sequences). The changes are available as functions on the graph, suggesting strong cou-

pling between the core workflow system and the component that permits flexibility. It is

unclear though how a business user would make use of the flexibility functions and how

such functions would be available to one or more workflows (i.e. if the rules are tightly

coupled with a single workflow).

Pesic and van der Aalst propose the use of ConDec [70] as a declarative approach to

specifying workflow variability. Linear Temporal Logic (LTL) is the means used to define

policies or business rules that define the change over the core process model, where each

LTL clause defines a relation between workflow tasks. Such clauses can be substituted or

rewritten with other clauses in order to effect the change desired. Although this approach

appears to fit our situation well, we note that we can only modify control flow whereas

although we certainly desire this capability, but we also need an approach that can offer

the capability to go further than just the control flow, e.g. to data flows, error flows, etc.

2.3.6 Evaluation of Workflow Specification Methods

Notation-based methods generally lack the ability of expressing any information that is

not graphical, e.g. “this task should be completed in x time” or similar. Therefore we

require a particular capability of expressing this further information, down to the sub-

process (i.e. task or activity) level. Furthermore, notations are static approaches to work-

flow specification, i.e. one cannot change the workflow without redesigning it.

UML Activity Diagrams and BPMN have previously been evaluated as a means for work-

flow specification [25, 99]. Both come up short against workflow patterns but, and more

importantly for this research, neither support refinement or reconfiguration of a workflow

at runtime.

Chapter 2: Background and Related Work 31

Calculi-based methods are good for analysis, yet lack real usability unless a notation can

be defined on top of the formal calculi. They too lack the capability for specifying non-

functional requirements of a process and they also lack the capability for dynamic change.

Code-based methods are good for users who have a fine understanding of the language

and concepts in use, but they are not suitable, in general, for business analysts and man-

agers. The one exception is that BPMN maps to BPEL processes, but even that has some

limitations as described before.

2.4 Policies

Policies are found in a number of different forms inside companies and organisations al-

ready today. In the United Kingdom, companies are generally required to have defined,

amongst other documents, a Health and Safety Policy and an Equal Opportunities Pol-

icy. The former describes how the company will ensure their employees (and sometimes

guests) will be protected from any health and/or safety risks. The latter describes how

the company will treat employees and potential employees of different skin colour, race

and/or faith, to name only a few variables.

Such documents are rarely static - they change as the company, industry and culture

changes. For example, for organisations that work with children, it is a UK requirement

to review the Child Protection Policy annually.

In computing, policies are tools described as “information which can be used to modify

the behaviour of a system” [59], without the need for re-compiling or re-deploying. In

essence, a system’s behaviour reacts to, or is constrained by policies. Policies are typically

loosely coupled with the system they interact with. The system can run independently

from policies with any resulting actions considered as default actions. These could arise

from standard system behaviour or from executing workflows.

Chapter 2: Background and Related Work 32

One may consider the relation between policies and business rules. The latter can be

defined as a statement that defines and constrains some aspect of the business [42]. We can

easily consider that policies and business rules are almost synonymous from a conceptual

viewpoint and since there are different types of business rule, there must also be different

types of policy.

A reactive policy is normally associated to an event. For example, if a staff member

falls down they should see the designated first aider on duty, or committing data to a

database under certain conditions may trigger an update elsewhere. A constraint policy

provides boundaries that a process must operate within. For example, “staff must work

onsite between 09h00 and 17h30 Monday to Friday”, or “batch processes should start

after 21h00 and complete before 08h00 the next day”.

In order to maintain an effective IT environment, computer systems must adapt to chang-

ing business requirements. Policies have proven useful in evolving computing environ-

ments since they allow for rapid modification of system behaviour without modifying the

state of the system’s codeset, providing that the system has already been developed with

support for such policies.

We refine the definition of policy from [73] in the context of Web Service management

as:

A high level statement as to how business requirements should be processed

in the management system.

Policies can be defined from different viewpoints. For example, an organisation may have

general usage policies over software whereas project teams may have further policies

specific to them, and even further an individual who has their own policies.

There are at least two particular types of policy: Event-Condition-Action (ECA) rules

and goals (ECAs without triggering events). Each policy encodes information about a

Chapter 2: Background and Related Work 33

particular business activity.

2.4.1 Combining Policies and SOA

Policies may be applied to a variety of areas within SOA. They are currently used for

access control and to express reactive functionality. However, they have yet to be applied

to a business management framework.

In [85], one of the few occurrences of combining SOA and policies is proposed. The

authors argue the introduction of composed services using coordination policies from the

WS-Policy Framework [96]. Despite the combination, the results do not help us solve our

problem.

In our search for dynamic workflows, the combination of policies, SOA and BPM leads us

to the ability to define workflows as base functionality, which varies according to one or

more policies, with the technical implementation provided by loosely-coupled services.

Our work is aimed at developing a business policy framework for the management of Web

Services in the business domain. The use of policies that we propose is orthogonal to a

graphical business modelling language. Each activity within a workflow represents a unit

of business activity that contributes to the satisfaction of the wider business goal. Tasks

are subjected to external policy inputs, or global policies.

2.5 Summary

In this section we have described three individual technologies: BPM, SOA and policies.

The first two have very active research communities and high industry adoption rates. The

last is also a subject of active research, but to lesser extent and this can be explained by

the number of different ways in which policies can be used.

Chapter 2: Background and Related Work 34

We placed a specific emphasis on policies providing variable behaviour on its subject,

without removing base behaviour from the original subject. We also emphasized BPM

in the context of workflow definition in the business domain, designed specifically for

non-technical people to use. The technical implementation is (potentially) given through

SOA.

In the next section, we will see in more detail how these three ingredients combine to

form a solution for dynamic workflows.

Chapter 3

StPowla

Our only security is our ability to change. (John Lilly).

3.1 Introduction

In the previous chapter, we identified three components in Business Process Management,

Policies and Service Oriented Architecture (SOA), each of which have little relevance on

their own but combined they could address our problem of the need for dynamic work-

flows.

In this chapter, we take these three ingredients and combine them into a recipe, which we

call the Service-Targeted, Policy-oriented Workflow Language, or simply StPowla. We

will see how a simple workflow language is used to provide the specification of the core

workflow. Policies can be applied to provide variability to the core model. StPowla in-

tegrates three main ingredients: a graphical workflow notation, a policy language, and

SOA. The last ingredient provides the underlying functionality required by the workflow.

We address the integration of business processes with SOA at a high (that is close to the

35

Chapter 3: StPowla 36

business goals) level of abstraction. The reason for this is that, often, end users defining

goals do not have deep technical knowledge and, therefore, it is necessary to abstract

away lower level technical information. It is helpful to consider that any of the languages

used with StPowla, e.g. the policies or workflows, are compiled into XML notations

abiding Web Service standards. In fact this compliance to existing standards is key to

interoperability at an implementation level.

3.2 Promoting Dynamicity

StPowla is aimed towards the separation of concerns between core functionality and

process variability. The dynamicity required of processes is contained within variability

specifications, which is defined separately to the core functionality. In fact, StPowla ad-

dresses the need for dynamicity at three distinct levels:

At implementation: the use of SOA to implement tasks offers immediate dynamicity

with respect to which services are selected to implement each task. Since an as-

sumed runtime engine matches services to tasks, the overall workflow is not bound

to the same services for each execution1.

At runtime: although the core process can run unaltered from its design, the use of poli-

cies can ultimately modify behaviour depending on contextual or environmental

information. StPowla’s core design intends this as the key result.

At development: the use of policies orthogonally to workflows means that core func-

tionality and variability specifications can evolve independently of one another. The

result of combining the two is a very dynamic development structure, i.e. the com-

bination of previously isolated workflows and policies can lead to completely new

workflows.
1We can assume of course that the reuse of discovered services may be beneficial but this is not the point

we are trying to convey.

Chapter 3: StPowla 37

3.3 Graphical Workflow Notation

The first ingredient of StPowla is a graphical workflow notation that allows the definition

of a workflow at a level abstract from technical details, i.e. at the level appropriate for

business analysts (who are the users targeted for StPowla). The notation simply defines

the core process in terms of sequential, parallel and decision-based composition of units

of functionality that we identify as tasks.

Although we will use a single notation for the remainder of this document, it should

be noted that the notation itself is not important. Other notations (e.g. UML [26],

BPMN [65]) can be adapted to function as required. This notation, first published in [38],

is used due to its simplicity, effectiveness and level of abstraction; three characteristics

that make it ideal for StPowla.

Throughout this section, we will describe the workflow from the perspective of the work-

flow designer. The full graphical picture of the workflow is known as the task map or the

workflow model.

In addition to graphical syntax, we describe a workflow with the following grammar as a

means to providing a clear syntax:

WF ::= start; P; end root process

P ::= T simple task

| P; P sequence

| λ?P : P condition and simple (XOR) join

| FJ(m, {P,B}, ..., {P,B}) split and complex (AND) join

| S P(T, ...,T) strict preference

| RC(T, ...,T) random choice

Chapter 3: StPowla 38

3.3.1 Start and End Points

A workflow must begin with a single Start point, denoted by a black circle with the Start

label to the side. It is terminated at a single End point, again denoted by a black circle

with the End label to the side (Figure 3.1). Since it is commonplace in processes to define

multiple end points, this is allowed informally whereas actually all paths that lead to an

end point will converge to a single path leading to the single end point. The requirement

of a single end point provides precision in the workflow definition process (e.g. use of

complementary operators such as Flow Split and Conditional Merge). Between the Start

and End point exists a process.

0,0 50,0 100, 0

0,50

0,100 50,100 100,100

200

400

800

Start

End

Figure 3.1: Workflow Start/End points

3.3.2 Process

A process is a sequence of workflow items between two points. Such a sequence is defined

according to need, but can be a simple task, a sequence of two processes, or an operator

on the control flow. Informally, we could include either or both the Start and End points,

with the latter case meaning that the whole workflow is a process.

3.3.3 Task

A task is a basic (atomic) activity performed inside a workflow. Often referred to as a work

item or activity, the task is the main foundational building block on which all workflows

are based. A task is drawn simply as a curved-corner rectangle, with a unique identifier

shown inside the rectangle, which is its label.

Chapter 3: StPowla 39

A task allows the designer to specify a particular activity at a specific position inside the

workflow. As such, a task will include at least:

Control Flow Input: the incoming link that connects the task to earlier parts of the work-

flow. The point of control moves along given paths inside the workflow and when

it reaches a task, the task is executed.

Control Flow Output: after the task has completed, control flow moves onto the control

flow output path to the next item inside the workflow.

Functional Requirements: each task must have associated to it a set of requirements that

defines exactly what the task will do. It is assumed that a task is mapped to a Service

at runtime with no manual intervention from the end user. These requirements do

not assume a 1:1 mapping from Task to Service, but that a separate system can

match the requirements of the Task to one Service, be it atomic or composite.

In addition to these mandatory features, a task may also have some optional features:

Data Flow Input/Output: shows how data is mapped from one task to another task,

when there exists a situation whereby a task outputs some data which is to be used

as input to another.

Non-functional Requirements: adding to the functional requirements, these define

quality requirements of the task. Specifically, they define how well the underly-

ing service should carry out the required functionality.

External Input: a task may be subject to other variables, such as external policies. Al-

though again not mandatory, the notation at least allows the end user to explicitly

specify these external variables.

Abort/Failure Output: these are additional control flow outputs that are followed if the

task is aborted or it fails. Should one of these outputs not exist and yet the event

still occurs, the normal output is followed.

Chapter 3: StPowla 40

The image of a task is shown in Figure 3.2. Although a task is atomic, in the sense that

it is defined by the end user as a single activity, the end user can specify a composite

task (Figure 3.3). The composite task essentially represents a path inside the workflow

between two defined points and all items between them. It could easily be understood as

a process, a scope or a workflow that exists inside a workflow2. For example, Figure 3.4

shows such an arrangement.

control data

ext in
task

control data

Figure 3.2: An atomic task with its input/output flows

task

control data

control data

ext in

Figure 3.3: A composite task with its input/output flows

Typically it would be expected that simple workflows would be specified only in terms of

atomic tasks. However, more complex workflows may include multiple composite tasks

that are defined separately to the main workflow. This may involve the re-drawing of the

graphical workflow model to show multiple atomic tasks as a smaller number of compos-

ite tasks. For example, a composite task could represent a fully independent workflow

from a “master” workflow. A task in the master workflow may have the requirement to

execute the separate workflow and this task is defined as a composite task. The exact def-

inition of the content of a composite task is completed outside of the graphical notation.

2this method is typically used to bring clarity to workflow models.

Chapter 3: StPowla 41

T1

T2

T3

Start

End

(a) An example workflow
with three tasks in se-
quence.

C1

Start

End

(b) The three atomic tasks
are consolidated into a sin-
gle composite task.

Figure 3.4: Example of how atomic tasks can be rewritten as a single composite task.

3.3.4 Flows and Scopes

A flow is a sequence of items (tasks or operators) in the workflow. A route is a flow

that begins at the start point and finishes at the end point. A flow can either be a control

flow or a data flow, although the latter is not considered in this work. Each task must be

connected to the workflow by a control flow, i.e. it must be in a route. Otherwise, the task

is redundant as there is no way to invoke it.

A flow may be active, where it contains an executing item, or non-active, where it does

not contain an executing item.

A scope is a sequence of items in a workflow, including control flow paths, operators and

tasks. It is defined by the first and last items, including all items between those two. A

simple requirement therefore is that the start item must be executed before the end item in

the control flow. It may not necessarily follow that the start item appears before the end

item since loops may occur.

Scopes may be identified in the graphical model, simply by marking out the sequence of

items through a dashed box. A scope is uniquely identified through an ID.

Chapter 3: StPowla 42

3.3.5 Operators

In addition to tasks and flows, which can express simple sequencing, operators are defined

as functions on control flows. These further enable a business to accurately model their

business process, e.g. by allowing concurrency. Throughout these descriptions, we use T

to denote the set of workflow tasks.

Operators each have control flow inputs, i.e. arrows which represent the routes through

which control is passed to the operator, and control flow outputs, i.e. arrows which repre-

sent the routes through which control will be passed to the next workflow item.

Sequence: this function permits the sequential execution of two workflow processes,

with process P1 executed first and, on completion, process P2 executes. This is depicted

in Figure 3.5. Although not shown, P1 becomes active through a single control flow input.

Once active, P1 executes and, on completion, passes control flow through the arrow to P2,

which proceeds to execute and then pass on control flow through a single output to the

next workflow item.

P2

P1

Figure 3.5: Sequence operator

Flow Split: this is an n-ary function FS : in → OUT , where in is a control flow input

and OUT is a set of control flow outputs. In Figure 3.6, the operator is pictured with one

input and five output flows (fx.1 to fx.5). Of the output flows, the operator specifies that

each shall become active, i.e. the current control flow position is multiplied over each of

the flows and each one is executed independently and concurrently. For example, in a

typical customer-supplier-warehouse example, a product dispatch may involve simulta-

neously notifying the customer of the dispatch whilst ordering a stock replacement. Both

Chapter 3: StPowla 43

tasks are executed independently.

fx.1 fx.2 fx.4 fx.5

fx

fx.3

Figure 3.6: Flow Split operator

Conditional Merge: this takes a set of active incoming control flows and, subject to

business-defined constraints, merges them with synchronisation to a single output flow. A

solid circle at the end of the incoming flow indicates that the flow must complete (i.e. con-

trol flow must reach the conditional merge operator on this control flow) for synchronisa-

tion; this is also known as the control flow being mandatory. A clear circle indicates that

this flow is optional. The number in the diamond indicates the number of control flows

that should complete (i.e the last task in that flow must complete execution), irrespective

of if they are mandatory or optional. As such, the number n must be greater than or equal

to the number of mandatory flows. In Figure 3.7, four control flow inputs are shown. The

first input fx.1 is mandatory (i.e. it must complete) and the rest (fx.2, fx.3, fx.4) are optional.

The operator completes when control flow input fx.1 completes and n−1 of the remaining

control flow inputs complete.

For example, when looking for airline ticket quotes, one might request quotes from three

suppliers, including the preferred supplier. Before booking, we might say that we must

have a quote from the preferred travel agency, plus another travel agency (the selection

of which is unimportant to us). Thus there is one mandatory flow and a minimum of two

flows to complete before proceeding. In Figure 3.7, there are four incoming control flows

(potentially representative of four travel agencies), of which the first is mandatory (i.e. the

preferred travel agency) and the rest are optional.

Chapter 3: StPowla 44

fx

fx.1 fx.2 fx.4fx.3

n

Figure 3.7: Conditional Merge operator

Flow Junction: this diverts the control flow down one of two possible output flows

according to a binary test. If the result to the test is positive, i.e. true, control flow passes

to the left hand flow and the right hand flow otherwise. The test can include any attribute

or variable accessible by the operator, within the workflow, from an external input or from

a global variable.

fx

fx.1 fx.2

test

Figure 3.8: Flow Junction operator

Strict Preference: this operator attempts to execute a series of tasks in a defined order,

progressing when one of the tasks is completed. The function is written S P : in→ OUT ,

where OUT is one of a set of possible output flows. We describe Strict Preference as a

set PT ∪ {error}. PT is an ordered set of pairs in the form (t, n), where t ∈ T represents

a task and n ∈ N is a unique priority in the range 1 ≤ n ≤ |PT |, such that the task with

highest priority is attempted first. In the case where no task can be completed (due to a

timeout or other issue), the error output flow is selected.

Each task in the operator specifies its own output flow which is followed when its parent

task is completed. Thus after the operator, there is one active output flow plus a number

of inactive flows.

Chapter 3: StPowla 45

p1tp.1 tp.2 tp.3

error

Figure 3.9: Strict Preference operator

Random Choice: this is similar to preference, but without priorities attached to in-

cluded tasks. It is described simply as CT ⊆ T , where CT is the set of tasks included

specifically in the operator. When control reaches this operator, all tasks may be at-

tempted simultaneously. When a first task reaches a commit stage, then all others are

cancelled (assuming the tasks have a cancellation function or else their results are dis-

carded). After completion of a task, control flow passes to the flow connected with this

task. Graphically, the difference with the preference operator is that all included tasks are

lined up on the same plane.

c1tc.1 tc.2 tc.3

error

Figure 3.10: Random Choice operator

Flow Merge: this is a unary operator in that it takes a set of control flow inputs and con-

verges them into a single output control flow. In order to preserve synchronisation (i.e. en-

suring we have execution concurrency only when desired), only one flow of the incoming

set must be active, with all others inactive. This may be the result of a prior Flow Junction,

Strict Preference or Random Choice operator. If more than one flow is active, then the

Conditional Merge operator must be used. Thus the flow merge operator can be viewed

as a “simple merge”, or non-synchronising merge.

Chapter 3: StPowla 46

fx.1 fx.2 fx.4 fx.5

fx

fx.3

Figure 3.11: Flow Merge operator

3.3.6 Workflow Execution

So far we have described workflow representation through the written, formal syntax and

the graphical syntax. Next, we must consider workflow execution.

The critical element of workflows that enable them to be used in StPowla is the set of

events through which integration with the rest of StPowla is possible. The events are

described in Table 3.13.

Level Event Name When Triggered

Workflow
On Workflow Start The workflow is invoked.
On Workflow End The workflow control flow reaches the

End point.
On Workflow Error A task within the workflow ends in an er-

ror and there is no specific error handling
mechanism defined to handle it.

Task
On Task Entry Control flow reaches the task.
On Task End Task processing completes.
On Task Error The task processing ends with an error.
On Task Abort The task’s execution is externally

(i.e. from outside the task specification)
aborted.

Service
On Service Start The service is invoked, following binding.
On Service End The service responds with an acceptable

value, if any.
On Service Error The service responds with an error re-

sponse or a timeout occurs.

Table 3.1: Workflow events used by StPowla

3We include service-based events in recognition of the use of SOA in completing a task. These events
are triggered inside a task though, which as black boxes are more difficult to observe at the full workflow
level.

Chapter 3: StPowla 47

3.4 Policies

The finer details of the business process (i.e. the variability) are expressed by policies.

These can define functional and non-functional requirements of a task execution. Further-

more, they can provide overarching business constraints, that is a set of rules specified at

a global, enterprize or project level and applicable to the whole workflow. The last part

that policies might play is concerned with suggesting resolutions to particular problems in

the process execution (e.g. “do not use a service from X, rather use an equivalent service

from Y”).

So, the second ingredient is a policy language: here we use Appel (Accent Project Pol-

icy Language) [75]. Though developed in the context of telecommunications, Appel is

a general language for expressing policies in a variety of application domains. It was

conceived with a clear separation between the core language and its specialization for

concrete domains, which turns out very useful for our purposes.

The third notable characteristic of StPowla is that it is targeted to SOAs. Its users, though

ignorant of implementation details, should be aware that the business is ultimately carried

out by services, i.e. computational entities that are characterized by two series of param-

eters: the invocation parameters (related to their functionalities), and the Service Level

Agreement (SLA) parameters. Stakeholders can adapt the core workflow by modifying

these agreements.

Service invocation is local to task execution, i.e. a service is invoked to satisfy the require-

ments of a task, not to satisfy some overarching business constraint or generic instruction.

Chapter 3: StPowla 48

3.4.1 Appel

Appel is a policy language designed for end-users: its style is close to natural language,

permitting ordinary users to formulate and understand policies readily. Appel’s formal

semantics [60] underpin integration with workflows.

In Appel a policy consists of a number of rules, grouped using a number of operators

(sequential, parallel, guarded and unguarded choice). A policy rule is a variant of an

ECA (event-condition-action) rule, consisting of an optional trigger, an optional condi-

tion, and an action. To help the user, a wizard has been presented to formulate poli-

cies [87]. The applicability of a rule depends on whether its trigger has occurred and

whether its conditions are satisfied.

A condition expresses properties of the state and of the trigger parameters. Conditions

may be combined with and, or and not with the expected meaning. Actions have an

effect on the system in which the policies are applied. Several operators are available to

compose actions:

and: leads to the execution of both actions in either order;

andthen: specifies that the first action precedes the second in any execution;

or: specifies that either one of the actions should be taken;

orelse: is like or but prescribes that the first option is preferred.

In all these, an action may be atomic or composite.

Triggers and actions are domain specific atoms. Conditions are either domain specific

or more generic (e.g. time) predicates. The following describes the syntax of the policy

language:

polrule ::= appliesto location [when triggers] [if conditions] do actions

Chapter 3: StPowla 49

triggers ::= trigger | triggers or triggers

conditions ::= condition | not conditions |

conditions or conditions | conditions and conditions

actions ::= action | actions actionop actions

actionop ::= and | or | andthen | orelse

3.4.2 Policy Attributes

The principal means to adapt a workflow to the needs of a stakeholder is by describing

the behaviour of tasks using policies. To the StPowla user, these characteristics appear

as attributes, i.e. properties of either tasks or workflows. Attributes can be introduced at

different times: they can be predefined, i.e. they come with StPowla and are applicable

to any task or workflow, or they can be domain specific, i.e. they are part of the ontology

of a particular business domain.

The StPowla user can refer to the state of the execution of the workflow in terms of at-

tributes, i.e. properties of individual tasks or of the whole workflow. Most of the attributes

are part of the domain specific specialization of the Appel component of StPowla, i.e. they

come from the ontology of a particular business domain. Finally, each task can have its

own attributes.

Predefined attributes include:

automation which facilitates constraining how the task is to be executed;

actorRole which is bound to the role interacting with the system to fulfill a task, if any;

actorId which is bound to the identity of the actor playing the requested role, if any.

Attributes have types. For instance, automation takes values in {automatic,

interactive}, and the first value excludes the involvement of humans in the fulfillment

of the task. actorId is a String, as is actorRole, which has “user” as default value.

Chapter 3: StPowla 50

In general, attributes can be overridden by more specific definitions. For instance, the

actorRole type may be redefined according to the specifics of the business, in a do-

main dependent definition section. Moreover, in two workflows they may be different, as

defined in a workflow dependent definition section.

Some attributes related to a task may be already bound and available on task entry, as task

parameters; some other may depend on the results of the invoked service4. They are used

in policies attached to subsequent tasks.

Similarly, some workflow attributes are available at activation, as workflow parameters,

while other are computed along execution. For instance, a workflow relating to a bank,

may have an attribute branchSize ranging in {small, medium, large}, which is bound

when the workflow is instantiated.

An attribute is accessed by a policy, with syntax

<prefix>.<attributeName>

where the prefix is either the name of a task, or is left empty, in which case the current

task or the current workflow is assumed. In case of ambiguity, the current task may be

referenced as thisTask, and the current workflow as as thisWF.

Finally, here we assume that the standard operators for a type are available as policy

actions. For instance, the totalCost attribute of a workflow may have an operation inc

that can be used to accumulate the costs of its tasks.
4In this case, the attributes will be eventually refined along the development process to become part of

the type of the value that the invoked service returns. However, at the business level of abstraction, these
are seen as related to the task, for their use in policies.

Chapter 3: StPowla 51

3.5 Tasks and Services

Tasks are the items where BPM and SOA converge, and where variability occurs by using

policies: the intuitive notion of task is revisited to offer the novel combination of services

and policies. To specify tasks, we specialize Appel to deal with services, by introducing

a special action for service discovery and invocation.

A task has a name, which is intended to convey its purpose. For instance, “makeCoffee”

is the name of a task where a coffee is expected to be prepared. The details of the working

of the task are detailed as the understanding of the workflow grows. In well established

domains, each task name should identify precise requirements, e.g. the broad functional-

ity of “makeCoffee” can be easily inferred from the name. The task also has an associated

policy in Appel that uses the name of the task to express the functional requirements in

the service choice, and also specifies non-functional requirements.

A default policy is associated with each task. It says that when the control reaches the

task, a service is looked for, bound and invoked, to perform the main functionality of the

task. As such, a task must have a policy in order to execute, i.e. the policy actions the

task. The syntax is as follows:

policy <taskName>.default is

appliesTo <taskName>

when taskEntry(<args>)

do req(main, <args>, [])

For instance, the default policy of a task (with no arguments) where a coffee has to be

made is the following one:

policy makeCoffee.default is

appliesTo makeCoffee

when taskEntry([])

Chapter 3: StPowla 52

do req(main, [], [])

With taskEntry we denote the policy trigger, whose arguments are the task parameters,

if any. Action req(, ,) is the essential bit of the Appel specialisation to deal with

selection and invocation of services. It is generic, i.e. independent of the business domain.

This action takes three arguments:

• the type of the service, expressing its basic functionality. By default it coincides

with the name of the task, and is denoted simply as main. Anyway, the type must

be known in the domain description;

• the list of service parameters, in terms of the task parameters and attributes;

• the specification of the constraints on service selection: they express Service Level

Requirements5. In the default policy the list of constraints is empty: any service of

the required type will do.

Definition 1 The semantics of the req action are: find a service as described by the first

and third arguments, bind to it, and invoke it with the values in the second argument6.

The action succeeds if a service is found, and its invocation is successful. It fails if either

no service is found or if the bound service fails. The binding acts as a commit: only one

service is invoked, and if its invocation fails no other found service is invoked.

Adaptation occurs when the user overrides the default policy with his own, by specifying

the SLA constraints, or by using the composition operators of Appel.

Let us show some examples. In case of task makeCoffee, a constraint on service invo-

cation might deal with an attribute CupTemperature, which can take values in {cold,

warm}. The request for coffee can be refined, to request that the coffee is served in a warm

cup, by introducing the following policy.
5these are used as the requirements to precede a Service Level Agreement.
6we assume an automatic search and matching of services to tasks, thus allowing the user to work

without the need for detailed service knowledge.

Chapter 3: StPowla 53

policy makeCoffee.default is

appliesTo makeCoffee

when taskEntry([])

do req(main, [], [CupTemperature = warm])

Service discovery must now take into account the SLA constraints, in the third argument

of req: the invoked service must be able to satisfy the given constraint on CupTempera-

ture.

SLA constraints usually address different kinds of concerns, or SLA dimensions. A di-

mension is specified in the domain description by giving it a name, the set of values and

the applicable operators (if different from the generic ones, like equality and inequality,

which we always assume). In the coffee example, one dimension is CupTemperature,

with values in {cold, warm}. Essentially, a dimension defines a type.

Since Appel permits actions to be combined, we can provide the customer with a glass of

water (at no cost) before the coffee:

policy makeCoffee.default is

appliesTo makeCoffee

when taskEntry([])

do req(glassOfWater, [], [Cost = 0])

andthen

req(main, [], [])

The operator andthen lets the two services be invoked in sequence.

It is useful to define repairing actions, to cope with failures (e.g. no service found or

service invocation failure). Operator orelse permits the introduction of repairing actions:

if it is not possible to have a coffee then a tea is looked for.

policy makeCoffee.default is

Chapter 3: StPowla 54

appliesTo makeCoffee

when taskEntry([])

do req(main, [], [])

orelse

req(makeTea, [], [])

In all the previous examples the policy has no conditional clause, i.e. it is always ap-

plicable. In practice, one may want to subordinate the invocation of a service, to some

condition, such as:

policy makeCoffee.default is

appliesTo makeCoffee

when taskEntry([mood])

if mood=sleepy

do req(main, [], [])

Here, the task is passed through, without doing anything, if the customer is not sleepy

and hence does not need a coffee. So, the actual workflow can depend on the state of the

system, inspected by exploiting attributes.

We can now provide the definition of task success and failure.

Definition 2 A task succeeds if the associated policy is either not applicable, i.e. its con-

ditions are not satisfied, or if its action succeeds. The task fails if the policy is applicable

but its action fails.

In the former example the task fails if we are sleepy, and the req action fails: no service is

found in our SLA conditions or a service is found but its execution fails. Conversely, the

task succeeds if a service is found and correctly executed, or if the policy is not applicable,

since we are nicely awake.

Chapter 3: StPowla 55

In Appel policies can be combined in groups that control the order in which applicability

is checked. Operator seq checks its second argument only if the first one is not applicable:

caffeine comes in a coke only if the customer is thirsty.

policy makeCoffee.default is

appliesTo makeCoffee

when taskEntry([mood])

if mood != thirsty

do req(main, [], [])

seq

when taskEntry([])

do req(glassOfCoke, [], [])

In StPowla, we exploit this feature to allow the user to assign priorities to the policies

attached to the same task. We envisage an extension of the graphical interface to Appel,

known as the Appel wizard [87], to support the user of StPowla in policy management,

e.g. with respect to priorities among policies.

In the following example the Appel choice operator is used: if morning evaluates to true,

the first of the two rules will be applied, otherwise the second one will be applied.

policy makeCoffee.default is

appliesTo makeCoffee

when task_entry

do req(main, _)

g(morning)

req(decaffeinated, _)

Chapter 3: StPowla 56

3.6 The Service Level Agreement Language

The purpose of the third argument of req is to specify a list of constraints on service se-

lection. We can constrain a dimension to a single value, or to a range of values. Service

Level Agreement (SLA) constraints are expressed using parameters, attributes and get

functions that permit the workflow management system to inspect the state of the work-

flow. Differently from the conditions in the if clause, which are evaluated when executing

a policy, these conditions are evaluated by the req action itself during service selection

(and ultimately by the service broker component), against each candidate service. Should

the condition be independent from the current state, as in

Automation = automatic

we could simply consider the type of the third argument to be a String, and let req in-

terpret it. However, one may want to express constraints that depend on the state of the

computation, e.g. that the automation kind requested is defined by the current value of the

corresponding attribute of the task. We need a mechanism to force partial evaluation of

the condition in the third argument of req. The situation is similar to what happens with

SQL queries in JDBC. We use the convention of prefixing a question mark to those part

of a constraint that need evaluation. For instance, a constraint like:

Automation = ?(thisTask.automation)

will entail a search for an automatic or interactive service, according to the value of

thisTask.automation when the policy is applied.

Chapter 3: StPowla 57

3.7 Pragmatics of the Customization

Our attitude is that, when a new policy is introduced, the user should define its relation

with other policies applying to the same task. This can be done using the Appel operator

seq, which introduces an enforcement. That is, we traverse the structure, determining

whether the first policy is applicable: if so we apply it, otherwise we check the second

one.

Looser attitudes, like composing policies in parallel, may lead to policy conflicts. Con-

flicts can be detected with a supporting tool [60], and their resolution can be manual

or automatic. Manual resolution can include re-formulation of policies. A technique to

automatically solve conflicts is to give a priority to the most recently introduced policies.

3.8 Summary

In this chapter, we have taken the three ingredients of Business Process Management

(i.e. workflows), Policies and Service Oriented Architecture and combined them into a

recipe we called StPowla.

Workflows define the core process in terms of tasks and control flows between tasks. The

workflows themselves are described using a graphical notation that abstracts away any

specific implementation or even technical detail, for the purpose of being appropriate at

the business level, where most human users are indeed non-technical.

Policies describe variability of the core process by acting as a technology overlaid on

workflows. SOA provides the underlying functionality. For this thesis, it has been as-

sumed that the mapping of workflow tasks to SOA services is already provided, i.e. any

task can be defined, with any requirement, and another independent system can find a

Service (or composite Service) which provides the desired functionality.

Chapter 3: StPowla 58

In the next chapter, we will consider more closely policies and their (potential) impact

upon workflows. More accurately, we will define specific effects that policies can have on

workflows, which we shall identify as workflow reconfigurations.

Chapter 4

Workflow Reconfiguration

It is not the strongest of the species that survive, nor the most intelligent, but the one most

responsive to change. (Charles Darwin).

4.1 Introduction

In the previous chapter we presented StPowla as a combination of workflows, policies

and Service Oriented Architecture (SOA) as a viable solution for defining variability sep-

arately to business processes. We progress from the initial description of StPowla to the

closer examination of how policies interact with workflows. We have already noted that

the combination of workflow tasks and services has been assumed and is thus out of scope

for this thesis. In this chapter, we define a set of functions that can be specified by policies

and performed over workflows in order to achieve some form of reconfiguration. We use

informal descriptions, policy syntax and graph transformation rules to provide the set of

definitions.

A reconfiguration is a functional change on a workflow, i.e. the actions of the workflow

59

Chapter 4: Workflow Reconfiguration 60

change. The purpose of a reconfiguration is to allow the core process to react to changing

contextual and environmental factors. For example, returning to the early example in

Chapter 1 (Figure 1.2), there is a core process that is followed under most circumstances.

Only when certain factors are present (i.e. a received order has a particularly high value),

then a variation to the core process is carried out (Figure 1.4).

A reconfiguration is a short-lived modification to the workflow: the modification expires

when the workflow instance ends and the same core process is used at the start of the next

instance. This implies that the core process, defined by the workflow itself, is not per-

manently changed by policies. To achieve lasting change the workflow designer, i.e. the

business analyst, must change the core model directly.

Previously we have seen examples of Event-Condition-Action (ECA) policies. These

policies are rules that, triggered by a specific event and when satisfying some condition,

perform specific actions. A task has a requirements list (recall the req(main,[]) func-

tion) which we identify as the implicit actions to perform once it has started. The req

function, although simply a function used as the action component of an ECA, is all part

of the core StPowla workflow execution. We now extend the ECA and policy concepts

to describing explicit functionality, i.e. additional to the core task functionality.

Qualitative changes can also be made to the workflow where constraints are placed over

the execution of the workflow itself. Both functional and qualitative modification types

are not mutually exclusive, i.e. a workflow can be reconfigured and qualitatively con-

strained simultaneously. Such is the breadth and depth of information we cover about

reconfigurations that we do not consider qualitative changes in this thesis.

This chapter is structured as follows: firstly the concept of graph transformation rules is

broadly defined in the context of our problem area. Secondly, a workflow ontology is

described as a means to providing a location where contextual workflow information can

be defined. Thirdly, each reconfiguration function is described using a combination of

informal language, policy syntax and graph transformation rules.

Chapter 4: Workflow Reconfiguration 61

4.2 Graph Transformation

It is commonly understood that (visual) modelling languages, as tools that enable easier

development and specification of software systems, can be seen as graphs (e.g. [22, 95]).

Thus when a model changes from one state to another, a graph transformation of some

kind is involved.

A StPowla workflow, or indeed any process, can be seen as a network of nodes and

directional connecting edges (i.e. a graph). Workflow items are tasks or operators, and

these are each represented by a single node. Edges represent the control flows between

these items, where one control flow is shown as one edge. Since graph transformations

are typically applied to a meta-model, we can apply a similar principle to the process

model.

Policies change the graph in some way and therefore graph transformation becomes a log-

ical tool for the specification of reconfigurations. Graph transformation supports a visual

representation of rules, which is reminiscent of the intuitive way in which engineers would

sketch, for example, network reconfigurations [47]. Considering also the likelihood of a

wizard to help users define policies, we find a close match between graph transformation

rules and policies at an abstract level.

We use graph transformations to visually describe the functions available to policies and

thus the effect that policies can have on a workflow instance. A graph transformation rule

takes a basic formalism (i.e. a typed graph), in our case a workflow model and its instance

graph, in our case the executing workflow instance.

The graph transformation rule is defined in terms of the original typed graph (the source)

and the resulting typed graph (the target) after the transformation has occurred. In addi-

tion, a similar step is applied for the instance graph.

A rule p is written formally as p : L→ R with L∩R well defined in different presentations.

Chapter 4: Workflow Reconfiguration 62

A

B C

A

B C

DE

A

B

A

B

DE

L R

G H

RO
LO

p

Figure 4.1: An example graph transformation rule.

In StPowla language, L represents a part1 of the executing workflow instance and R

represents what it will transform into, according to the rule p. An example visualization

of graph transformation rules is given in Figure 4.1. The rule simply removes node C and

its relations to nodes A and B (as shown in L and R) in graph G in order to achieve graph

H.

The subject part of the workflow model L is shown in the top left, with the result of the

transformation R in the top right. Furthermore, two additional diagrams G and H show

the executing workflow instance in its initial state (G) and then its fully transformed state

(H). Thus there are mappings between L and G on the source side and between R and H

on the transformed side.

The steps to performing a graph transformation are straightforward:

1. Select rule p : L→ R; occurrence oL : L→ G;

2. Remove from G the occurrence of L\R;

3. Add to result a copy of R\L.

The purpose of defining policies in terms of graph transformations is threefold:
1It is possible for the source graph to display the entirety of the workflow but this would be counter

productive due to the size of the graph that would often be required and also the lack of support for graph
transformations over recurring patterns inside the workflow

Chapter 4: Workflow Reconfiguration 63

First, graph transformation is known to be a scalable means of modifying graphs accord-

ing to given rules. In this situation, the size of workflows and the quantity and complexity

of policies can increase significantly, therefore requiring a scalable transformation mech-

anism.

Second, graph transformation visualizes the effects of policy functions. It also provides

a means to visually and intuitively demonstrating the effects of combining multiple rules

and is therefore useful for analysis purposes.

Third, the visual perspective of graph transformation rules is in keeping with the graphical

design of the workflow. A policy creation wizard can incorporate a graph transformation

viewer in order to ease the design of policies at an abstract level.

4.3 Workflow Ontology

Policy authors require some basic knowledge of the subject workflows in order to write

policies that are effective. For example, one cannot write a policy for a specific task

without knowing the task name and one cannot address a specific task attribute without

knowing the attribute’s name. Therefore, we provide a simple ontology for a workflow

that contains definitions for the information that is exposed to policy authors and, by

implication, to policies.

Workflow <name> is
Types
<name>: { type construction }

...

Invariants
<type> <invariant_name> = value

...

Actors/Entities
<name>

Attributes
<type> <attribute_name> [:= default_value]

...

...

Chapter 4: Workflow Reconfiguration 64

Global Attributes
<type> <attribute_name> [:= default_value]

...

Domain Dependent Attributes
<type> <attribute_name> [:= default_value]

...

Workflow Attributes
<type> <attribute_name> [:= default_value]

...

Tasks
<name>

Attributes
<type> <attribute_name> [:= default_value]

...

...

Scopes
<name> : [owner_name.]<name_start_item>,

[owner_name.]<name_end_item>

...

According to this ontology, a workflow can be described according to a set of invari-

ants, types, properties (global, domain dependent and workflow) and constructs (tasks

and scopes). We note that the list of tasks does not include information on how tasks

connect to each other, i.e. no control flow is defined inside the ontology - this is left for

the visual workflow model.

Types are compositions of simple types (strings, dates, lists and numbers). At this con-

ceptual stage, there is no need to expand upon this further to include additional types, e.g.

collections, but it is enough for us to say that further types are possible. The syntax of

defining a new type is as follows:

myNewType :

{

<type> <attributeName_1> [:= default_value]

...

<type> <attributeName_n> [:= default_value]

}

Type attributes can be accessed using common syntax

<type instance name>.<type attribute name>.

Chapter 4: Workflow Reconfiguration 65

Actors and entities are different stakeholders in the workflow, e.g. the supplier workflow includes

the supplier and customer as two actors. Each of these may have attributes with optional default

values, accessed in a similar way to types.

Global attributes are those that are accessible throughout the workflow system, including all work-

flows and their tasks. Domain dependent attributes are a specific category that can be used in

accordance with Appel, which separates the core policy language from the domain dependent

implementation. Workflow attributes are specific to this particular workflow and also provide a

separation from global attributes. Tasks are listed by name, together with their exposed attributes.

The main advantage of swimlanes is to provide a more global view of the executing workflow.

Since workflows are typically focussed on the activities of only one actor/entity, it can be useful to

see that workflow in light of other workflows from other actors/entities that it interacts with. Thus

a swimlane is a graphical boundary that separates the specific workflow of one actor/entity from

another.

Finally, composite tasks are listed under Scopes2, for which each definition includes a start point,

an end point, and all items in between the two. Since a number of workflows include the concept

of swimlanes (graphic boundaries that identify each task inside with a specific actor or entity), we

also allow swimlanes and optionally use the notation OwnerName.TaskName to uniquely identify

a task according to the swimlane it is in. Thus, a swimlane is usually representative of an entity.

4.4 Reconfiguration Functions

Reconfigurations to the workflow are made through the result of calling functions over the work-

flow instance. These functions are called in policies according to parameters defined by the policy

author. In this section, we define closely each reconfiguration function that is available and all

necessary variations of those functions.

2Previously we said that a series of consecutive tasks, together with their interlinking control flows and
operators could be considered as a composite task. The same principle can be identified as a scope, although
a scope is typically not redrawn in a condensed way in the workflow. Instead, the scope is an outline of an
area of the workflow, including all items inside that area.

Chapter 4: Workflow Reconfiguration 66

Logically, a function is defined as Func :: P
params
−−−−−→ P, where P is a process (recalling the previous

grammar). The list of parameters params may be passed to configure the transformation that the

function is trying to achieve.

Broadly, we define the set of reconfiguration functions in Table 4.1.

Type Description
Insert: inserts a set of items into the workflow instance;
Delete: removes an existing task from the workflow instance;

Fail: designates an executing workflow task instance as having failed;
Abort: designates an executing workflow task instance as having been aborted;
Block: delays a task’s execution.

Table 4.1: Reconfiguration functions

These functions enable end users to make almost unlimited changes to the entire workflow. The

two examples in Chapter 1 described both an empty workflow that was built according to need

and another that was comprehensively described. The former example is now possible through

StPowla. We now define each function with their respective policy syntax, the logical process

grammar and its graph transformation rule.

For clarity, the term process is used to describe a scope and the term item is used to describe any

element that can be inside a workflow control flow, i.e. a task, composite task or operator. Graph

transformation rules are given only with graphs L and R for brevity. The application of a set of

these rules is illustrated in Chapter 6.

Both graphs L and R may contain “...”, signifying that preceding and proceeding workflow com-

ponents may exist and we are not concerned with what they actually are. Functions involving

composite tasks are included to represent situations that require special attention compared to

simple tasks3. Also, process diagrams may include tasks in L which are not connected to any

other part of the workflow. These represent tasks that are available in a repository, but are not

being used by the workflow.

3For example, any composite task can be regarded as a composition of a Flow Split operator followed
by a Conditional Merge operator. In this situation, we must take into account both these operators, plus
the items contained inside the connecting control flow, which could ultimately contain more operators and
tasks.

Chapter 4: Workflow Reconfiguration 67

4.4.1 Insert

The function insert places a pre-defined process in the executing workflow instance at a specific

position. The function also allows the specification of whether the new process is to be inserted in

parallel with or following the position. The position is referenced by the name of a target workflow

item.

Insert is certainly the most complex of all the reconfiguration functions since it has so many vari-

ations. A user can insert a simple task in sequence with another or in parallel. The other task may

be simple or composite. A user can also insert a process, which can include a number of operators,

in sequence with a task or in parallel to it. Again, that existing task may be simple or composite.

Inserting a Task

We consider first inserting a simple task. To use the function in a policy, the following syntax
should be used: insert(Process p1, Process p2, boolean inParallel). For example:

policy EnsureGoodDrinkingTemperature is

appliesTo MakeCoffeeWorkflow

when PourCoffee.task_ended

if coffee.temperature > 60

do insert(AddDashColdWater, PourCoffee, false)

The relevant workflow ontology is as follows:

Workflow MakeCoffeeWorkflow is
Actors/Entities

coffee

Attributes
integer temperature := 0

Tasks
PourCoffee

AddDashColdWater

This policy affects the MakeCoffeeWorkflow, an entire workflow dedicated to the

steps of making a cup of coffee. After pouring coffee into a mug (the trigger), if

Chapter 4: Workflow Reconfiguration 68

the temperature of the coffee (the condition) is greater than 60 ◦C4, then a new task

(AddDashColdWater) to add a dash of cold water (the action) is inserted into the execut-

ing workflow after the PourCoffee task5. This is done after the task has been completed

but before the next task is started.

When inserting in sequence to an existing task like in this example, we are required to

break the control flow prior to the existing task, map that to the incoming point of the new

task, and map the outgoing control flow of the new task to the task or item that originally

followed the existing task.

When inserting in parallel to an existing task, we are also required to insert a Flow Split

operator before the existing task, in order to provide the parallel control flow path, plus

a Conditional Merge operator following the existing task, to ensure that the control flow

integrity is not compromised. This Conditional Merge is defined such that it receives two

incoming mandatory control flows and shall only allow execution to proceed when both

have completed (i.e. the number is 2)6.

The policy author though should not be concerned with these aspects so the insertion

of the appropriate flow split and conditional join operators is invisible to them, i.e. it is

automatically done by the policy engine.

One might note that although it would not be impossible to insert a new task in parallel to

one that has already finished executing, it would be a redundant change. However, since

the functions are based on patterns, it may be possible that a second instance of the same

task exists later on in the workflow and the policy author wishes to affect primarily the

second instance.

Already we can see a number of variations to the insert function. The full list of variations

is described in Table 4.2. This includes identifying if the new process is an atomic (simple)

4Since the attribute’s type is an integer, we assume the value is a measure of degrees Celsius.
5Items coffee and temperature are defined in the workflow ontology.
6We note there is a redundancy here, but for the purpose of clarity, this has been ignored

Chapter 4: Workflow Reconfiguration 69

or composite task, the existing task is an atomic or composite task, and if the new task is

to be inserted in sequence or in parallel.

Process p1 Process p2 In Parallel ID

Insert

Atomic Task
Atomic Task

True I1

False I2

Composite Task
True I3

False I4

Composite Task
Atomic Task

True I5

False I6

Composite Task
True I7

False I8

Table 4.2: Variations of the Insert function.

We continue to examine each of these variations individually for completeness.

Insert Variation I1: This variation inserts a new atomic task to be placed

in parallel with an existing atomic task. As previously discussed, this must

also implicitly, i.e. away from the responsibility of the policy author, insert a

Flow Split operator and a Conditional Merge operator. The policy syntax is

insert(T2, T1, true)7 and the grammar used to express this transformation is

Insert:: T1
(T2,true)
−−−−−−→ FJ(2, {T1, true}, {T2, true}).

This is defined visually as a graph transformation rule as in Figure 4.2.

…

…

L R

),,(:: 12 trueTTInsert

1T

2T

…

…

2

1T 2T

Insert I1

Figure 4.2: GT rule for insert variation I1.

7the literal translation is “insert task T2 in parallel with task T1”

Chapter 4: Workflow Reconfiguration 70

To illustrate this reconfiguration, we return to the example given in Chapter 1 and repeated

in Figure 4.3, but without the customer’s swimlane.

Start

End

Receive Order

Collect Items

Ship Items

Bill Client

Receive
Money

Figure 4.3: The full workflow for the supplier.

Now we add the following policy:

policy CheckRequestDeposit is

appliesTo ReceiveOrder

when task_completed

if order.value > 1,000,000

do insert(RequestDeposit, ReceiveOrder, false)

We also consider the related ontology:

Workflow SupplierWorkflow is
Actors/Entities

order

Attributes
integer value

Tasks
ReceiveOrder

RequestDeposit

... (other tasks left for brevity)

This policy can be expressed as a graph transformation rule, with L, R, G and H graphs

as shown in Figure 4.4. Importantly, graph L shows the source workflow items and what

they should be transformed to in R. Graph G shows the full source workflow and H shows

the result of applying the graph transformation rule to the original.

Chapter 4: Workflow Reconfiguration 71

0,0 50,0 100, 0

0,50

0,100 50,100 100,100

200

400

800

Receive

Order
Order

Value > 1,000,000

Receive

Order

Request

Deposit

L
Order

Value > 1,000,000

Invoice
Value =

Order.Value * 0.25

R

Start

End

Receive

Order

Collect

Items

Ship

Items

Bill

Client

Receive

Money

G H Start

End

Receive

Order

Collect

Items

Ship

Items

Bill

Client

Receive

Money

Request

Deposit

Order
Value = 1,500,000

Invoice
Value = 375,000

RO
LO

p

Order
Value = 1,500,000

Figure 4.4: The graph transformation rule for the supplier workflow.

Insert Variation I2: This variation inserts a new instance of an atomic task to be placed

after and in sequence with an existing atomic task. The new task’s incoming control flow

is received from the referenced existing task’s output. The new task’s outgoing control

flow is mapped to the next task in the workflow.

The policy syntax is insert(T2,T1, false)8 and the grammar used to express this transfor-

mation is Insert:: T1
(T2,false)
−−−−−−→ T1; T2.

This is defined visually as a graph transformation rule as in Figure 4.5.

…

…

…

…

L R

),,(:: 12 falseTTInsert

1T

1T

2T2T

Insert I2

Figure 4.5: GT rule for insert variation I2.

8the literal translation is “insert task T2 after task T1”

Chapter 4: Workflow Reconfiguration 72

Insert Variation I3: This variation inserts a new atomic task in parallel with an existing

composite task (the minor difference to variation I1 being the composition). Similarly, the

policy syntax is insert(T, CT, true)9 and the grammar used to express this transformation

is Insert:: T
(CT,true)
−−−−−−→ FJ(2, {CT, true}, {T, true}).

This is defined visually as a graph transformation rule as in Figure 4.6.

…

…

L R
),,(:: trueCTTInsert

…

…

2

CT
CT

T

T

Insert I3

Figure 4.6: GT rule for insert variation I3.

Insert Variation I4: This variation inserts a new atomic task immediately after an exist-

ing composite task (similar to variation I2 with the minor difference of composition). The

policy syntax is insert(T, CT, false)10 and the grammar used to express this transformation

is Insert:: T
(CT,false)
−−−−−−→ T ; CT .

This is defined visually as a graph transformation rule as in Figure 4.7.

…

…

…

…

L R
),,(:: falseCTTInsert

CT

CT

T

T

Insert I4

Figure 4.7: GT rule for insert variation I4.

9the literal translation is “insert task T in parallel with composite task CT”
10the literal translation is “insert task T in sequence with composite task CT”

Chapter 4: Workflow Reconfiguration 73

Remaining Insert Variations: The remaining variations follow similarly from the pre-

sented variations, with the difference being that the task to be inserted is a composite task.

Each of the variations I5, I6, I7 and I8 are described here for completeness.

Insert Variation I5 :

Policy syntax: insert(CT, T, true)

Literal translation: “insert CT to execute in parallel with T”

Grammar: Insert:: T
(CT,true)
−−−−−−→ FJ(2, {T, true}, {CT, true})

Graph Transformation Rule: See Figure 4.8.

…

…

L R
),,(:: trueTCTInsert

T

…

…

2

T

CT

CT

Insert I5

Figure 4.8: GT rule for insert variation I5.

Insert Variation I6 :

Policy syntax: insert(CT, T, false)

Literal translation: “insert CT to execute immediately after T”

Grammar: Insert:: T
(CT,false)
−−−−−−→ T ; CT

Graph Transformation Rule: See Figure 4.9.

Insert Variation I7 :

Policy syntax: insert(CT2, CT1, true)

Literal translation: “insert CT2 to execute in parallel with CT1”

Grammar: Insert :: CT1
(CT2,true)
−−−−−−−→ FJ(2, {CT1, true}, {CT2, true})

Graph Transformation Rule: See Figure 4.10.

Chapter 4: Workflow Reconfiguration 74

…

…

…

…

L R
),,(:: falseTCTInsertCT

CT

T

T

Insert I6

Figure 4.9: GT rule for insert variation I6.

…

…

L R

),,(:: 12 trueCTCTInsert

…

…

2

2CT

2CT1CT1CT

Insert I7

Figure 4.10: RGT rule for insert variation I7.

Insert Variation I8 :

Policy syntax: insert(CT2, CT1, false)

Literal translation: “insert CT2 to execute immediately after CT1”

Grammar: Insert:: CT1
(CT2,false)
−−−−−−−→ CT1; CT2

Graph Transformation Rule: See Figure 4.11.

4.4.2 Inserting Operators

So far in this chapter, we have discussed and demonstrated how to insert atomic and com-

posite tasks into the workflow at any given point, whether the new process is to execute

in parallel to an existing reference point or in sequence to it. We now process to give

consideration to the insertion of workflow operators, namely Flow Junction, Flow Split,

Strict Preference and Random Choice.

Chapter 4: Workflow Reconfiguration 75

…

…

…

…

L R

),,(:: 12 falseCTCTInsert2CT

2CT

1CT
1CT

Insert I8

Figure 4.11: RGT rule for insert variation I8.

The insertion of a workflow operator is not trivial; the integrity of the workflow must be

maintained at all times and therefore if a new operator enforces a structural change in the

workflow, it must ensure that the workflow can resume to the final end point somehow.

We must also consider that the insertion of an operator can only have the desired change

over the pattern of the workflow that is intended by the policy author (we assume that the

author is perfect in their policy design and definition).

Inserting Flow Junction

The Flow Junction operator directs the workflow control flow down one of two available

paths, with the choice being dependent upon the outcome of a boolean test. Recalling the

grammar, Flow Junction is λ?P : P, but it also implicitly includes a simple (XOR-type)

join, enabling the operator(s) to be inserted where there is only one control flow. The

implication here is that although there are two processes included in the Flow Junction

operator, they must both converge to one single point as the workflow continues passed

this operator.

We identify two variations to this rule: 1) insertion of the operator in sequence with

an existing workflow item; or 2) insertion of the operator in parallel with an existing

workflow item. Furthermore, we can consider both atomic tasks or composite tasks being

referenced as the workflow item.

Chapter 4: Workflow Reconfiguration 76

For completeness, we provide all variations for this rule according to Table 4.3, each

given with a variation Id. For each variation, we provide a description, policy syntax and

grammar (literal translations omitted).

For ease of use, it can be assumed that when a flow junction is inserted, both new con-

trol flows include a single empty task with names of the form <flow-junction-operator-

name dummy1> and <flow-junction-operator-name dummy2>, respectively. We also

make the following assumptions:

• The name of the new Flow Junction operator is FJnew;

• The name of the new Flow Merge operator is SJnew;

• The name of the existing atomic task is T ;

• The name of the existing composite task is CT .

With Respect To In Parallel Id

Insert Flow Junction
Task

True IFJ1

False IFJ2

Composite Task
True IFJ3

False IFJ4

Table 4.3: Insert Flow Junction Variations.

Insert Flow Junction Variation IFJ1 :

Description: Inserts a Flow Junction and Flow Merge in parallel with an existing

atomic task.

Policy syntax: insert(FJnew, T, true)

Grammar: Insert:: T
((λ?FJnew dummy1:FJnew dummy2),true)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

FJ(2, {T, true}, {(λ?FJnew dummy1 : FJnew dummy2)}, true)

Graph Transformation: See Figure 4.12.

Chapter 4: Workflow Reconfiguration 77

…

…

L R
),,(:: trueTFJInsertT

…

…

2

T

Insert IFJ 1

𝐹𝐽𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦1 𝐹𝐽𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦2

Figure 4.12: GT rule for insert Flow Junction variation IFJ1.

Insert Flow Junction Variation IFJ2 :

Description: Inserts a Flow Junction and Flow Merge in sequence with an existing

atomic task.

Policy syntax: insert(FJnew, T, false)

Grammar: Insert:: T
((λ?FJnew dummy1:FJnew dummy2),false)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

T ; (λ?FJnew dummy1 : FJnew dummy2)

Graph Transformation: See Figure 4.13.

…

…

L R
),,(:: falseTFJInsertT

…

…

T

Insert IFJ 2

𝐹𝐽𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦1 𝐹𝐽𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦2

Figure 4.13: GT rule for insert Flow Junction variation IFJ2.

Insert Flow Junction Variation IFJ3 :

Description: Inserts a Flow Junction and Flow Merge in parallel with an existing

Chapter 4: Workflow Reconfiguration 78

composite task.

Policy syntax: insert(FJnew, CT, true)

Grammar: Insert:: CT
((λ?FJnew dummy1:FJnew dummy2),true)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

FJ(2, {CT, true}, {λ?FJnew dummy1 : FJnew dummy2}, true)

Graph Transformation: See Figure 4.14.

…

…

L R
),,(:: trueCTFJInsertCT

…

…

2

CT

Insert IFJ 3

𝐹𝐽𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦1 𝐹𝐽𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦2

Figure 4.14: GT rule for insert Flow Junction variation IFJ3.

Insert Flow Junction Variation IFJ4 :

Description: Inserts a Flow Junction and Flow Merge in sequence with an existing

composite task.

Policy syntax: insert(FJnew, CT, false)

Grammar: Insert:: CT
((λ?FJnew dummy1:FJnew dummy2),false)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

CT ; (λ?FJnew dummy1 : FJnew dummy2)

Graph Transformation: See Figure 4.15.

Inserting Flow Split

The Flow Split operator allows the definition of several concurrent execution paths within

the workflow. Since multiple paths are created from one, they must also converge into one

Chapter 4: Workflow Reconfiguration 79

…

…

L R
),,(:: falseCTFJInsertCT

…

…

Insert IFJ 4

CT

𝐹𝐽𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦1 𝐹𝐽𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦2

Figure 4.15: GT rule for insert Flow Junction variation IFJ4.

path following completion of the operator. Thus, the Flow Split is always accompanied

by a Conditional Merge. This merge operator will use default settings (where each in-

coming branch is mandatory and the number of required branches is equal to the number

of incoming branches).

The purpose of this function is to allow multiple concurrent process flows to be inserted

into the workflow at a given point. This may be in parallel with another set of existing pro-

cess flows (i.e. in parallel with one path between an existing flow split and corresponding

join operator), or in parallel to a newly-inserted process.

We place a strict constraint upon the insertion of a Flow Split operator: the operator shall

only have two outgoing control flow paths. The reason for this constraint is that gaining

further parallel paths is possible by re-using the function.

One such example can be considered in the supplier example. If the incoming order has a

significant value, then the request for a deposit can be in parallel with collecting the items.

At the same time, the supplier may need to restock the items and order in replacements.

Alternatively, as a person is boiling the kettle in order to make coffee, they may also

prepare breakfast by toasting bread and making scrambled eggs in parallel.

Note also that this function provides a different outcome to inserting a workflow task

(atomic or composite) in parallel with an existing item. Although in the latter case paral-

Chapter 4: Workflow Reconfiguration 80

lelism is created, this function allows parallelism to be created independently of current

workflow items. However, one might also consider that this operator is a shorthand way of

inserting a new, empty task in parallel or in sequence to an existing task, and then insert-

ing a second empty task in parallel with the other empty task. The significant difference is

that with this function, the policy author may define specific settings for the Conditional

Merge operator whereas in the other scenario they cannot.

As with the Flow Junction operator, there are four variations of this rule depending on

parallelism and the target related workflow entity. Those variations are shown in Ta-

ble 4.4. Again, we provide a description, the policy syntax, the grammar and the graph

transformation rule.

With Respect To In Parallel Id

Insert Flow Split
Task

True IFS1

False IFS2

Composite Task
True IFS3

False IFS4

Table 4.4: Insert Flow Split Variations.

Insert Flow Split Variation IFS1 :

Description: Inserts a Flow Split and Conditional Merge in parallel with an existing

atomic task.

Policy syntax: insert(FSnew, T, true)

Grammar: Insert :: T
(FS new(2,{FJnew dummy1,true}:{FJnew dummy2,true}),true)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

FJ(2, {T, true}, {Fnew(2, {FJnew dummy1, true} : {FJnew dummy2, true}), true})

Graph Transformation: See Figure 4.16.

Insert Flow Split Variation IFS2 :

Description: Inserts a Flow Split and Conditional Merge in sequence with an exist-

ing atomic task.

Policy syntax: insert(FSnew, T, false)

Grammar: Insert :: T
(FS new(2,{FJnew dummy1,true}:{FJnew dummy2,true}),false)
−−→

Chapter 4: Workflow Reconfiguration 81

Insert IFS1

…

…

L R
),,(:: trueTFSInsertT

…

…

2

T

2

𝐹𝑆𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦1 𝐹𝑆𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦2

Figure 4.16: GT rule for insert Flow Split variation IFS1.

T ; FJnew(2, {FJnew dummy1, true} : {FJnew dummy2, true})

Graph Transformation: See Figure 4.17.

Insert IFS 2

…

…

L R
),,(:: falseTFSInsertT

…

…

2

T

𝐹𝑆𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦1 𝐹𝑆𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦2

Figure 4.17: GT rule for insert Flow Split variation IFS2.

Insert Flow Split Variation IFS3 :

Description: Inserts a Flow Split and Conditional Merge in parallel with an existing

composite task.

Policy syntax: insert(FSnew, CT, true)

Grammar: Insert :: CT
(FS new(2,{FJnew dummy1,true}:{FJnew dummy2,true})),true
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

FJ(m, {CT, true}, {FJnew(2, FJnew dummy1 : FJnew dummy2), true})

Graph Transformation: See Figure 4.18.

Chapter 4: Workflow Reconfiguration 82

Insert IFS 3

…

…

L R
),,(:: trueCTFSInsertCT

…

…

2

CT

2

𝐹𝑆𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦1 𝐹𝑆𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦2
CT

CT

Figure 4.18: GT rule for insert Flow Split variation IFS3.

Insert Flow Split Variation IFS4 :

Description: Inserts a Flow Split and Conditional Merge in sequence with an exist-

ing composite task.

Policy syntax: insert(FSnew, CT, false)

Grammar: Insert :: CT
(FS new(2,{FJnew dummy1,true}:{FJnew dummy2),true},false)
−−→

CT ; (FJnew(2, {FJnew dummy1, true} : {FJnew dummy2, true}))

Graph Transformation: See Figure 4.19.

Insert IFS 4

…

…

L R
),,(:: falseCTFSInsertCT

…

…

2

CT

𝐹𝑆𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦1 𝐹𝑆𝑛𝑒𝑤_𝑑𝑢𝑚𝑚𝑦2

CT

CT

Figure 4.19: GT rule for insert Flow Split variation IFS4.

Chapter 4: Workflow Reconfiguration 83

Inserting Strict Preference

This operator specifies a set of atomic tasks to be executed sequentially according to a

pre-defined order. The operator completes once one of those tasks completes, i.e. only

after a task fails does the next task start. There is one outgoing flow per task, but it is

possible to merge these into one flow as necessary. Since only one of the output flows is

active, a Flow Merge is required to merge all of the flows into a single flow.

Following from the Flow Junction operator, there are four variations for the insertion of a

Strict Preference operator inside the workflow (Table 4.5). We assume that the operator is

predefined, although that does not restrict from the possibility of reconfiguring the output

flows. For example, each of the output flows may be empty and only through additional

policies can new tasks be inserted into them. For simplicity, we also assume that the

operator has no error output flow. However, if there were, it would contain a dummy task

and the flow would be incorporated to the final Flow Merge operator.

With Respect To In Parallel Id

Insert Strict Preference
Task

True ISP1

False ISP2

Composite Task
True ISP3

False ISP4

Table 4.5: Insert Strict Preference Variations.

We proceed to describe each of these variations in the same manner as the previous op-

erators, using a description, the policy usage, the grammar and the graph transformation

rule.

Insert Strict Preference Variation ISP1 :

Description: Inserts a Strict Preference and Flow Merge in parallel with an existing

atomic task.

Policy syntax: insert(SPnew, T, true)

Grammar: Insert:: T
(S P({spt1,P},{spt2,P}),true)
−−−−−−−−−−−−−−−−−−→

FJ(2, {T, true}, {S P({spt1, P}, {spt2, P}), true})

Chapter 4: Workflow Reconfiguration 84

Graph Transformation: See Figure 4.20.

…

…

L R

),,(:: 1 trueTSPInsert
1T

…

…

2

1T

Insert ISP 1

T T
SP

Figure 4.20: GT rule for insert Strict Preference variation ISP1.

Insert Strict Preference Variation ISP2 :

Description: Inserts a Strict Preference and Flow Merge in sequence with an

existing atomic task.

Policy syntax: insert(SPnew, T, false)

Grammar: Insert:: T
(S P({spt1,P},{spt2,P}),false)
−−−−−−−−−−−−−−−−−−→ T ; S P({spt1, P}, {spt2, P})

Graph Transformation: See Figure 4.21.

…

…

L R

),,(:: 1 falseTSPInsert
1T

…

…

1T

Insert ISP 2

T T
SP

Figure 4.21: GT rule for insert Strict Preference variation ISP2.

Insert Strict Preference Variation ISP3 :

Chapter 4: Workflow Reconfiguration 85

Description: Inserts a Strict Preference and Flow Merge in parallel with an existing

composite task.

Policy syntax: insert(SPnew, CT, true)

Grammar: Insert:: CT
(S P({spt1,P},{spt2,P}),true)
−−−−−−−−−−−−−−−−−−→

FJ(2, {CT, true}, {S P({spt1, P}, {spt2, P}), true})

Graph Transformation: See Figure 4.22.

…

…

L R
),,(:: trueCTSPInsertCT

…

…

2

CT

Insert ISP 3

T T
SP

Figure 4.22: GT rule for insert Strict Preference variation ISP3.

Insert Strict Preference Variation ISP4 :

Description: Inserts a Strict Preference and Flow Merge in sequence with an

existing composite task.

Policy syntax: insert(SPnew, CT, false)

Grammar: Insert:: CT
(S P({spt1,P},{spt2,P}),false)
−−−−−−−−−−−−−−−−−−→ CT ; S P({spt1, P}, {spt2, P})

Graph Transformation: See Figure 4.23.

Inserting Random Choice

This follows function works similarly to inserting the Strict Preference operator, even

with an additional Flow Merge at the end. The specific variations for inserting a Random

Chapter 4: Workflow Reconfiguration 86

…

…

L R
),,(:: falseCTSPInsertCT

…

…

CT

Insert ISP 4

T T
SP

Figure 4.23: GT rule for insert Strict Preference variation ISP4.

Choice operator in parallel with an existing task are shown in Table 4.6. Once more, for

each variation we provide a description, the policy syntax, the grammar and a the graph

transformation rule.

With Respect To In Parallel Id

Insert Random Choice
Task

True IRC1

False IRC2

Composite Task
True IRC3

False IRC4

Table 4.6: Insert Random Choice Variations.

Insert Random Choice Variation IRC1 :

Description: Inserts a Random Choice and Flow Merge in parallel with an existing

atomic task.

Policy syntax: insert(RCnew, T, true)

Grammar: Insert:: T
(RC({rct1,P},{rct2,P}),true)
−−−−−−−−−−−−−−−−−→

FJ(2, {T, true}, {RC({rct1, P}, {rct2, P}), true})

Graph Transformation: See Figure 4.24.

Insert Random Choice Variation IRC2 :

Description: Inserts a Random Choice and Flow Merge in sequence with an

existing atomic task.

Chapter 4: Workflow Reconfiguration 87

Policy syntax: insert(RCnew, T, false)

Grammar: Insert:: T
(RC({rct1,P},{rct2,P}),false)
−−−−−−−−−−−−−−−−−−→ T ; RC({rct1, P}, {rct2, P})

Graph Transformation: See Figure 4.25.

Insert Random Choice Variation IRC3 :

Description: Inserts a Random Choice and Flow Merge in parallel with an existing

composite task.

Policy syntax: insert(RCnew, CT, true)

Grammar: Insert:: CT
(RC({rct1,P},{rct2,P)),true}
−−−−−−−−−−−−−−−−−→

FJ(2, {CT, true}, {RC({rct1, P}, {rct2, P}), true})

Graph Transformation: See Figure 4.26.

Insert Random Choice Variation IRC4 :

Description: Inserts a Random Choice and Flow Merge in sequence with an

existing composite task.

Policy syntax: insert(RCnew, CT, false)

Grammar: Insert:: CT
(RC({rct1,P},{rct2,P}),false)
−−−−−−−−−−−−−−−−−−→ CT ; RC({rct1, P}, {rct2, P})

Graph Transformation: See Figure 4.27.

4.4.3 Delete

Delete is a reconfiguration function that removes the workflow item from the current

workflow instance whose identification is the given input. It can be applied to any work-

flow item, even one that has only been inserted into the control flow through a policy.

Deleting a non-existing workflow item, or at least one that is not included in the control

flow, has no effect. The literal translation of performing a delete is “do not execute this

workflow item”.

Chapter 4: Workflow Reconfiguration 88

Insert IRC1

…

…

L R
),,(:: trueTRCInsert

1T

…

…

2

1T

T T RC

Figure 4.24: GT rule for insert Random Choice variation IRC1.

Insert IRC2

…

…

L R

),,(:: 1 falseTRCInsert
1T

…

…

1T

T T
RC

Figure 4.25: GT rule for insert Random Choice variation IRC2.

A deletion can be of two forms: deletion of a task (atomic or composite), or deletion of

an operator. Although there is a semantic difference between deleting an atomic task and

deleting a composite task, we will see there is little conceptual difference as a workflow

item can be either a single task or a sequence of items, including tasks and operators.

Furthermore, there is little to conceptually differentiate decision operator deletions, Strict

Preference deletions and Random Choice deletions. However, we include each scenario

for completeness.

Since a task can have up to three outgoing control flow paths (for completion, abortion and

failure), we must take into account the mapping of of the relevant paths now there exists a

gap in the workflow. The following task on the completion path is mapped directly to the

incoming task control flow path to ensure continuity. However, since the task no longer

Chapter 4: Workflow Reconfiguration 89

Insert IRC3

…

…

L R
),,(:: trueCTRCInsertCT

…

…

2

CT

T T RC

Figure 4.26: GT rule for insert Random Choice variation IRC3.

Insert IRC4

…

…

L R
),,(:: falseCTRCInsertCT

…

…

CT

T T RC

Figure 4.27: GT rule for insert Random Choice variation IRC4.

exists, it can neither fail or be aborted. Therefore, these paths can be ignored since they

can never be followed. It implies that if a workflow item would be executed exclusively

if another task failed or was aborted, the item becomes redundant if that task was deleted.

We proceed to describe each of the variations of the Delete function, using policy syntax,

grammar and graph transformation rules.

For clarity, the start and end points in the workflow have been included in L and R graphs.

These are proceeded and preceded by, respectively, a “...” representing any other work-

flow item. Any deleted items remain inside the R graph, but are separated from the main

control flow (i.e. they will not execute because they cannot be reached) and thus they

faintly coloured to illustrate this.

Chapter 4: Workflow Reconfiguration 90

Delete Task

Removing a task from the workflow is the most basic function available, suitably easier

than inserting a task. The function detaches the specified task from its position inside the

control flow and connects the former incoming and outgoing branches, thus creating one

edge from the previous two.

For example, suppose a person applies for a a credit card. This normally involves a credit

check and upon a positive result, a card is authorized. A variation to this process can be

that if the application has a substantially high income (say over £100,000), then the credit

check is not necessary. In that case, the process consists of solely authorizing the card.

This is illustrated in Figure 4.28.

Delete(t) example

Credit
Check

Start

End

Authorize
Credit Card

Start

End

Authorize
Credit Card

Applicant income

> 100,000 per year

Figure 4.28: Credit check illustration.

The policy usage of this function is simple: delete(t), where t is task ID. The grammar is

Delete :: T
T
−→ 0, where 0 represents an empty state. Finally, the graph transformation

rule is shown in Figure 4.29.

Delete(t)

…

…

L R
)(:: TDelete

T

…

…

Figure 4.29: GT rule for deleting a task.

Chapter 4: Workflow Reconfiguration 91

Delete Composite Task

Deleting a composite task is also straightforward, provided the composite task is already

defined. Otherwise, the way to delete a composite task is either to define it first, then

delete it, or by deleting every workflow item within the correct boundary. For simplicity,

we assume that the composite task is always defined.

The policy syntax of this function is delete(CT), where CT is composite task ID. The

grammar is Delete :: CT
CT
−−→ 0, where 0 represents an empty state. Finally, the graph

transformation rule is shown in Figure 4.30.

All workflow items inside the composite task are detached from the workflow, but left

attached to one another, i.e. the incoming and outgoing flows to and from the composite

task are left “floating”, whereas every connection inside the composite task remains. This

facilitates the reuse of this composite task at a later stage.

Delete(CT)

…

…

L R
)(:: CTDelete

CT

…

…

Figure 4.30: GT rule for deleting a composite task.

Delete Flow Split

Deleting a Flow Split operator includes deleting the actual operator plus its related Condi-

tional Merge operator and every workflow item between the two. As with the composite

task, all internal connections remain after deletion to facilitate reuse. The policy syntax of

this function is delete(FS), where FS is the unique name of the flow split. The grammar

is Delete :: FJ(m, {P, β}, ..., {P, β})
FJ(m,{P,β},...,{P,β})
−−−−−−−−−−−−−→ 0, where m is the number of mandatory

branches required in the join, the pairs {P, β} represent each outgoing branch and their

Chapter 4: Workflow Reconfiguration 92

merging requirement (i.e. mandatory or optional) and 0 represents an empty state. The

graph transformation rule is shown in Figure 4.31.

Although the policy syntax refers to the Flow Split operator by its own identifier, using

the grammar we realize that the Flow Split is referenced through its Conditional Merge

operator.

Delete(FS)

…

…

L R
)(FSDelete

1T

2

2T

…

…

Figure 4.31: GT rule for deleting a Flow Split.

Delete Flow Junction

Deleting a Flow Junction follows from the deletion of a Flow Split. The policy syntax is

delete(FJ), where FJ is the unique ID of the operator. The grammar is Delete :: λ?T1 :

T2
λ?T1:T2
−−−−−→ 0, where T1 and T2 represent any (set of) workflow items inside the junction

(including no item at all), and the graph transformation rule is shown in Figure 4.32.

Delete(FJ)

…

…

L R
)(FJDelete

…

…

1T 2T

Figure 4.32: GT rule for deleting a Flow Junction.

Chapter 4: Workflow Reconfiguration 93

Delete Strict Preference

This function is similar to deleting the flow junction operator. The policy syntax is

delete(SP), where SP is the unique name of the operator. The grammar is Delete ::

S P({spt1, ct1}, {spt2, ct2})
S P({spt1,ct1},{spt2,ct2})
−−−−−−−−−−−−−−−−→ 0, where spt1 and spt2 are the task contents

of the operator (although more may exist) and the respective workflow items (shown as

“...”) in the respective outgoing control flows of the tasks in the operator. The graph

transformation rule is shown in Figure 4.33. Note that deleting the operator also deletes

all tasks that are defined prior to the Flow Merge operator.

Delete(SP)

…

…

L R
)(SPDelete

…

…

1spt
2spt

… …

Figure 4.33: GT rule for deleting a Strict Preference.

Delete Random Choice

This function is similar to deleting the Flow Junction and Strict Preference operators. The

policy syntax is delete(SP), where SP is the unique name of the operator. The grammar

is Delete :: RC({rct1, ct1}, {rct2, ct2})
RC({rct1,ct1},{rct2,ct2})
−−−−−−−−−−−−−−−→ 0, where rct1 and rct2 are the task

contents of the operator (although more may exist) and the respective workflow items

(shown as “...”) in the respective outgoing control flows of the tasks in the operator. The

graph transformation rule is shown in Figure 4.34. Note that, as with Strict Preference,

deleting the operator also deletes all tasks that are defined prior to the Flow Merge opera-

tor.

Chapter 4: Workflow Reconfiguration 94

Delete(RC)

L R
)(RCDelete

…

…

…

…

… …

1rct
2rct

Figure 4.34: GT rule for deleting a Random Choice.

Exceptional Delete

For more complex workflows, multiple end points may be drawn as a shorthand way of

combining a number of flows into a single workflow end point. In order to assist with this

situation, StPowla allows a user to define a number of end points, whereas the workflow

grammar requires just one end point. The implication for using the delete function is

that potentially the situation may arise where a user deletes a scope (i.e. a sequence of

workflow items) that includes an additional end point. By removing this, we would also

be required to move the original flow split operator and the final merge operator, plus any

workflow item contained between the two.

Instead, StPowla permits the user to delete a scope that includes an additional end point,

without affecting the remainder of the workflow. Should the user wish to delete more

items, they should write new policies.

4.4.4 Fail and Abort

The Fail function discards any potential output from the task being processed and diverts

control flow onto an outgoing error flow. We recall that a task can have three outgoing

control flows: 1) On completion, 2) On failure, 3) On abort. The Fail function simply

diverts control flow to the fail path and the abort function does similarly to the abort path.

To illustrate situations when these functions may be necessary, consider an insurance

Chapter 4: Workflow Reconfiguration 95

policy that is paid for through monthly premiums. Should the subject of the policy fall

behind in payments, they will be sent a letter to inform them of the amount they are in

arrears. Each letter may be accompanied by a phrase such as “If you have paid in the last

seven days, please excuse this letter”. Correctly interpreted, this phrase suggests that if

postage of the letter takes 2 days, then there is a minimum 5 day processing period for the

letter. Should a payment be received from the policy subject within this time, the action

of sending the letter can be aborted.

More simply, the process of making coffee fails if there are no more instant coffee gran-

ules. A failure here could lead to making tea instead. A separate condition could be that

in the summer, if there is no coffee, fruit juice could be consumed instead.

Both functions may optionally call a service’s cancel or rollback function, should one

exist. However, since the user is naive about service usage, they do not know about this

particular step.

A graph transformation rule is not applicable for these functions since there is no struc-

tural change to the workflow. However, there is still the possibility for the user to manip-

ulate the control flow. For example, in Object Oriented languages such as Java and C#,

the concept of Exceptions is sometimes used for more than just error handling. It can be

used as a means of defining alternative flows depending on the outcome of a particular

situation.

Likewise, the workflow construction grammar is not affected either.

In terms of policy syntax, the functions can be invoked through fail() and abort(), respec-

tively. The functions can only be used in policy action sections and thus apply only to the

task specified. By implication, these functions cannot be applied to operators. However,

they can be applied to composite tasks, where the active atomic task (if any) is the one

that is failed or aborted.

Chapter 4: Workflow Reconfiguration 96

4.4.5 Block

The block function can be applied to any atomic task. Each task has an attribute ready

indicating whether or not the task itself is ready to be executed. If the value is true and the

task is reached in the control flow (i.e. the task is activated), then it proceeds to perform

its normal execution. If the value is false and the task is reached in the control flow, then

it waits until the value changes to true or that an abort or fail function is called on that

task.

The purpose of block is to place a hold on (i.e. delay) the execution of tasks. For example,

in the supplier example, there is an obvious requirement that if the supplier does not

have enough stock to fulfil the order, they must delay the collection of items and in the

meantime order new stock.

The policy syntax is block(t,p), where t is the name of the task to be blocked and p is the

continuation condition. The function can be called from any policy, not just a policy that

applies to that specific task. In the supplier example, it could be demonstrated as follows:

policy Pause Order is

appliesTo ReceiveOrder

when taskCompleted

if global.StockLevel < Order.Quantity

do block(CollectItems, global.StockLevel > Order.Quantity)

This policy assumes a global variable StockLevel, holding the current stock level of items,

and an entity Order with attribute Quantity, which holds the quantity of items requested

in the order. For simplicity, we assume that the supplier only sells one unique item.

To solve this problem, we could add another policy as follows:

policy Notify Delay is

appliesTo ReceiveOrder

Chapter 4: Workflow Reconfiguration 97

when taskCompleted

if CollectItems.ready == false

do insert(SendDelayNotice, this, false)

andthen

insert(GetStock, SendDelayNotice, true)

This policy, written after the previous policy, is applied to the same ReceiveOrder task.

The triggering event is when the task completed and the condition is when the Collec-

tItems task is not ready (i.e. it is blocked) to execute. In this situation, a composite action

is performed where firstly a delay notice is sent to the client (task SendDelayNotice) after

the current task and secondly a task is inserted in parallel to that task with the purpose of

ordering new stock (GetStock).

A third policy is written as follows, to unblock the original task after GetStock has com-

pleted successfully.

policy Resume Order Process is

appliesTo GetStock

when taskCompleted

do CollectItems.ready := true

For completeness, we can include a policy on the SendDelayNotice task that attempts to

abort if the GetStock task completed first.

policy Abort Delay Notice is

appliesTo SendDelayNotice

when taskStarted

if CollectItems.ready == true

do abort()

The graph transformation rule is shown in Figure 4.35, where rather than a workflow

graph in L and R, these graphs are shown as pseudo-UML class diagrams, with the

Chapter 4: Workflow Reconfiguration 98

task/class name shown, with a variable ready and its value shown underneath. In addition,

example G and H workflows are shown wherein attributes of tasks are displayed.Block

A
ready := true

…

…

A
ready := false

…

…

A
ready := true

A
ready := true

B
ready := true

Start

End

A
ready := false

A
ready := false

B
ready := true

Start

End

L R
),(ABlock

LO RO

G H

Figure 4.35: GT rule for block.

4.5 Summary

In this chapter, we have identified, described and defined using policy syntax, logical

syntax and graph transformation rules a set of functions that can reconfigure a workflow.

These functions are insert, delete, fail, abort and block. Although superficially simple,

the rules require careful analysis, especially with respect to the context in which they will

execute.

However, even with only this small set of reconfiguration functions available, we can

perform wholesale systematic modifications to a particular workflow instance, without

losing the structure of the core workflow. Insertions allow extra functionality to occur

inside the process whilst deletions allow current functionality to be removed. Causing a

task to fail or abort can change the control flow path inside the workflow. Blocking allows

the execution of particular functionality to wait for some other execution to start, or finish,

first.

Chapter 4: Workflow Reconfiguration 99

Inserting new functionality is not a trivial matter however. To insert a task into the work-

flow, one must consider four variations. If that task is a composite task, there are four

further variations. When considering the insertion of operators, the correctness of the

workflow is only maintained correctly if a flow divergence operator (i.e. a Flow Split,

Flow Junction, Strict Preference or Random Choice) is accompanied by an appropriate

join operator. This means that for each item or set of workflow items to be inserted have

a single incoming control flow point and a single outgoing control flow point.

Deleting workflow items works on a similar principle. The workflow correctness cannot

be compromised by removing a divergence operator whilst leaving its related convergence

operator. As such, either the entire construct must be deleted or it must not. Therefore, to

reuse components inside the workflow, one must first insert a copy of each required item

elsewhere in the workflow and construct the new control flow, before then deleting the

existing operator.

Blocking, Fail and Abort provide means to control how the workflow is executing, rather

than just the process flows, thus providing a second mechanism for workflow control.

Each of the reconfiguration functions has been described in three ways:

1. How the reconfiguration function is invoked within a policy;

2. The formal construction of the reconfiguration function;

3. The graph transformation rule to illustrate the function’s effects and to facilitate the

combination of multiple functions.

Through these reconfiguration functions, a workflow can be constructed purely from an

empty state if required. However, and more likely, they can be used to provide powerful

modifications to the executing workflow instance without having to undergo changes to

the workflow itself or the workflow management system.

Chapter 4: Workflow Reconfiguration 100

We proceed in the next chapter to formalize these reconfiguration functions using the

Sensoria Reference Modelling Language.

Chapter 5

From StPowla Processes to

SRML Models

All he’d wanted were the same answers the rest of us want. Where did I come from?

Where am I going? How long have I got? (Blade Runner).

5.1 Introduction

In Chapter 3 we introduced StPowla as a combination of workflows, policies and Ser-

vice Oriented Architecture (SOA). In Chapter 4, we presented a set of reconfiguration

functions that could be used in policies to affect the structure of the executing workflow

instance. In this chapter, we provide more substance to the relationship between the busi-

ness domain (i.e. the combination of workflows and policies) and the technical domain

(i.e. Services). We do this through providing an encoding from StPowla processes to

SRML models [1, 29].

Service Oriented Computing (SOC) is a paradigm for developing software systems as the

101

Chapter 5: From StPowla Processes to SRML Models 102

composition of a number of services. Services are loosely coupled entities that can be

dynamically published, discovered and invoked over a network. A service is an abstract

resource whose invocation triggers a possibly interactive activity (i.e. a session) and that

provides some functionality meaningful from the perspective of the business logic [49].

A SOA allows services with heterogeneous implementations to interact relying on the

same middleware infrastructure. Exposing software in this way means that applications

may outsource some functionalities and be dynamically assembled, leading to massively

distributed, interoperable and evolvable systems.

The engineering of service oriented systems presents novel challenges, mostly due to this

dynamicity [100]. In this chapter we use SRML models, which focus on the modelling

of orchestrations. An orchestration is the description of the executable pattern of service

invocations/interactions to follow in order to achieve a business goal.

Put simply, SRML allows us to understand the behaviour of the system that implements

StPowla. The pattern of execution, i.e. the orchestration, is shown through a series of

messages, or transitions. These transitions demonstrate the system state changes and thus

the order of execution of the resulting effects.

In reality, we need to address both the business perspective in which StPowla operates,

and the technical perspective in which SRML operates. Both have their own challenges,

as we have seen with StPowla already. We must also address the relationship between

the two perspectives. In the light of this, we discuss the relationship between the two

modelling languages for service oriented systems developed in the context of Sensoria.

SRML is a high-level modelling language for SOAs whose goal is “to provide a set

of primitives that is expressive enough to model applications in the service-oriented

paradigm and simple enough to be formalised” [29]. SRML aims to represent the var-

ious foundational aspects of SOC (e.g. service composition, dynamic reconfiguration,

service level agreement, etc.) within one integrated formal framework. A declarative

semantics has been provided in [2, 58] that maps SRML to mathematical domains that

Chapter 5: From StPowla Processes to SRML Models 103

make precise the meaning of the different constructs made available in SRML. In partic-

ular, [2] provides a formal computational model for SRML which is being mapped into a

logic adapted from µUCTL, a formalism being developed within Sensoria for supporting

qualitative analysis [34].

We borrow the description of SRML from one of its founding authors:

SRML is a modelling language for service-oriented systems developed by the

IST-FET-GC2 Integrated Project SENSORIA. SRML operates at the higher

levels of abstraction of business modelling, i.e. it provides a number of

semantic modelling primitives that are independent of the languages and

platforms in which services are programmed and executed. In particular,

SRML abstracts from the typical mechanisms made available by service-

oriented middleware such as sessions and event/message correlation, as well

as the brokers that are responsible for the discovery and binding of services.

A formal computation and coordination model was developed for SRML over

which qualitative and quantitative analysis techniques were defined using the

UMC model checker and the PEPA stochastic analyser. An algebraic se-

mantics was also developed for the run-time discovery, selection and binding

mechanisms. Finally, methodological aspects of engineering business ser-

vices and activities were investigated, which were supported through exten-

sions of use-case and message-sequence diagrams and tested over a number

of case studies.1

One can say that SRML is complete in its expressive power with respect to the systems we

intend to model. While expressivity is clearly an issue to computer scientists, usability

is the more important factor for business analysts. StPowla addresses usability partly

in making use of graphical notations and more crucially in being modular in that the

basic workflow and the policies capturing variability are kept separate while SRML is
1http://www.cs.le.ac.uk/srml/

Chapter 5: From StPowla Processes to SRML Models 104

essentially flat in that it merges both into the same description.

The encoding of StPowla into SRML on the one hand provides a formal framework to

StPowla. StPowla workflows can be then represented as SRML models and can either

be analysed alone or as part of more complex modules, where they are composed with

other SRML models with heterogeneous implementations (e.g. SRML models extracted

from existing BPEL processes [24]).

A second reason for the encoding is providing a higher layer to the modelling of orches-

trations in SRML that includes a process-based approach to the definition of a workflow, a

separate view of policies, that had not been yet considered in SRML, and the inter-relation

between workflow and policies.

Having already provided a substantial introduction to StPowla in this thesis, we proceed

directly to an introduction to SRML. We then provide an encoding from StPowla notation

to SRML models. Following this, we incorporate policies and significantly the reconfig-

uration functions in order to provide an advanced encoding to SRML. In the following

chapter, we provide a case study for StPowla and include the methodology for encoding

it to SRML models.

5.2 SRML Foundational Concepts

In SRML composite services are modelled through modules. A module declares one

or more components (that are tightly bound and defined at design time), a number of

requires-interfaces that specify services (that need to be provided by external parties), and

(at most) one provides-interface that describes the service that is offered by the module. A

number of wires establish interaction protocols among the components and between the

components and the external interfaces. Figure 5.1 shows the SRML module Procure-

mentService which includes one provides-interface CR (i.e. the interface of the service

Chapter 5: From StPowla Processes to SRML Models 105

provided to the customer), one requires-interface (i.e. the interface of the service that we

will discover at run-time) and two components: BP and PI orchestrate the interactions

among the parties.

PROCUREMENTSERVICE

PI:
PolicyInterface

BP:
BusinessProcess

PB

BO CR:
 customer

OP:
orderProcessorCB

SLA

Figure 5.1: The structure of a SRML module for the procurement service example

In layman’s terms, CR shows the system offers a service to an external consumer. OP

shows that this ProcurementService module requires use of an external service, which

it refers to as OP. BP and PI are internal programs (perhaps services themselves) that

co-ordinate this module. The former manages the execution of the core process and the

latter manages variability aspects.

The internal nodes of a SRML module can reside at three different layers: top layer,

service oriented layer and bottom layer. These layers are architectural abstractions that

reflect different levels of organisation and change. Each layer uses the layer underneath.

The top layer uses the service-oriented layer to achieve a business goal. For example, an

application could be designed for the same organisation that intends to use it and not for

being published as a service. These applications are known as activities. The creation

of an activity instance is triggered by a node that belongs to the top layer and not by a

provides-interface.

The service oriented layer uses the bottom layer which typically includes entities which

are persistent as far as the life cycle of the activities is concerned, and can be shared by

multiple instances of the same activity (e.g. a database shared by all the instances of a

Chapter 5: From StPowla Processes to SRML Models 106

service).

Here we focus on SRML modules where nodes reside only at the service-oriented layer.

This simplification is done without loss of generality since it does not have any influence

on the encoding. In fact, StPowla does not make any distinction about the type of en-

tity that performs a task (e.g. dynamically discovered service vs persistent resource). The

interested reader can refer to [11] for more details on the layered structure of SRML mod-

ules.

Components, external interfaces, wires and interfaces of the different layers are specified

in terms of Business Roles, Business Protocols, Interaction Protocols and Layer Protocols

respectively. The specifications define the type of the nodes. Each specification provides

a slightly different style of behavioural description. A business role defines an execution

pattern involving the interactions that it declares in its signature, what we call an orches-

tration. Business protocols provide a set of properties that abstracts from details of the

executable process implemented by the orchestration (e.g. the local state) and describe

the behaviour that can be expected of the service (in case of provides-interface) or specify

the behaviour that is expected (in the case of requires-interface) of the external party.

The interaction protocols define a collection of properties that establish how the inter-

actions are coordinated, which may include routing events or transforming sent data to

the format expected by the receiver. However, each language has been captured in the

computational model presented in [2], which defines the activity of a configuration of

SRML components in terms of transition systems where transitions represent the send-

ing, receiving and processing of events by the entities involved in the business activity.

The logic UCT L [34] is being used to reason about such transition systems. The aim is to

provide (1) a notion of correctness for service modules (i.e. the properties of a provides-

interface are entailed by the body of a module, assuming the properties described in

the requires/uses-interfaces), (2) a way of formalising the matching of provides/requires-

interfaces, and (3) a means for validation of activity and service design.

Chapter 5: From StPowla Processes to SRML Models 107

In this chapter we provide an encoding to derive, from a business process specified in

StPowla, an SRML component that we call BP, of type BusinessProcess and a second

component PI, of type PolicyInterface that is connected to BP and represents the interface

through which it is possible to trigger policies that modify the control flow. PI supports

the set of interactions used to trigger a workflow modification in the component BP.

Figure 5.1 illustrates the structure of the SRML module representing the workflow and

policies in the procurement example described earlier in this section.

Components are instances of business roles specified in terms of (1) the set of supported

interactions, and (2) the way in which the interactions are orchestrated. The next section

provides an overview of business roles. The overview will not include the other types of

SRML specification as they are not required for the encoding.

5.2.1 Transitions

In the mapping of StPowla to SRML, we are concerned with the orchestration and to see

how a StPowla workflow and set of policies interact from the perspective of SRML. We

are mainly interested in transitions - the interactions between components that implement

the required functionality of the workflow and policies.

A transition can be defined at different levels: (1) at the module level, giving a high level

view of the workflow execution; and (2) at the inter-component level. The general syntax

is as follows:

transition ...

triggeredBy trigger

guardedBy guard

effects effects

In the above transition, we are essentially defining a state change of the system using

Chapter 5: From StPowla Processes to SRML Models 108

an ECA-style rule. The triggering event is defined in the triggeredBy clause. There

could be multiple triggers, composed using the ∨ symbol (noting that each trigger can

independently effect the transition). The triggers do not imply that either an event has

happened, but that the system has enabled signals to indicate that those events may now

occur.

The guardedBy clause is the condition that must be satisfied for the transition to occur.

The effects clause defines what should happen as a result of the transition being execution.

There could be one effect or a set of effects. Where two or more triggers are present, the

symbol ⊃ joins the effects to the trigger. Where the effects syntax a ⊃ b occurs, this

means that when trigger a occurs during the execution, effect b happens. Effect b could

be a composition of effects c and d, which are joined through the symbol SRML (i.e. the

full syntax would be a ⊃ c ∧ d).

In the transition, it is possible for us to define effects based on the trigger. Although in this

example there are two triggers, we have defined two separate sets of effects with one for

each trigger. The symbol ⊃ joins the effects to the trigger, whereas the symbol ∧, which

starts a new line of effects and its own a ⊃ b syntax, separates the two sets of effects.

Therefore if trigger a led to effect b, and effect e led to effect f, we could encode that in

the same transition as follows:

transition ...

triggeredBy a ∨ b

guardedBy ...

effects

a ⊃ b

∧ e ⊃ f

Chapter 5: From StPowla Processes to SRML Models 109

5.2.2 Business Roles: the Interactions

In a SRML module each component, including the provides-interfaces and requires-

interfaces where they exist, send and receive messages to one another as part of the or-

chestration. The component that we focus on at any one time is referred to as the party

and the other component that it is interacting with as the co-party.

SRML supports asynchronous two-way conversational interactions: s&r denotes interac-

tions that are initiated by the co-party, which expects a reply, r&s denotes interactions

that are initiated by the party, which expects a reply from its co-party. SRML supports

also asynchronous one-way and synchronous interactions that are not discussed here as

they are not required for this work.

Having understood the conversational interactions, we can now specify a set of inter-

actions supported by PolicyInterface, with each interaction corresponding to one of the

StPowla functions in Table 4.1. The business role BusinessProcess supports the com-

plementary interactions (i.e. r&s instead of s&r) plus other interactions that occur with

the external parties. Each interaction can have ֠ -parameters for transmitting data when

the interaction is initiated and � -parameters for carrying a reply. The index i represents

a key-parameter that allows us to handle occurrences of multiple interactions of the same

type (as in SRML every interaction event must occur at most once). In this case, we allow

PI to trigger more instances of policy functions of the same type.

5.2.3 Business Roles: the Orchestration

The way the declared interactions are orchestrated is specified through a set of variables

that provide an abstract view of the state of the component, and a set of transitions that

model the way the component interacts with its co-parties. For instance, the local state of

the orchestrator is defined as follows:

Chapter 5: From StPowla Processes to SRML Models 110

BUSINESS ROLE PolicyInterface is

INTERACTIONS

s&r delete[i:natural]
֠ task:taskId

s&r insert[i:natural]
֠ task:taskId

newTask:taskId

c:condition

s&r block[i:natural]
֠ task:taskId

c:condition

s&r fail[i:natural]
֠ task:taskId

s&r abort[i:natural]
֠ task:taskId

local

start[root],start[x],start[ro],...:boolean, ...

state[root],state[x],state[ro],...:[toStart,running,exited]

A module can define an initialisation condition for the each component. For example,

the module ProcurementService may define the following initial state for the component

CR:

start[root]=true

∧ start[x]=start[ro]=...=false

∧ state[root]=state[x]=state[ro]=...=toStart ∧ ...

Similarly, a termination condition may specify the situations in which the component has

terminated any activity. The behaviour of components is described by transition rules.

Each transition has a name and a number of other features:

transition policyHandlerExample

triggeredBy samplePolicy֠ [i]

guardedBy state[samplePolicy֠ [i].task] = toStart

Chapter 5: From StPowla Processes to SRML Models 111

effects policy[samplePolicy֠ [i].task]’ ∧

sends samplePolicy� [i]

triggeredBy is a condition, typically the occurrence of a receive-event or a state condi-

tion, which triggers the execution of the transition. In the example we engage the

policyHandlerExample transition when we receive the initiation of the interaction

samplePolicy (i.e. samplePolicy֠ [i]).

guardedBy is a condition that identifies the states in which the transition can take place.

For instance, the policyHandlerExample transitions should only be taken when the

involved task is in state toS tart (i.e. is not in execution and it has not been exe-

cuted yet). The involved task is identified by the parameter task of the interaction

samplePolicy (i.e. samplePolicy֠ [i].task).

effects concern changes to the local state. We use var′ to denote the value the state

variable var has after the transition.

sends is a sentence that describes the events that are sent and the values taken

by their parameters. In the example we invoke the samplePolicy reply event

(i.e. samplePolicy� [i]) to notify of the correct management of the policy.

5.2.4 Constraints for Service Level Agreement in a SRML Module

Although not important to this work, we also briefly discuss the Service Level Agree-

ment aspect of SRML modules, to go alongside the same concept from StPowla (see

Section 3.6).

SRML offers primitives for modelling the dynamic aspects concerned with session man-

agement and service level agreement, which together we call configuration policies. The

external configuration policy concerns the constraints that the process of discovery, nego-

tiation and binding must satisfy to establish service level agreements (SLA) with service

Chapter 5: From StPowla Processes to SRML Models 112

providers. The external configuration policy models an orthogonal aspect with respect to

the orchestration. Specifically, it defines a set of non-functional properties to be consid-

ered when, in a specific point of the orchestration process, the run-time discovery of an

external service for outsourcing the execution of a specific task is required.

SRML uses an algebraic approach developed in [81] for constraint satisfaction and opti-

mization. The following example uses a constraint system where the degree of satisfaction

has fuzzy values, i.e. it takes values in the interval [0, 1].

EXTERNAL POLICY

SLA VARIABLES

OP.LOCATION, CR.LOCATION

CONSTRAINTS

Closeness is <{OP.LOCATION, CR.LOCATION},def2> s.t.

if distance(OP.LOCATION, CR.LOCATION) < 50 then def2(n,m)=1,

otherwise def2(n,m)=500/n

In order to define the constraints that we wish to apply to the module ProcurementSer-

vice, we use the SLA variables OP.LOCATION and CR.LOCATION which are the loca-

tions of the order processor and customer, respectively. We define only one constraint

Closeness, which minimises the distance between the customer CR and the order pro-

cessor OP. The best degrees of satisfaction are when the distance is less than 50 miles.

Otherwise they are inversely proportional to the distance. The function distance returns

the distance between two locations.

For each potential order processor (i.e. the service, among the published ones, whose

provides-interface matches with OP, of type OrderProcessor), the set of constraints has

to be solved. The solution assigns a degree of satisfaction to each possible tuple of values

for the SLA variables. Negotiation in this framework consists in finding an assignment

that maximizes the degree of satisfaction. Hence, the outcome of the negotiation between

Chapter 5: From StPowla Processes to SRML Models 113

ProcurementService and the potential partner is any tuple that maximizes the degree of

satisfaction. Selection then picks a partner with a service level agreement that offers the

best degree of satisfaction.

5.3 Basic Control Flow Encoding

In this section we present an encoding from the control constructs (i.e. notation operators)

of StPowla to SRML orchestrations. Our focus is on the control constructs and we ab-

stract from the interactions of the service and from the semantics of the simple activities

of the workflow tasks.

StPowla represents a business process as the composition of a number of tasks, either

simple (e.g. interactions with services) or complex (e.g. coordinating other tasks by ex-

ecuting them in sequence, parallel, etc.). In SRML we associate an identifier, of type

taskId, to any task. We denote with T the set of all the task indexes in the workflow

schedule.

For each task identifier x we define the following local variables, used to handle the con-

trol flow and coordinate the execution of the tasks:

• start[x] is a boolean variable that, when true, triggers the execution of x;

• done[x] is a boolean variable that signals the successful termination of x and trig-

gers the continuation of the workflow schedule;

• f ail[x] is a boolean variable that signals the termination with failure of x and trig-

gers the failure handler.

In general, the next activity in the control flow is executed when the previous one com-

pletes successfully. In case of task failure the output control flow follows a pre-defined

path specific to the failure of the task. If such a path does not exist, and no other failure

Chapter 5: From StPowla Processes to SRML Models 114

handler has been defined, the workflow continues as normal. We leave the specification

of the failure handling mechanisms in SRML as a future work.

The Strict Preference and Random Choice operators, that try a number of alternative tasks

until one terminates with success, handle the failure signal directly, within the workflow.

The scope construct can be extended in the future to support failure handling, as discussed

later.

We introduce in section 5.4 a set of transitions, as a part of the orchestration of BP that

models the policy handler. The policy handler has the responsibility to enact the reconfig-

urations of the workflow control flow specified by the policies triggered by PI. The policy

handler blocks the normal flow by setting the variable policy[x] = true, where x is the

identifier of the first task involved in the modification. The variable policy[x] is a guard to

the execution of x. We will describe the policy handler more later in this chapter, by now

it is important to know that when a policy function has to be executed on a task, the task

has to be blocked. It is responsibility of the policy handler to reset the flow of execution.

Some policies can be applied only on running processes (e.g. abort) and some others only

on tasks that have not started yet (e.g. delete). We define a local variable state[x] for every

task identifier x which identifies the state of the execution of the transition associated to x

by taking one of the following values: toStart (i.e. the execution of the task has not started

yet), running (i.e. the task is in execution) and exited (i.e. x has terminated).

The initialisation conditions for the module set, for each task identifier x,

state[x] =toStart, see for example the initialisation condition for ProcurementService

presented in Section 5.2.2. The state variable state[x] is be used to ensure that policies

act on a task in the correct state of execution (i.e. the deletion of task x can be performed

only if state[x] =toStart).

We consider the simple tasks as black boxes: we are not interested in the type of activity

that they perform but only on the fact that a task, for example task x, is activated by

Chapter 5: From StPowla Processes to SRML Models 115

start[x], signals its termination along either done[x] or f ailed[x] and notifies its state

along state[x].

The execution of the workflow is started by a special transition root that sets start[x] =true

where x is the first task in the workflow schedule. The local variables are initialised as

follows: ∀i ∈ T \ root, start[i] = f alse ∧ start[root] =true, ∀i ∈ T, done[i] = f ailed[i] =

policy[i] =false and ∀i ∈ T, state[i] =toStart.

It follows the encoding of the workflow template start; P; end where P is associated to

the task identifier x:

transition root

triggeredBy start[root] ∨ done[x]

guardedBy ¬ policy[root]

effects

start[root]⊃ ¬ start[root]’ ∧ state[root]’=running ∧ start[x]’

∧ done[x] ⊃ ¬ done[x]’ ∧ done[root]’ ∧ state[root]’=exited

The guard of transition root ensures the execution of the transition only if no policy has

been triggered on task root (i.e. policy[root] is false). According to the trigger, root is

executed twice:

1. at the beginning of the workflow (recall that the initialisation condition of Procure-

mentService includes the assignment start[root] = true). The transition in this

case has the following effects: (1) disabling the the triggering condition of root

(i.e. start[root] is set to f alse), (2) setting the state of task root to running and (3)

triggering the transition for task x by setting start[x] to true.

2. when task x terminates (i.e. done[x] = true). The transition in this case has the

following effects: (1) disabling the termination signal for x is disabled (i.e. done[x]

is set to f alse), (2) enabling the termination signal for root i, and (3) setting the

state variable for root to exited.

Chapter 5: From StPowla Processes to SRML Models 116

5.3.1 Sequence

The sequence operator P1; P2 first executes P1 and, after the successful termination of P1,

executes P2. We remark that failures are not handled in this thesis and will be addressed

in the future.

The encoding of the sequence construct in SRML is as follows. The sequence is encoded

in the following SRML transition, with task identifier x, which triggers the execution of

the first task, with task identifier p1, then collects the termination signal from p1 and

triggers the execution of the second subprocess, with task identifier p2:

transition X

triggeredBy start[x] ∨ done[p1] ∨ done[p2]

guardedBy ¬ policy[x]

effects

start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[p1]’

∧ done[p1] ⊃ ¬ done[p1]’ ∧ start[p2]’

∧ done[p2] ⊃ ¬ done[p2]’ ∧ done[x]’ ∧ state[x]’=exited

Transition X is executed three times:

1. when start[x] is true. The transition in this case has the following effects: (1) dis-

abling the triggering condition start[x], (2) changing the state of task x to running

and (3) enabling the triggering condition start[p1].

2. when done[p1] is true (i.e. after p1 has been executed). The transition in this case

has the following effects: (1) disabling the termination signal p1 and (2) enabling

the triggering condition start[p2].

3. when done[p2] is true. The transition in this case has the following effects: (1)

disabling the termination signal for p2, (2) enabling the termination signal for x

and (3) setting the state of task x to exited.

Chapter 5: From StPowla Processes to SRML Models 117

5.3.2 Flow Junction and Flow Merge (XOR)

The Flow Junction and Flow Merge operator λ?P1 : P2 consists of the combination of

the Flow Junction, that diverts the control flow down one of two branches P1 and P2,

represented by the task identifiers p1 and p2, respectively, according to a condition λ, and

the Flow Merge of a number of flows where synchronisation is not an issue. The Flow

Junction and Flow Merge are encoded into the following SRML transition:

transition X

triggeredBy start[x] ∨ done[p1] ∨ done[p2]

guardedBy ¬ policy[x]

effects

start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running

∧ (λ ⊃ start[p1]’) ∧ (¬ λ ⊃ start[p2]’)

∧ done[p1] ⊃ ¬ done[p1]’ ∧ done[x]’ ∧ state[x]’=exited

∧ done[p2] ⊃ ¬ done[p2]’ ∧ done[x]’ ∧ state[x]’=exited

Transition X is executed twice:

1. when start[x] is true. The transition in this case has the following effects: (1)

disabling triggering condition start[x], (2) setting the state of x to running and (3)

triggering either p1 or p2 depending on the condition λ.

2. when either done[p1] or done[p1] is true (either p1 or p2 was executed). The tran-

sition in this case has the following effects: (1) disabling the termination signal for

p1 or p2, (2) enabling the termination signal of x and (3) setting the state variable

of x to exited.

Chapter 5: From StPowla Processes to SRML Models 118

5.3.3 Flow Split and Conditional Merge (AND)

The Flow Split and Conditional Merge operator FJ(m, {P1,B1}, . . . , {Pn,Bn}) consists of

the combination of the Flow Split, that splits the control flow over many branches, and

the Conditional Merge, that synchronises two or more flows into one. The value of m,

that is statically determined, represents the minimum number of branches that have to

be synchronised. Furthermore, any branch is associated to a boolean Bi that determines

whether the i − th branch is mandatory in the synchronisation.

The encoding is as follows. Let S be the set, with cardinality n, of the task indexes

associated to the branches of the Split/Merge. Let the identifiers for the subtasks of x to

range over p1, . . . , pn. Let N be the set of indexes of the necessary tasks and m ∈ N be the

minimum number of branches that have to be synchronised. We assume that 0 ≤ m ≤ |N |.

The complex join is encoded in the following SRML transition, where Kcomb is the set

of (m − |N|) − subsets of S \ N.

transition X

triggeredBy start[x] ∨ (∧i∈Ndone[pi]∧(∨K∈Kcomb(∧k∈Kdone[pj])))

guardedBy ¬ policy[x]

effects

start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧i∈[1,...,n] start[pi]’

∧ ¬ start[x] ⊃ done[x]’ ∧ state[x]’=exited ∧i:[1..n](¬ done[pi]’)

The transition above is parametric with respect to N and Kcomb in order to model the

general case. In a real workflow schedule the general construct would be instantiated (at

design-time) and the parameters in the conjuction/disjunctions would disappear (e.g. if

N = {1, 2} the term ∧i∈Ndone[pi] becomes done[p1] ∧ done[p2].

Transition X is executed twice:

1. when start[x] is true. The transition in this case has the following effects: (1)

disabling the triggering condition start[x], (2) setting the state of task x to running

Chapter 5: From StPowla Processes to SRML Models 119

and (3) enabling the triggering condition for each sub-task i by setting start[i] to

true.

2. in case of successful termination of all the necessary subtasks (i.e. ∧i∈Ndone[pi])

and of a number of tasks greater or equal to m (i.e. ∨K∈Kcomb(∧k∈Kdone[p j])). The

transition in this case has the following effects: (1) enabling the termination signal

for x, (2) setting the state of x to exited and (3) disabling the successful termination

of all the subtasks.

5.3.4 Strict Preference

The strict preference S P(P1, . . . , Pn) attempts the tasks P1, . . . , Pn one by one, in a specific

order, until one completes successfully. In this case, with no loss of generality we consider

the tasks ordered by increasing index numbers.

The Strict Preference is encoded in the following SRML transition:

transition X

triggeredBy start[x] ∨i:[1..n](done[pi] ∨ failed[pi])

guardedBy ¬ policy[x]

effects

start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[p1]’

∧i:[1..n−1]failed[pi] ⊃ ¬ failed[pi]’ ∧ start[p(i+1)]’

∧ failed[pn] ⊃ ¬ failed[pn]’ ∧ failed[x]’ ∧ state[x]’=exited

∧ ∨i:[1..n]done[pi] ⊃ done[x]’ ∧ state[x]’=exited ∧i:[1..n]¬ done[pi]’

Transition X is executed a number of times in the following cases:

1. when the task x is triggered. The transition in this case has the following effects:

(1) disabling the triggering condition start[x], (2) setting the state of x to running

and (3) triggering the first sub-task p1 of x.

Chapter 5: From StPowla Processes to SRML Models 120

2. when any of the tasks pi terminates with failure (f ailed[pi] = true) or success

(done[pi] = true):

• If the task failed (i.e. f ailed[pi] = true) and it was not the last task pn, then

the transition has the following effects: (1) disabling the termination variable

of pi and (2) enabling the next task by setting start[p(i + 1)] to true.

• If the last task failed (f ailed[pn] = true) then the transition has the following

effects: (1) disabling the signal of failed termination of pn, (2) enabling the

signal f ailed[x] of failed termination for x and (3) setting the state of x to

exited.

• If any of the sub-tasks terminated successfully (done[pi] = true) then the tran-

sition has the following effects: (1) enabling the signal of successful termina-

tion for x, (2) setting the state of x to exited and (3) disabling the successful

terminations of all the sub-tasks.

5.3.5 Random Choice

The random choice RC(P1, . . . , Pn) attempts the tasks P1, . . . , Pn simultaneously and com-

pletes when one completes successfully. The random choice is encoded in the following

SRML transition:

transition X

triggeredBy start[x] ∨i:[1..n](done[pi])∨ (∧i:[1..n](failed[pi]))

guardedBy ¬ policy[x]

effects

start[x] ⊃ ¬ start[x]’ ∧ state[x]=running ∧i:[1..n]start[pi]’

∧ (∧i:[1..n]failed[pi]) ⊃ failed[x]’

∧ state[x]’=exited ∧i:[1..n]¬ failed[pi]’

∧ (∨i:[1..n]done[pi]) ⊃ done[x]’ ∧ state[x]’=exited

∧i:[1..n](¬ done[pi]’ ∧ ¬ failed[pi]’)

Chapter 5: From StPowla Processes to SRML Models 121

Transition X is executed a number of times, in the following cases:

1. when the task x is triggered. The transition in this case has the following effects:

(1) disabling the triggering condition start[x], (2) setting the state variable of x to

running and (3) enabling the triggering condition of all the sub-tasks.

2. when any of the tasks pi terminates with success (i.e. done[pi] = true). The tran-

sition in this case has the following effects: (1) enabling the successful termination

of x, (2) setting the state of x to exited and (3) disabling the successful and faulty

terminations for all the sub-processes.

3. when all the sub-tasks pi terminates with failure (i.e. f ailed[pi] = true). The tran-

sition in this case has the following effects: (1) enabling the faulty termination of

x, (2) setting the state of x to exited and (3) disabling the faulty terminations for all

the sub-processes.

5.3.6 Scope

The scope construct Scope(P), where P is associated to the task identifier y behaves simi-

larly to the root process.

Within larger business processes it often makes sense to group parts of the process to-

gether as these are controlled by one division in the company or the tasks are more in-

trinsically linked together. We represented scopes separately, even though at the moment

little is done with them. The scope construct will in the future be extended to include

notions of compensation and fault handling (that is they will form a way to express long

running transactions), however this aspect is beyond the scope of this thesis. An idea

is to support the mechanism of fault handling by taking into account the semantics given

Chapter 5: From StPowla Processes to SRML Models 122

in [15] through an extension of the asynchronous π− calculus. The intuition is to associate

at design time a scope with two processes: a compensation process and a fault handler.

The compensation process can be triggered only after the successful completion of the

activity of the scope, in order to compensate the effects of the scope. The failure han-

dler is triggered in case of failure during the execution of the scope and include (among

other activities that depend on the specific process that is being modelled) the triggering

of the compensations of all the scopes, enclosed in the failing scope, that have already

terminated successfully.

The Scope operator is encoded in the following SRML transition:

transition X

triggeredBy start[x] ∨ done[y]

guardedBy ¬ policy[x]

effects

start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[y]’

∧ done[y] ⊃ ¬ done[y]’ ∧ done[x]’ ∧ state[x]’=exited

Transition X is executed twice:

1. when the triggering condition start[x] is enabled. The transition in this case has

the following effects: (1) disabling the triggering condition start[x], (2) setting the

state of task x to running and (3) enabling the triggering condition for the sub-task

y.

2. when y terminates with success (i.e. done[y] = true). The transition in this case has

the following effects: (1) disabling the successful termination of y, (2) enabling the

signal of successful termination for x and (3) setting the state of x to exited.

Chapter 5: From StPowla Processes to SRML Models 123

5.4 Advanced Control Flow Encoding

In this section, we extend on the basic control flow encoding of StPowla notation oper-

ators by considering also the use of policy functions. We consider two types of policies:

refinement policies and reconfiguration policies.

5.4.1 Refinement Policies

Recall that in StPowla refinement policies are those requesting the req(action,

[args], [SLR]) as action. The element that requires encoding in SRML is the Ser-

vice Level Requirements list. This list contains expressions that specify acceptable values

for a domain specific attribute: e.g. [cup temperature = warm] which specifies that

the chosen service (here a beverage service) should offer warm cups.

In SRML we have seen that the EXTERNAL POLICY element allows us to express such

issues. The expression language in SRML is much more powerful than what StPowla of-

fers currently: in SRML complex behaviour such as that seen in the earlier example can

be expressed. The example did show a case where complete satisfaction was achieved by

a delivery distance of less than 50 miles, and otherwise satisfaction did decrease in line

with distance. In StPowla currently only simpler relations such as less, equal or more can

be expressed but there will be ongoing work in enhancing the mechanisms in StPowla.

In general the mapping from StPowla to SRML involves creating an external policy for

SLRs where for each StPowla attribute an SLAVARIABLE is created in SRML. The rela-

tion and values are then captured as a CONSTRAINT in the SRML policy rule.

Let us consider, for example, the following StPowla policy for the procurement service:

CheapService

appliesTo processOrder

when on_task_entry

Chapter 5: From StPowla Processes to SRML Models 124

req(mail,[],[ServiceCost<10])

The policy CheapService ensures that the cost of the transaction with the service for pro-

cessing the order is less then £10. In SRML we can express CheapService as a constraint

that applies to the requires-interface OP of the module ProcurementService (see Fig-

ure 5.1). Since StPowla, at the moment, only allows to express sharp requirements, we

use a constraint system where the degree of satisfaction has boolean values (i.e. {0, 1}).

EXTERNAL POLICY

SLA VARIABLES

OP.SERVICECOST

CONSTRAINTS

CheapService is <{OP.SERVICECOST},def1> s.t.

if n<10 then def1(n)=1,

otherwise def1(n)=0

The constraint uses the SLA variable OP.SERVICECOST (i.e. the price for enacting a

transaction with the order processor), which assign degree of satisfaction of 1 if the service

costs less then £10 and degree of satisfaction of 0 otherwise. The constraint ensures that

any service which does not ensure a degree of satisfaction of 1 will not be selected.

5.4.2 Reconfiguration Policies

The key aim of this section is to illustrate how policies can influence the control flow and

how this can be modelled in SRML. Thus we discuss the encoding of StPowla policies

into SRML orchestrations. Each interaction is handled, in the orchestration of BP, by one

or more transitions that model the policy handler. We will see in detail such transitions

when discussing the single interactions, in the rest of this section.

A policy related to a task can have an effect (1) on the state prior to the task execution

Chapter 5: From StPowla Processes to SRML Models 125

(i.e. delete, block and insert) or (2) during the execution of a task (i.e. f ail and abort).

The state of a task is notified through the variable state[x]. The policy handler must

check that the task is in the correct state according to the specific policy that has to be

enacted. The policy handler prevents the execution of either (1) the task or (2) the rest of

the task by using the variable policy[x]: the condition ¬policy[x] guards the transition(s)

corresponding to the execution of task. Notice that for most of the control constructs it is

not possible to trigger policies of this second type on atomic tasks whose state changed

directly from toS tart to done.

Delete Task

The deletion of task (i.e. delete(x) in StPowla) skips the execution of x. The policy

manager prevents the execution of x by signaling a policy exception (i.e. policy[x] =

true).

transition policyHandler_delete_1

triggeredBy delete[i]֠

guardedBy state[delete[i]֠ .task] = toStart

effects policy[delete[i]֠ .task]’

Transition policyHandler delete 1 is triggered by the event delete[i]֠ , sent by PI. The

guard ensures that a task can be deleted only if its execution has not started yet (i.e. its state

has value toS tart). The transition has the effect of setting the value of the variable policy

to true. This will prevent the regular execution of the deleted task (recall that the execution

of each task x is guarded by the condition ¬policy[x]). When the triggering condition for

task x becomes true, the transition policyHandler delete 2 is executed instead of the

transition of the deleted task.

transition policyHandler_delete_2

triggeredBy start[x]

Chapter 5: From StPowla Processes to SRML Models 126

guardedBy P_delete[i]֠ ? ∧ delete[i]֠ .task=x

effects ¬ start[x]’ ∧ done[x]’ ∧ state[x]’ = done

sends delete[i]�

The guard of policyHandler delete 2 ensures its execution only if a deletion policy has

been triggered for x. The effects of the transition are: (1) to disable the triggering condi-

tion of x, (2) to notify the correct termination of x (which in fact has not been executed)

and (3) to set the state of x to done. The transition also sends the reply event to the

interaction delete to notify PI of the completed enactment of the reconfiguration policy.

Block Task

The function block(x, p) in StPowla blocks a task until p is true. In SRML the policy

handler prevents x from executing (i.e. policy[x] becomes true) temporarily until p is

true. The policy handler notifies the enactment of the policy to the environment after that

the task has been unblocked.

transition policyHandler_block_1

triggeredBy block[i]֠

guardedBy state[block[i]֠ .task] = toStart

effects policy[block[i]֠ .task]’

Transition policyHandler block 1 is triggered by the event block[i]֠ , sent by PI. The

guard ensures that a task can be deleted only if its execution has not started yet (i.e. its

state has value toStart). The transition has the effect of setting the value of the variable

policy to true. This will prevent the regular execution of the blocked task. When the

condition specified through condition p, which has been communicated by PI, becomes

true then the transition policyHandler block 2 unblocks the task.

Chapter 5: From StPowla Processes to SRML Models 127

transition policyHandler_block_2

triggeredBy block[i]֠ .condition

guardedBy P_block[i]֠

effects ¬ policy[block[i]֠ .task]’

sends block[i]�

Transition policyHandler block 2 is triggered by the condition block[i]֠ .condition and

the guard ensures its execution only the task has previously been blocked. The transition

has the effect of setting the variable policy for the task to which the policy applied to false

so that the task can be executed as soon as its triggering condition becomes true. The

transition also sends the reply event to the interaction block to notify PI of the completed

enactment of the reconfiguration policy.

Insert

The insertion of a task, represented by the function insert(y, x, z) in StPowla, inserts

the task y in sequence or in parallel with respect to x depending by the value of the

boolean variable z. In SRML the insertion is triggered by the interaction insert[i]� with

parameter insert[i]� .task representing the task x, insert[i]� .insertedTask representing

the task y and insert[i]� .condition representing the condition z. We assume that the set

of tasks for which it is possible to insert is determined a priori; in this way we assume

that the SRML encoding has a set of transitions for each possible task, including the task

to possibly insert, that is executed by setting start[y] to true. We introduce in this way a

limitation on the number of task types that we can insert and on the fact that a task can be

inserted only once (we will manage multiple insertions in the future, when we will encode

looping constructs) but we do not provide any limitation on the position of the insertion.

We rely on a function next : taskId → taskId that returns, given a task, the next task to

execute in the workflow. Such a function can be defined by induction on the syntax of

StPowla defined in Chapter 4.

Chapter 5: From StPowla Processes to SRML Models 128

transition policyHandler_insert_1

triggeredBy insert[i]֠

guardedBy state[insert[i]֠ .task]=toStart

effects policy[insert[i]֠ .task]’

The transition policyHandler insert 1 prevents the execution of the task on which the

policy applies (i.e. insert[i]� .task) by setting the its policy variable to true. When the

task on which the policy applies is triggered, policyHandler insert 2 is executed instead

of the regular transition for the task.

transition policyHandler_insert_2

triggeredBy start[x]

guardedBy P_insert[i]֠ ∧ insert[i]֠ .task=x

effects

insert[i]֠ .condition ⊃ ¬ policy[insert[i]֠ .task]’

∧ ¬ insert[i]֠ .condition ⊃ policy[insert[i]֠ .task]’

∧ start[insert[i]֠ .insertedTask]’

The transition policyHandler insert 2 starts the execution of the task on which the policy

applies (in parallel with the inserted task if insert[i]� .condition = true). The transitions

policyHandler insert sequence and policyHandler insert parallel coordinate the exe-

cution of the tasks (the one on which the policy applies and the inserted one) in sequence

or in parallel, according to the condition.

transition policyHandler_insert_sequence

triggeredBy done[x] ∨ done[y]

guardedBy P_insert[i]֠ ∧ insert[i]֠ .condition

∧ (insert[i]֠ .task=x ∨ insert[i]֠ .insertedTask=y)

effects done[x] ⊃ ¬ done[x]’ ∧ start[y]’

∧ done[y] ⊃ ¬ done[y]’ ∧ start[next(x)]’

Chapter 5: From StPowla Processes to SRML Models 129

sends

done[y] ⊃ insert[i]�

transition policyHandler_insert_parallel

triggeredBy done[x] ∧ done[y]

guardedBy P_insert[i]֠ ? ∧ ¬ insert[i]֠ .condition

∧ insert[i]֠ .task=x ∧ insert[i]֠ .insertedTask=y

effects ¬ done[x]’ ∧ ¬ done[y]’ ∧ start[next(block[i]֠ .task)]’

sends insert[i]�

Transitions policyHandler insert sequence and policyHandler insert parallel are sim-

ilar to regular sequence and parallel transitions, but they are guarded by the fact that an

insertion policy with positive/negative condition has been triggered in the past. The ef-

fects are similar to those of a regular sequence/parallel transitions. A reply event for the

interaction insert is sent to notify PI of the completed enactment of the reconfiguration

policy when, in the case of policyHandler insert sequence transition the inserted task

terminates (i.e. done[y] ⊃= true) and in the case of policyHandler insert parallel both

of the parallel tasks terminate.

Fail Task

The failure of a task must occur during the execution of the task (it has no effects other-

wise). The failure can be triggered autonomously, within the task or induced externally

by the execution of the policy fail. We consider here the second case.

transition policyHandler_fail

triggeredBy fail[i]֠

guardedBy state[fail[i]֠ .task]=running

effects policy[i][fail[i]֠ .task]’

Chapter 5: From StPowla Processes to SRML Models 130

∧ state[fail[i]֠ .task]’=failed

sends fail[i]�

Transitions policyHandler f ail is triggered by the event f ail[i]֠ , sent by PI. The guard

ensures that a task can fail only if it is currently in execution (i.e. its state has value run-

ning). The transition has the effect of setting the value of the variable policy to true and the

state of the task to failed (so that the normal flow of execution blocks). A reply event for

the interaction fail is sent to notify PI of the completed enactment of the reconfiguration

policy.

Abort Task

The abortion of a task is similar to a deletion, but it involves a running task. An abort of

a task occurring not during its execution has no effects.

transition policyHandler_abort

triggeredBy abort[i]֠

guardedBy state[abort[i]֠ .task]=running

effects policy[i][abort[i]֠ .task]’

∧ state[abort[i]֠ .task]’=done

sends abort[i]�

Transitions policyHandler abort is triggered by the event abort[i]֠ , sent by PI. The

guard ensures that a task can fail only if it is currently in execution (i.e. its state has

value running). The transition has the effect of setting the value of the variable policy to

true and the state of the task to done (so that the flow of execution can continue normally).

A reply event for the interaction abort is sent to notify PI of the completed enactment of

the reconfiguration policy.

Chapter 5: From StPowla Processes to SRML Models 131

5.4.3 Reconfiguring the Procurement Scenario

The orchestration of the business role BusinessProtocol would consist of the sequence

of the tasks request order (i.e. task ro) and process order (i.e. task po).

transition X

triggeredBy start[x] ∨ done[ro] ∨ done[po]

guardedBy policy[x]

effects

start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[ro]’

∧ done[ro] ⊃ ¬ done[ro]’ ∧ start[po]’

∧ done[po] ⊃ ¬ done[po]’ ∧ done[x]’ ∧ state[x]’=exited

In case of a receive event of type insert[i]� , triggered by the component PI, with pa-

rameter task equal to po, parameter insertedTask equal to gbd (i.e. get deposit), and

the parameter condition equal to true, the policy handler would: (1) block the execu-

tion of ro (preventing in this way ro to trigger its continuation po = next(ro)) by setting

policy[ro] = policy[po] = true, (2) wait for the condition start[ro] = true that is trig-

gered by transition X, (3) since the parameter condition is true, the policy handler would

unblock ro, (4) the transition policyHandler insert sequence would handle the execution

of gd after ro and, finally, trigger po by setting start[po] = true.

5.5 Summary

In this chapter, we have expanded upon the relationship between StPowla and Service

Oriented Architecture by providing an encoding from StPowla processes to SRML mod-

els. The latter is a modelling language for service oriented systems that provides a rich

set of features for modelling almost every aspect of a service oriented application.

The reason for providing this encoding is to clearly define the business process of

Chapter 5: From StPowla Processes to SRML Models 132

StPowla with the orchestration model of services. SRML has clearly defined semantics

and we have presented a methodology for the transposition from StPowla to SRML.

We presented two types of policy: refinement policies which govern how a process is

carried out (including service selection constraints from the SRML perspective and ex-

ecution constraints from the StPowla perspective) and reconfiguration policies which

modify the execution of the workflow by substituting transitions for existing ones, fol-

lowing responses from the Policy Interface component.

In the next chapter, we will present a case study from from a real world situation and apply

StPowla concepts to it. Furthermore, we will include the methodology of the encoding

to SRML as defined in this chapter.

Chapter 6

Case Study

Many ideas grow better when transplanted into another mind than in the one where they

sprang up. (Oliver Wendell Holmes).

6.1 Introduction

In the previous three chapters we have introduced StPowla, its reconfiguration func-

tions and some basic encoding from StPowla to SRML. In this chapter, we apply these

concepts to an industrial case study, provided by the Sensoria project. Firstly, we ex-

amine a given scenario from the telecommunications industry, with a core workflow and

some points of variability. We express all information in StPowla terms and we exam-

ine the consequences of applying the variability rules. Secondly, we encode the given

scenario with StPowla functionality into SRML, to demonstrate the relationship between

StPowla and SRML and ultimately the relationship we see between workflows and Ser-

vice Oriented Architecture.

133

Chapter 6: Case Study 134

6.2 Scenario

The case study is based on a Voice over IP (VoIP) procurement example between a cus-

tomer and a reseller. If viewed at a higher level, it can represent most, if not all, pro-

curement examples. Essentially, a customer makes an order for a VoIP service. The

Order Management system that receives the order first performs some service-level tests

and transmits the results to the customer. If the customer rejects the results, the process

ends. If the customer accepts, the order management system prepares an offer and may

optionally request legal assistance. The contract is then created.

The use case diagram is shown in Figure 6.1, using the notation for use-case diagrams

proposed in [10]. The customized icons represent different types of roles that an actor can

have in a service oriented context (e.g. dynamically discovered services, statically bound

persistent resources, service requester, etc.).

The diagram models a service, provided to a service requester represented by the actor

Customer, which manages the order for a VoIP connection. The service relies on the

persistent resource Legal, which is shared among the different instances of the service,

and the external service Test which is dynamically discovered and selected according to

the customer’s location.

VoIP Procurement

Customer

OrderManagement

Test

Legal

Figure 6.1: VoIP Case Study use-case diagram

Chapter 6: Case Study 135

The original workflow is shown in Figure 6.2. It contains four swimlanes, representing the

four parties (or Actors) that participate in the workflow. Note that each swimline could be

in itself a workflow for the individual actor, but for clarity the entire workflow is listed as

one. For the purpose of this chapter, we will focus on the Order Management swimlane as

it contains the key functionality we wish to examine. It is possible to consider solely this

entity and ignore the Legal, Customer and Test entities, however the global view provides

additional, useful context.

The general process is (1) an order is received, (2) tests are performed and the customer is

requested to accept or reject the results, (3) if accepted, an offer proposal is created with

assistance from a legal entity, (4) the contract is created.

VoIP Activation – 3: Pre-Delivery (Base Workflow)

C
u

st
o

m
e

r
Te

st
Le

ga
l

O
rd

e
r

M
an

ag
e

m
e

n
t

Perform
Service Test

Send Test
Result

Receive Test
Result

Results
Acceptance

Identify Offer
Proposal

Request Legal
Assistance

Prepare
Final SLA

Create a
Contract

Service
Testing

Receive
Request

Prepare
Final SLA

Send SLA

Reject Test
Results

Accept Test
Results

Figure 6.2: Case study workflow

There are two variants to this workflow:

1. If the customer is small and the order value is small, do not perform service tests.

2. If the order value is small, do not use legal assistance to generate the final contract.

From what we can see so far, the workflow given has at least two issues we must consider.

Chapter 6: Case Study 136

First, neither decision point (identified by the diamonds) have tests. In the case of the

decision point in the Customer swimlane, we can assume that the decision (to accept or

reject the test results) is the responsibility of the Customer actor. In the Order Manage-

ment swimlane, again there is no condition and this time there is no clear assumption to

be made. However, on reflecting on the second workflow variant, it seems most likely

that the decision point is not necessary in the core workflow, and that the “Prepare Final

SLA” task (in the Order Management swimlane) does not exist in the core workflow.

The second issue is that the task “Create A Contract” has two incoming control flows.

If writing this in StPowla notation, a Flow Merge would be required before the task

to merge the two control flows into a single flow prior to entering the task. However,

since the above assumption renders one of the control flows non-existent, we can safely

conclude this is no longer of any importance.

Following these assumptions, we refine the workflow to that shown in Figure 6.3. Notice

particularly that the task “Prepare Final SLA” (in the Order Management swimlane) is

inside the workflow model, but not connected to anything, i.e. it is currently redundant.

We maintain it in the workflow to support the second workflow variant.

We now proceed to showing this case study in StPowla and the equivalent encoding in

SRML.

6.3 StPowla Representation

For consistency, we translate the (refined) workflow into StPowla notation in Figure 6.4,

whilst maintaining the swimlanes for familiarity.

Next we add the ontology as follows (tasks not listed for brevity):

Workflow BP is
Invariants

Chapter 6: Case Study 137

VoIP Activation – 3: Pre-Delivery (Refined Workflow)
C

u
st

o
m

e
r

Te
st

Le
ga

l
O

rd
e

r
M

an
ag

e
m

e
n

t

Perform
Service Test

Send Test
Result

Receive Test
Result

Results
Acceptance

Identify Offer
Proposal

Request Legal
Assistance

Prepare
Final SLA

Create a
Contract

Service
Testing

Receive
Request

Prepare
Final SLA

Send SLA

Reject Test
Results

Accept Test
Results

Figure 6.3: Refined case study workflow

LowBusinessValueThreshold: int

LowOrderValueThreshold: int

Actors/Entities
Legal: Actor

Test: Actor

OrderManagement: Actor

Customer: Actor

Attributes
int orderValue

int businessValue

Tasks
...

Scopes
s1: [OrderManagement.PerformServiceTest, ...,

OrderManagement.ResultsAcceptance]

s2: [OrderManagement.RequestLegalAssistance, ...,

Legal.SendSLA]

In addition, Figure 6.5 shows the same workflow with the scopes marked out.

Importantly we note that the workflow has two invariants

LowBusinessValueThreshold and LowOrderValueThreshold. These refer to

the level of spend from a customer for which the customer is thus regarded as a

small customer and the upper value of an order which would be considered as small,

Chapter 6: Case Study 138

VoIP Activation – 3: Pre-Delivery (Refined Workflow)

Customer Test LegalOrder Management

Perform
Service Test

Send Test
Result

Receive Test
Result

Results
Acceptance

Identify Offer
Proposal

Request Legal
Assistance

Prepare Final
SLA

Create a
Contract

Service
Testing

Receive
Request

Prepare
Final SLA

Reject Test
Results

Accept Test
Results

start

end

Send SLA

end

Figure 6.4: Case study StPowla workflow

respectively. How these values are ascertained is not important1. What is important is

that the values are accessible.

Furthermore, on invocation of the workflow, two variables attached to the Customer actor

specifying the customer’s cumulative spend in the last year (businessValue) and the

value of the current order (orderValue). Again, we are not concerned with how these

values are obtained, more that we can reference them during workflow execution.

We translate the given variation rules to StPowla policies as follows:

policy P1 is

appliesTo BP

when s1.started

if Customer.businessValue < LowBusinessValueThreshold

and

Customer.orderValue < LowOrderValueThreshold

1The values could be obtained from an external task (e.g. a service) or passed as a parameter from the
customer who invokes the workflow

Chapter 6: Case Study 139

VoIP Activation – 3: Pre-Delivery (Refined Workflow)

Customer Test LegalOrder Management

Perform
Service Test

Send Test
Result

Receive Test
Result

Results
Acceptance

Identify Offer
Proposal

Request Legal
Assistance

Prepare Final
SLA

Create a
Contract

Service
Testing

Receive
Request

Prepare
Final SLA

Reject Test
Results

Accept Test
Results

start

end

Send SLA

end

s1

s2

Figure 6.5: Case study StPowla workflow with scopes marked

do delete(s1)

policy P2 is

appliesTo BP

when IdentifyOfferProposal.started

if Customer.orderValue < LowOrderValueThreshold

do delete(s2)

and

insert(OrderManagement.PrepareFinalSLA,

OrderManagement.IdentifyOfferProposal,

false)

Policy P1 is straightforward, with the only complication that the use of the Exceptional

Delete allowance is used. Its graph transformation rule is shown in Figure 6.62.
2For clarity, we will consider that in a single case both policies are applicable. Thus the graph transfor-

mation rules have been presented in a way that each can be applied to the output of the former rule, if one
exists. Thus in this first rule, there are references to s2 and PrepareFinalS LA which are not needed. Also,
the workflow instance graph may be defined more than what is required for the rules.

Chapter 6: Case Study 140

s1

…

…

L L’
1P

G G’

LO

s2

…

…

s1

Identify Offer
Proposal

s2

Prepare Final SLA

Create a Contract

start

end

Prepare Final
SLA

Identify Offer
Proposal

…

…

s1

…

…

LO

s2

…

…

s1

Identify Offer
Proposal

s2

Prepare Final SLA

Create a Contract

start

end

Prepare Final
SLA

Identify Offer
Proposal

…

…

Figure 6.6: Policy P1 simply removes scope s1 from the workflow. In this diagram, this
is depicted by the s1 task being removed from the workflow in both the type and instance
graphs. It still remains available though for future reuse.

Policy P2 states that on commencing the IdentifyOfferProposal task, if the order value

could be considered small, then the order management system should not invoke legal

assistance and that they should prepare the final Service Level Agreement themselves

(i.e. remove a scope and insert a task). This is thus a 2-step policy which we identify as

step a and step b. Step a deletes the set of tasks that we do not need anymore. The graph

transformation rule is shown in Figure 6.7. Step b inserts the new task into the workflow

at the given position. Its graph transformation rule is shown in Figure 6.8.

Noting the trigger position of the policy and the initial area of effect, the trigger could

also have been workflow.started or IdentifyOfferProposal.task completed

(for P2). The choice of which trigger to use is down to the author and this can have a

significant effect depending on the existence of other policies. For example, if the trigger

of the P2 was bound to an event from a task in scope s1, it is possible that the scope would

be deleted and the policy never initiated. Whereas instead the required functionality was

to initiate the policy regardless.

If the customer could firstly be identified as a small customer and also the order value is

below the low order threshold, it is clear that both policies would be applied. As a result,

Chapter 6: Case Study 141

''LO

L’ L’’

G’ G’’

2P

'LO

s1

…

…

s2

…

…

s1

Identify Offer
Proposal

s2

Prepare Final SLA

Create a Contract

start

end

Prepare Final
SLA

Identify Offer
Proposal

…

…

s1

…

…

s2 Prepare Final
SLA

Identify Offer
Proposal

…

…

…

…

s1

Identify Offer
Proposal

s2

Prepare Final SLA

Create a Contract

start

end

(a)

Figure 6.7: Policy P2 has two steps and therefore we provide graph transformation rules
for step a and step b. In step a, scope s2 is removed from the workflow similarly to the
policy P1.

''LO

L’’ R

G’’ H

2P
s1

…

…

s2 Prepare Final
SLA

Identify Offer
Proposal

…

…

…

…

s1

Identify Offer
Proposal

s2

Prepare Final SLA

Create a Contract

start

end

(b)

RO

s1

…

…

s2 Prepare Final
SLA

Identify Offer
Proposal

…

…

…

…

s1

Identify Offer
Proposal

s2

Prepare Final SLA

Create a Contract

start

end

Figure 6.8: Step b inserts the PrepareFinalSLA task into the workflow after IdentifyOffer-
Proposal.

both policies are applicable and thus both graph transformation rules are used.

In this section, we have taken the scenario and expressed the workflow and variants in

StPowla terms, i.e. the workflow, ontology, policies and their respective graph transfor-

mation rules. In the next section, we encode the variants in SRML.

Chapter 6: Case Study 142

6.4 Encoding to SRML

In this section we encode the StPowla workflow and policies into SRML, following on

from the presentation of StPowla concepts in Chapter 3, reconfiguration functions in

Chapter 4 and their encoding to SRML in Chapter 5. We present a methodology for

developing services, which involves StPowla and SRML. The discussion on the method-

ology further illustrates the rationale of the work presented in this thesis by discussing the

benefits of a joint usage of SRML, StPowla and the encoding.

Some of the methodological aspects concerning SRML have been discussed in previous

work [10], which proposes a process to arrive at (formal) service models in SRML start-

ing from informal (or semi-formal) specifications in notations that are typically described

in UML. In Figure 6.1 we use the extension of UML use case diagrams presented

in [10] to capture requirements in a service oriented scenario and derive the structure

of SRML models.

From the use case diagram we can determine the services and resources our application

relies on. The definition of the internal structure of the SRML module (i.e. the compo-

nents and wires that define the internal workflow) depends in general on the portfolio of

components already available for reuse within the business organisation. The definition

of a complex internal structure from scratch, deriving from the decomposition of the or-

chestration in a number of coordinated units, can be done, in general, using traditional

techniques for Component Based Development.

SRML offers primitives based on events that allow us to suitably model those scenarios

where process-based modelling could result in over-specification. However, the prim-

itives of SRML are general enough to support process based modelling. For exam-

ple, [14] presents an encoding from the process-base style of modelling of WS-BPEL

to SRML. Another example is the encoding presented in this chapter where StPowla pro-

vides SRML with a means to define, at a higher level of abstraction, a process-based

Chapter 6: Case Study 143

behaviour (i.e. workflow schedule) which is dynamically reconfigured by policies.

6.4.1 Methodology

The methodology presented through the example involves three different languages that

suit the needs of different stages of the modelling process:

Requirements UML Use Case diagrams are used to capture the requirements of the ser-

vice oriented application that has to be developed. The application may involve

a number of related services (i.e. they may share resources and are modelled as a

single business unit). The usage of UML Use Case diagrams provides a human

friendly notation suitable in this phase which involves the intervention of non ex-

perts in the engineering process (e.g. members of the business company commis-

sioning the development of the application). The outcome of this phase is a Use

Case diagram. By using the mapping defined in [10] it is possible to derive, from

the diagram, the structure for a number of SRML modules where the orchestration

and the behavioural specification of the external interfaces is left unspecified.

Business Modelling StPowla is used to perform the modelling, at the business level, of

the orchestration in terms of workflow schedule and reconfiguration policies. This

phase can be performed by experts in business modelling who can benefit by the

level of abstraction provided by StPowla (i.e. modular definition of control-based

process and business policies). The outcome of this phase is a StPowla model of

the business process that, by using the encoding to SRML, can provide each of

the SRML module structures resulting from the previous phase with an the internal

orchestration.

Service Oriented Modelling The SRML modules obtained in the previous phase can be

extended to include the behavioural specifications for the external interfaces, mod-

ified to include other components in the internal structure (for example component

Chapter 6: Case Study 144

extracted from implementations in BPEL [14] or any other language for which an

encoding into SRML has been provided), and analyzed with the formal framework

provided by SRML.

6.4.2 Use Case Driven Example

In this section, we present the encoding of the VoIP case study to SRML. The require-

ments are expressed in Figure 6.1, using the notation for use-case diagrams proposed

in [10]. The customized icons represent different types of roles that an actor can have in a

service oriented context (e.g. dynamically discovered services, statically bound persistent

resources, service requester, etc.).

As mentioned in Section 5.2, SRML distinguishes between the different types of actors

by representing nodes at different layers. The SRML module derived by the diagram

in Figure 6.1 is illustrated in Figure 6.93. The module has one provides-interface CR

of type Customer, one bottom-layer interface LE of type Legal and one requires-

interface TE of type Test. The internal structure of the module is defined according to

Section 5.2: the component BP of type BusinessProcess defines the base workflows for

orchestrating the service, the component PI of type PolicyInterface handles the reconfig-

uration requests.

According to the encoding, the process triggered by the root transition (see Section 5.3)

is represented in SRML by the transition X which executes in sequence the scope s1,

followed by task IdentifyOfferProposal, followed by scope s2 and finally task CreateA-

Contract. For readability purposes, we identify the task IdentifyOfferProposal as t1 and

task CreateAContract as t2.

transition X

3The clock symbol indicates that the related component has an internal configuration policy, which
identifies the triggers of the external service discovery process as well as the initialisation and termination
conditions of the components that instantiate the component-interfaces [30].

Chapter 6: Case Study 145

ORDERMANAGEMENT

BP:
BusinessProcess

intBP

SLA

TE:
Test

intTE
BT CR:

 Customer

LE:
Legal

CB

BL
PI:

PolicyInterface

PB

intPI

Figure 6.9: VoIP Case Study SRML module.

triggeredBy start[x] ∨ done[s1] ∨ done[t1] ∨ done[s2] ∨ done[t2]

guardedBy ¬ policy[x]

effects start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[s1]’

∧ done[s1] ⊃ ¬ done[s1]’ ∧ start[t1]’

∧ done[t1] ⊃ ¬ done[t1]’ ∧ start[s2]’

∧ done[s2] ⊃ ¬ done[s2]’ ∧ start[t2]’

∧ done[t2] ⊃ ¬ done[t2]’ ∧ done[x]’ ∧ state[x]’=exited

Transition X4 is executed when the sequence task is triggered and when any of the sub-

tasks of the sequence terminate. The guard ensures that no policies have been triggered

for x. The description of what happens in each execution is as follows:

First Execution: the state of x is set to running and s1 in the sequence is triggered.

Second Execution: s1 completed successfully and triggers t1.

Third Execution: t1 completed successfully and triggers s2.

Fourth Execution: s2 completed successfully and triggers t2.
4The careful reader will have noticed that transition X contains more than two tasks to be executed in

sequence. Whereas in the previous chapter we only identified a sequence transition as having two tasks,
we can easily include more as shown. For our purposes, it is far easier and clearer to define one transition
containing many tasks in sequence, rather than a set of transitions that coordinate themselves and eventually
two tasks. In this case study, transitions would be created to go from s1 to t1, then from t1 to s2, then from
s2 to t2 then finally the completion of X.

Chapter 6: Case Study 146

Fifth Execution: t2 completed successfully and sequence task x terminates successfully.

Fragments of the transitions scope1 and scope2, which illustrate triggers and guards, are

reported below. The variables y and z represent the root process started within each scope.

transition scope1

triggeredBy start[s1] ∨ done[y]

guardedBy ¬ policy[s1]

...

transition scope2

triggeredBy start[s2] ∨ done[z]

guardedBy ¬ policy[s2]

...

The business role BusinessProcess provides transitions to handle the reconfiguration for

each sub-process. When the customer creates a new instance of the service OrderManag-

ment, the SLA variables concerning the business value of the customer and the order

value are set. Depending on those values, PI will either request to apply P1 and P2, or

not.

In order to apply P1, for instance, PI sends an event delete[s1]֠ ! to BP. The transitions

policyHandler p1 1 and policyHandler p1 2, defined as described in Section 5.4, handle

the request of the component PI to delete the scope s1 (i.e. P1).

transition policyHandler_p1_1

triggeredBy delete[s1]֠

guardedBy state[delete[s1]֠ .task] = toStart

effects policy[delete[s1]֠ .task]’

transition policyHandler_p1_2

Chapter 6: Case Study 147

triggeredBy start[x]

guardedBy P_delete[s1]֠ ∧ delete[s1]֠ .task=s1

effects ¬ start[s1]’ ∧ done[s1]’ ∧ state[s1]’ = done

sends delete[s1]� !

The transition policyHandler p1 1 is triggered by the deletion request, only if scope s1

has not started its execution yet, and sets the variable policy[delete[s1]֠ .task to true.

When the transition x sets start[s1] = true, the transition s1 cannot be triggered because

of the false guard. The transition policyHandler p1 2 is triggered instead.

The effects of policyHandler p1 2 are to set the variables for s1 as if the scope had been

successfully executed (but in fact it has not been executed at all), and to notify PI of

the deletion through the interaction delete[s1]� !. The next transition to be executed is,

again, x which triggers the next process in the sequence (i.e. t1). After t1 has completed,

s2 would be executed under normal circumstances. However, if P2 was applicable, BP is

subject to two further reconfigurations.

For step a of policy P2, the transitions are similar for deleting scope s2:

transition policyHandler_p2_1_1

triggeredBy delete[s2]֠

guardedBy state[delete[s2]֠ .task] = toStart

effects policy[delete[s2]֠ .task]’

transition policyHandler_p2_1_2

triggeredBy start[x]

guardedBy P_delete[s2]֠ ∧ delete[s2]֠ .task=s2

effects ¬ start[s2]’ ∧ done[s2]’ ∧ state[s2]’ = done

sends delete[s2]�

These transitions are essentially the same as those for P1, therefore we do not describe

Chapter 6: Case Study 148

them here. However, after these transitions have been executed, we must also consider

the second part of P2, i.e. inserting t2.

For step b of policy P2, the transition performs an insert as follows:

transition policyHandler_p2_2_1

triggeredBy insert[t1]֠

guardedBy state[insert[t1]֠ .task] = toStart

effects policy[insert[t1]֠ .task]’

This transition is from the Policy Interface and is triggered when the insert policy is en-

abled. The effects are guarded by the existing task’s state, which should not have started

yet. The effects are to modify the original transition’s policy guard to being true.

transition policyHandler_p2_2_2

triggeredBy start[x]

guardedBy P_insert[t1]֠ ∧ insert[t1]֠ .task=t1

effects insert[t1]֠ ⊃ ¬ policy[insert[t1]֠ .task]’

∧ ¬ insert[t1]֠ .condition ⊃ policy[insert[t1]֠ .task]’

∧ start[insert[t1]֠ .insertedTask]’

sends insert[t1]�

Transition policyHandler p2 2 2 replaces the original and starts the execution of t1 as

this is the task that the policy applies to. The condition in this case is false (for inserting

in sequence) and the effects are to send the policy signal for inserting the new task and to

send the start signal of the inserted task.

transition policyHandler_p2_insert

triggeredBy done[t1] ∨ done[t2]

guardedBy P_insert[t1]֠ ∧ insert[t1].condition

∧(insert[t1].task=t1 ∨ insert[t1]֠ .insertedTask=t2

Chapter 6: Case Study 149

effects done[t1] ⊃ ¬ done[t1]’ ∧ start[t2]’

∧ done[t2] ⊃ ¬ done[t2] ∧ start[next(t1)]’

sends done[t2] ⊃ insert[t1]֠

This final transition coordinates the execution of the tasks. When the done signal t1 is

received, this signal is disabled and the start signal of t2 is sent. When this is received

(i.e. t2 completes), the signal is disabled and the next task after t1 originally is sent its

start signal (through the use of the next() function.).

Thus these are the SRML transitions applicable to this case study.

6.5 Summary

In this chapter, we have taken a case study provided by an industrial partner on the Senso-

ria project. The case study described a workflow based on VoIP provision, but can be seen

at a higher level as representative of most, if not all procurement situations. Having first

identified and resolved two design issues, we expressed both the workflow and its two (in-

formally) written variants in StPowla (workflow notation and policies). We then applied

the policies to the workflow through the use of the graph transformation rules defined in

the previous chapter. Finally, we encoded the StPowla representation into SRML.

As a result, we have shown how StPowla can be applied to real situations. We have

ascertained that StPowla can be mapped easily to such situations and enables workflow

variations to be expressed in a manner that eliminates the use of natural English for defi-

nition and thus removes ambiguities. It also facilitates the design and implementation of a

StPowla workflow engine that can automate the workflow execution process specifically

in terms of applying variability as would be expressed in policies.

In the next chapter, we will evaluate the StPowla approach using a number of different

measures, in order to determine adequacy, effectiveness and business value.

Chapter 7

Evaluation

7.1 Introduction

The main aim of this chapter is to take an objective view of what we have presented,

namely the StPowla combination of workflows, policies and Service Oriented Architec-

ture, but with a specific focus on reconfiguration functions that can be used in policies

to affect the structure of the workflow. We will discuss the capabilities and limitations

of our approach and evaluate the adequacy of the reconfiguration functions using work-

flow patterns as the benchmark. We will briefly discuss the area of policy conflict before

concluding with an evaluation of the business value of our approach.

7.2 Capabilities and Limitations

Our original aim was to propose a solution to dynamic workflows, where SOA provided

the underlying functionality. Change was to be made at the business level, rather than the

orchestration level.

Through StPowla, we have defined an adequate means for defining workflows using a vi-

150

Chapter 7: Evaluation 151

sual modelling technique. Although the number of operators available is relatively small,

we consider this to be greater than a minimal set. For example, Strict Preference can

be defined as a composition of tasks together with complex routing of outgoing control

flow paths from the tasks. Although Random Choice is similar to this, its semantics are

sufficiently different to warrant its own operator.

The reconfiguration functions represent a set of graph transformation functions applicable

to StPowla workflows. We have defined the capability to insert tasks anywhere inside the

workflow, either in sequence to other tasks or in parallel with them. The delete function

offers the capability to avoid performing a particular function. These two functions alone

provide scope for wholesale changes to the workflow.

Supporting those two essential functions are block, fail and abort. These three functions

have the capability of changing the workflow execution without modifying the workflow

structure. Whilst we call them reconfiguration functions, one might argue that they are

not reconfiguration functions but execution functions.

So far, we are unable to define (in policies) completely new tasks. This is partially due

the fact that we have not focussed on expressing task requirements in this thesis. The

aim would be to have policy syntax that can be used for precisely this reason and thus

remove the need for reconfiguring workflows with respect to only those tasks that the

designer knows about. Once this capability has been introduced, it would be possible

to have all workflows starting execution with no tasks, and from there new tasks are

added through policies. This was the first of our two extreme situations which we recall

from Chapter 1: Workflow A specifies no tasks at all and the control flow is empty. It is

populated with tasks through policy functions at runtime. Workflow B is a significantly

complex workflow with every single possible condition identified and embedded into the

control flow. Neither of these extremes are adequate solutions and we are looking for a

suitable balance between the two, which StPowla provides.

A second key limitation is that there is no existing capability for cancellation and com-

Chapter 7: Evaluation 152

pensation functions. We have provided functions for aborting and failing tasks, but the

semantics of these functions simply directs the control flow output to another branch (if

one exists). There could potentially be the requirement to fail or abort a task and roll

back its functionality to a given point, if such functionality exists. For example, suppose

a person was at home cooking dinner when their partner returned home from work with

pre-cooked food from the local takeaway. In this situation, the cooking would be aborted

and some form of rollback would start, including returning uncooked food to the fridge

and pantry, and disposing of any unusable food. Alternatively, the cooking may be paused

whilst dinner is eaten, then completed and the food stored. In the former situation, we can

see a compensation function in use, whereas the latter is more of a reconfiguration.

In the next section, we will examine StPowla further, including its notation and reconfig-

uration functions, against workflow patterns.

7.3 Workflow Patterns

A pattern “is the abstraction from a concrete form which keeps recurring in specific non-

arbitrary contexts” [76]. Workflow patterns are thus a set of frequently-recurring struc-

tures within workflows, including control flows, data flows and exception flows, to name

only a few1. In this thesis, we restrict ourselves to considering only workflow patterns on

control flows for obvious reason.

Workflow patterns have gained substantial exposure since their first publication in [93],

followed by a revision in [78] and advanced patterns defined in [89]. We use them as a

benchmark to evaluate StPowla against as they are well understood, widely accepted and

comprehensively documented.

For each workflow pattern, we proceed to give a brief description, a discussion of how it is

currently supported in StPowla, if it is also supported through reconfiguration functions
1See http://www.workflowpatterns.com for comprehensive documentation about workflow patterns

Chapter 7: Evaluation 153

and any identified issues. Table 7.1 provides an overview (‘3’ indicates full support for

the workflow pattern, ‘-’ indicates partial support and ‘5’ indicates no support).

7.4 Critical Assessment

The purpose of a comparison with workflow patterns is not simply to test the strength of

capability, i.e. to see what possible workflow patterns can be supported, but more impor-

tantly to see how the StPowla approach facilitates the expression of different workflow

patterns, and whether policies can play an integral part in providing such support. Simple

patterns can of course be supported in several notations, including the one we have used

in this thesis. But the evaluation of those patterns means little without having in mind the

key element of StPowla, that is the separation of the core process to variability.

Thus, our evaluation is designed, in the first part, to see not just how many workflow pat-

terns are supported in StPowla, but to evaluate the potential impact of policies and, more

importantly, reconfiguration functions on a workflow. As will be seen in the following de-

scriptions, the quantity of workflow patterns supported is the majority. The commentaries

on each will often point to how policies are used to assist in the support of those patterns.

So our evaluation extends not just to determining capability of StPowla, but crucially the

role that reconfiguration functions can play in the provision of such capability. Indeed, we

will find that many patterns require reconfiguration functions to modify the workflow in a

particular way. In fact, one might also consider that reconfiguration functions permit the

dynamic creation of patterns at runtime, but to cover such a topic would require significant

more space than is available here. What we learn is that the use of policies significant

extends the capability of a workflow to implement a number of different situations. A

simple workflow notation is only capable of so much, but the ability to modify a given

model to an almost unlimited extend gives real expressive power to StPowla.

Chapter 7: Evaluation 154

Table 7.1: Workflow patterns evaluation summary (preced-

ing numbers refer to the workflow pattern ID at http:

//www.workflowpatterns.com)

Pattern Supported

Basic Patterns

1. Sequence 3

2. Parallel Split 3

3. Synchronisation 3

4. Exclusive Choice 3

5. Flow Merge 3

Advanced and Synchronisation Patterns

6. Multi-Choice 3

7. Structured Synchronising Merge 3

8. Multi-Merge 3

9. Structured Discriminator 3

28. Blocking Discriminator 3

29. Cancelling Discriminator 3

30. Structured Partial Join 3

31. Blocking Partial Join 3

32. Cancelling Partial Join 3

33. Generalised AND-Join 3

37. Local Synchronising Merge 5

38. General Synchronising Merge 5

41. Thread Merge -

42. Thread Split -

Multiple Instance Patterns

Continued on Next Page. . .

Chapter 7: Evaluation 155

Table 7.1– Continued

12. Multiple Instances without Synchronisation 5

13. Multiple Instances with a Priori Design-Time Knowledge 5

14. Multiple Instances with a Priori Run-Time Knowledge 5

15. Multiple Instances without a Priori Run-Time Knowledge 5

34. Static Partial Join for Multiple Instances 5

35. Cancelling Partial Join for Multiple Instances 5

36. Dynamic Partial Join for Multiple Instances 5

State-based Patterns

16. Deferred Choice 3

17. Interleaved Parallel Routing -

18. Milestone 3

39. Critical Section -

40. Interleaved Routing 5

Cancellation and Force Completion Patterns

19. Cancel Task 3

20. Cancel Case 3

25. Cancel Region -

26. Cancel Multiple Instance Activity 5

27. Complete Multiple Instance Activity -

Iteration Patterns

10. Arbitrary Cycles 5

21. Structured Loop -

22. Recursion 5

Termination Patterns

11. Implicit Termination 5

43. Explicit Termination -

Continued on Next Page. . .

Chapter 7: Evaluation 156

Table 7.1– Continued

Trigger Patterns

23. Transient Trigger -

24. Persistent Trigger -

We have compared StPowla notation and the reconfiguration functions to the widely-

researched and documented workflow patterns, evaluating StPowla against 43 workflow

patterns, with results showing 19 of those patterns are supported directly either through

the normal notation or through reconfiguration functions (in some cases reconfiguration

functions are essential to supporting the workflow patterns). Furthermore, StPowla pro-

vides indirect support for another 10 patterns. Of the remaining 14 patterns, 7 are to do

with multiple instances, which StPowla does not support. The remaining 7 patterns relate

to iterations, termination, synchronisations based on runtime information and the ordering

of task executions at runtime.

The following sections provide further details on the evaluations.

7.4.1 Basic Patterns

Sequence:

Description: An activity is enabled after the previous has completed.

Support:
Yes - this is supported directly in StPowla through the sequence

operator.

Discussion:
This can be supported both through the basic notation and

through reconfiguration functions.

Chapter 7: Evaluation 157

Parallel Split:

Description:
Divergence of one branch into two or more parallel branches

which execute concurrently.

Support:
Yes - this is directly supported in StPowla through the Flow

Split operator.

Discussion:
This can be supported both through the basic notation and

through reconfiguration functions.

Synchronisation:

Description:
Converges two or more branches into a single subsequent

branch once all input branches have been enabled.

Support:
Yes - this is directly supported in StPowla through the Condi-

tional Merge operator.

Discussion:

StPowla requires a Conditional Merge construct to be used in

conjunction with a Flow Split in order to maintain structural

integrity of the workflow (i.e. one control flow in and one con-

trol flow out). Thus, both the basic notation and reconfigura-

tion functions will support this pattern. The purpose of forcing

the combination of Flow Split and Conditional Merge operators

was given for the pragmatic reason that it would like lead to

less issues in workflow design, whereas multiple active control

flows could potentially become available, and be hard to keep

track of, if a Flow Split could be used in isolation from the Con-

ditional Merge.

Chapter 7: Evaluation 158

Exclusive Choice:

Description:

Divergence of control flow from one activity to one of a set of

outgoing branches, with the path determined by the outcome of

a logical expression.

Support:
Yes - this is directly supported in StPowla through the Flow

Junction construct.

Discussion:

StPowla permits this “binary choice” pattern through both ba-

sic notation and through reconfiguration functions, in associa-

tion with a Flow Merge operator. The concept of the Excep-

tional Delete was introduced partially to deal with situations in

which multiple choice operators, such as this, lead to multiple

merges which could make the workflow potentially unreadable.

Thus, when an output from a choice operator leads to the end of

the workflow, an early termination operator is allowed, but only

as a shorthand method of writing in the Flow Merge operators.

Flow Merge:

Description: Merges two or more branches without synchronisation.

Support:
Yes - this is directly supported in StPowla through the Flow

Merge construct.

Discussion:

This pattern is only supported in conjunction with a flow diver-

gence point, namely the Flow Junction, Strict Preference and

Random Choice operators. It is supported both in standard no-

tation and in reconfiguration functions.

Chapter 7: Evaluation 159

7.4.2 Advanced Branching and Synchronisation Patterns

Multi Choice:

Description:
A variant of Exclusive Choice in which the conditions for each

output branch are not disjoint.

Support:

Partial - StPowla provides the Flow Junction concept as a bi-

nary operator. The use of multiple Flow Junctions, specified

with the correct condition checks, can model this pattern, albeit

in more verbose terms.

Discussion:

This pattern is partially supported for the given reasons by both

the standard notation and reconfiguration functions. It could

be helpful to permit the user to change the condition through

a reconfiguration function, however that could potentially lead

to confusion at runtime (i.e. remembering which operator has

which condition), with stacked Flow Junction conditions possi-

bly contradicting each other (e.g. “if (x < y) then if (x > y) then

do something”).

Structured Synchronising Merge:

Description:

The convergence of two or more branches (that were previously

diverged) into a single subsequent branch. It accompanies the

Multi-Choice or OR-Split constructs.

Support: Partial - as per Multi-Choice pattern.

Discussion: See the discussion on the Multi-Choice pattern.

Chapter 7: Evaluation 160

Multi-Merge:

Description:
Converges two or more branches into a single subsequent

branch.

Support: Yes - this is supported through the Flow Merge operator.

Discussion:

StPowla supports this pattern directly in the notation and re-

configuration functions. It can only be used in conjunction with

a Flow Junction, Strict Preference or Random Choice operator

to ensure workflow integrity. It could be useful to have one

Flow Merge operator for multiple control flow divergence oper-

ators, although this is simply a shorthand way of writing multi-

ple Flow Merge operators.

Chapter 7: Evaluation 161

Structured Discriminator:

Description:

Converges two or more branches into a single subsequent

branch following a previous divergence in the process. Also,

control is passed to the subsequent branch when the first in-

coming branch is enabled.

Support:
Yes - this is supported through configuring the Conditional

Merge operator.

Discussion:

StPowla provides support for this pattern directly in the Flow

Split/Conditional Merge operators. The latter is configured us-

ing design time knowledge to determine the number of branches

that must complete and also which of the branches are manda-

tory. Reconfiguration functions do not easily support modifiable

Conditional Merge operators since new operators are typically

either already defined or have preset values (i.e. 2 mandatory

branches and both incoming branches must complete). It could

be useful to extend this to allow reconfiguration of the Condi-

tional Merge operator itself to allow runtime changes based on

reactions to events. However, it can be safely assumed that al-

most any event can lead to a policy enforcing changes to the

workflow which would be cleaner than simply changing values

of an operator.

Chapter 7: Evaluation 162

Blocking Discriminator:

Description:

The convergence of two or more branches into a single subse-

quent branch following one or more previous divergences. Con-

trol is passed to the subsequent activity when the first branch

completes. Enablements can be blocked until the discriminator

has been reset.

Support:
Partial - StPowla provides support through the configurable

Conditional Merge operator.

Discussion:

The use of multiple divergence operators into a single conver-

gence operator can be viewed as shorthand, or even sloppy mod-

elling. StPowla requires 1-1 mapping and this can still model

this pattern. Arguably our approach requires more design time

work, although the introduction of the capability to have a sin-

gle Conditional Merge operator for multiple Flow Split opera-

tors would just be a shorthand. A slight constraint in StPowla is

that the operator is generally executed only once, or at least in

isolation from other execution times. Thus no state information

is kept by the operator between executions.

Chapter 7: Evaluation 163

Cancelling Discriminator:

Description:

As per the Blocking Discriminator with the exception that on

passing control to the subsequent activity, all remaining activi-

ties are cancelled.

Support:

Partial - this is not supported by StPowla notation, but reconfig-

uration functions can be used to abort or delete any remaining

tasks that are no longer required.

Discussion:

Since the remaining tasks do not have a link to the active con-

trol flow, their current flow will either expire (i.e. come to a

natural end) when the execution has completed or will undergo

the abort path, executing any task (unless already deleted) and

then expiring. The workflow/policy designer must take special

care to avoid executing tasks on the abort path if they are not

required.

Structured Partial Join:

Description:

Following a prior divergence, control is passed to a single sub-

sequent branch when a specific number of incoming branches

have been enabled.

Support:
Yes - this is supported through the configuration of the require-

ment of incoming branches in the Conditional Merge operator.

Discussion:

The support provided by StPowla requires the designer to know

at design time how many branches are required to complete.

This is a constraint on the general workflow pattern, which

would add some potentially valuable functionality. Potentially,

a policy function could be introduced to manipulate the config-

uration settings of operators.

Chapter 7: Evaluation 164

Blocking Partial Join:

Description:
As per the Blocking Discriminator with the exception that a spe-

cific number of the incoming branches must complete.

Support: Yes - through the Conditional Merge operator.

Discussion:

The Conditional Merge operator should be configured at design

time as part of a sub-workflow scope in order to take advantage

of configuring the number of branches required to complete.

Cancelling Partial Join:

Description:

As per the Cancelling Discriminator combined with the Block-

ing Partial Join. After the specific number of incoming branches

have completed, the remainder are cancelled as control is passed

to the single subsequent activity.

Support:
Yes - as per the Cancelling Discriminator and the Blocking Par-

tial Join, i.e. delete policies should be used.

Discussion: As per the Cancelling Discriminator and Blocking Partial Join.

Generalized AND-Join:

Description:
Convergence of two or more branches into a single subsequent

branch after all incoming branches have completed.

Support: Yes - through the Conditional Merge operator.

Discussion: As per the Blocking Partial Join.

Chapter 7: Evaluation 165

Local Synchronising Merge (also known as Acyclic Sychronising Merge):

Description:

The convergence of two or more branches into a single sub-

sequent branch where the incoming branches were previously

diverged. The number of branches that require synchronisation

is determined by information in the workflow, including infor-

mation given by the divergence construct or local data arriving

at the merge.

Support:
No - StPowla supports only the configurable Conditional

Merge.

Discussion:

It could be a valuable addition to StPowla to allow policy func-

tions to modify the configuration information of each Condi-

tional Merge. Furthermore, such enhancements could be made

to other operators (e.g. modifying the condition check of Flow

Junctions). It could however be advantageous to allow the

workflow definition to reuse dynamic information, e.g. in con-

dition checks, the variables addressed could be done so by ref-

erence rather than value. This means that no static values need

to be defined at all.

Chapter 7: Evaluation 166

General Synchronising Merge:

Description:

As per the Local Synchronising Merge with the exception that

control is passed when either each incoming branch is enabled

or will never achieve the enabled state.

Support: No - as per the Local Synchronising Merge.

Discussion:

See the comments on the Local Synchronising Merge.

StPowla does not support this pattern as it gathers information

from the workflow directly whereas in StPowla the information

must be known at design time.

Thread Merge:

Description:
A nominated number of execution threads are converged into a

single branch of the same process instance.

Support:
Yes - StPowla provides support using the Flow Split and Con-

ditional Merge operator.

Discussion:

Whereas the workflow pattern permits this construct to be de-

fined “cleanly” (i.e. with minimal notation), StPowla requires

additional notation to model this pattern. Thus there is no ev-

idence to suggest a specific new operator for StPowla is re-

quired.

Chapter 7: Evaluation 167

Thread Split:

Description:
A single execution branch can initiate a nominated number of

execution threads.

Support:
Yes - StPowla provides support using the Flow Split and Con-

ditional Merge operator.

Discussion: See the Thread Merge pattern.

7.4.3 Multiple Instance Patterns

Currently StPowla does not support multiple instance patterns. Thus, no reconfiguration

functions support multiple instances either. The reason for not supporting multiple in-

stances is that a single task can be itself defined to invoke a service multiple times, i.e. the

multiple instance behaviour can be embedded into the task itself. Also, through the use of

a loop construct (a combination of Flow Junction, Flow Merge and an ontology variable),

an alternative approach of using a structured loop can be used instead to similar effect.

Chapter 7: Evaluation 168

7.4.4 State-based Patterns

Deferred Choice:

Description:

A set of branches represent possible execution paths at a single

point. The decision is made by invoking the first activity of each

branch and selecting the subsequent output branch from the first

task to complete successfully.

Support: Yes - this is supported through the Random Choice operator.

Discussion:

StPowla currently supports this pattern through the notation

and through reconfiguration functions, noting that the Random

Choice operator is used in conjunction with a Flow Merge op-

erator.

Interleaved Parallel Routing:

Description:

A set of activities has a partial ordering that is finally determined

at runtime, with each activity being executed only once and not

concurrently with another.

Support: Partial - StPowla supports full ordering or parallel processing.

Discussion:

Currently StPowla requires that the workflow designer explic-

itly state the execution order of all items. The only exception

is that a set of tasks could be executed in parallel. The imple-

mentation ultimately determines the order in which the tasks

are executed, however to the designer, the only requirement is

that each task is completed prior to the subsequent activity com-

mencing. Such a solution is also supported through reconfigu-

ration functions.

Chapter 7: Evaluation 169

Milestone:

Description: An activity is only enabled when it is in a specific state.

Support: Yes - this is supported through each tasks’ ready variable.

Discussion:

StPowla supports this pattern both through the notation and

through policies. However, the usage of this pattern does not

constitute a reconfiguration since the workflow structure re-

mains the same as before. A policy must still be used through

to set the value of the ready variable of the target task.

Critical Section:

Description:

Two or more connected subgraphs of a process model are iden-

tified as “critical sections” and activities in each are executed in

a mutually-exclusive way with other critical sections, i.e. a crit-

ical section must complete before another critical section may

begin.

Support:
Partial - this is not supported directly in StPowla notation, but

reconfiguration functions can emulate the pattern.

Discussion:

StPowla policies can be used to change tasks’ ready attributes

in order to control when they can and cannot start. Although

not directly modelling the critical section pattern, this method

does at least provide some means for substantial resemblance.

To aid understanding, a critical section could be defined as a

composite task and a policy could be created on one task that

disables any others on entry, and enables them on completion.

Chapter 7: Evaluation 170

Interleaved Routing:

Description:

Each activity in a set must be executed once, but there is no

restriction on order except that none may be executed concur-

rently with another.

Support: No - StPowla requires total ordering of tasks.

Discussion:

This pattern may be seen more as an implementation, or run-

time constraint. Consider 10 people who wish to enter a garden

through a gate. The order in which they enter does not mat-

ter, but the gate has the capacity for only 1 person at a time.

The workflow designer is likely to specify the former aspects to

this problem (what), without focussing how, which is the role

of Services. Thus, there is insufficient technical substance for

including this pattern in StPowla.

7.4.5 Cancellation and Force Completion Actions

Cancel Activity:

Description:
An enabled activity is withdrawn before commencing execu-

tion.

Support:
Yes - this is synonymous with using the Delete reconfiguration

function on a task.

Discussion:

The StPowla approach is to remove the target task from the

workflow, although not necessarily deleting its definition (i.e. it

can be reused again later).

Chapter 7: Evaluation 171

Cancel Case:

Description:
Removal of a complete process instance, including those activ-

ities currently being executed.

Support:
Partial - this can be emulated by deleting all remaining tasks

and aborting the current task.

Discussion:

The main difference with the StPowla implementation is that

any specific functionality defined for the abort event of the sub-

ject task will be executed, unless a policy changes that before-

hand. Thus, we can argue that the StPowla approach provides

greater flexibility, in contrast with a little extra work from the

designer.

Cancel Region:

Description:

This involves the ability to cancel a set of activities that may

or may not be currently executing within a process instance.

Neither are the activities required to be connected to the overall

process model.

Support:

No - StPowla places a restriction that any task must be con-

nected to the main control flow, otherwise it will not be exe-

cuted. The closest match to a region is a scope.

Discussion:

A useful implementation could be that a defined scope can be

aborted and then the scope has its own abort control flow output

defined. Alternatively, it would be straightforward to say that if

a scope is failed, the active task within the scope is aborted and

its abort control flow output is invoked. This would provide a

broader range of functionality than just this workflow pattern.

Chapter 7: Evaluation 172

Cancel Multiple Instance Activity:

Description:

This involves the cancellation of all instances (the number of

which is known at design time) that are running concurrently

and independent of each other.

Support: No - StPowla does not support multiple instances of tasks.

Discussion: n/a

Complete Multiple Instance Activity:

Description:
This involves the (sometimes forceful) completion of all in-

stances of an executing activity.

Support: Partial - StPowla does not support this pattern

Discussion:

Neither the StPowla notation or reconfiguration functions pro-

vide support for this pattern. The only possible ways for a task

to complete is if it completes successfully, if it fails or if it

aborts. To allow a task to complete “successfully”, even when

it failed or was aborted is counter-intuitive to design. However,

it can be argued that some tasks are designed never to com-

plete (e.g. calculating the value of π) and a completion event

would put a safe end to the current processing. It can be seen

though, that this is a slightly different interpretation of the abort

functionality, from which support can be provided through a

StPowla function.

Chapter 7: Evaluation 173

7.4.6 Iteration Patterns

Arbitrary Cycles:

Description: Cycles which have more than one entry/exit point.

Support: No - StPowla does not support arbitary cycles.

Discussion:

The basic design of a StPowla workflow assumes one control

flow input and (presuming a divergence operator is paired with

the appropriate convergence operator) one control flow output,

i.e. one entry and one exit point. To introduce multiple entry

and exit points would potentially lose integrity and importantly

lose the capability to track the workflow.

Structured Loop:

Description: The ability to execute an activity or sub-process repeatedly.

Support:

Partial - no explicit support, however through the definition of a

Flow Junction/Flow Merge, the situation could easily be recre-

ated.

Discussion:

Currently, there is no explicit notation for structured loops. Nei-

ther is there direct support through reconfiguration functions.

However, through a combination of a Flow Junction, Flow

Merge and a variable in the workflow ontology, this pattern can

be simulated. The structured loop is therefore a shorthand no-

tation that has no sufficient technical reason for implementation

in StPowla.

Chapter 7: Evaluation 174

Recursion:

Description: An activity is able to call itself.

Support:

No - StPowla allows the design of workflows to include in-

stances of tasks, where two or more instances of the same task

are independent from one another. No task is able to call itself.

Discussion:

The implementation of recursion is potentially complex, lead-

ing to continuous loops if the design is incorrect. At a business

level, recursive functionality can be defined as a single unit of

functionality, with the recursive aspect an implementation de-

tail. A task may be implemented using some recursion, but

there is little need for it at the workflow level. Thus there is

insufficient technical requirement for implementing recursion

in StPowla.

Chapter 7: Evaluation 175

7.4.7 Termination Patterns

Implicit Termination:

Description:
A given process terminates if there is no further work item to

process.

Support:
No - all StPowla workflows must terminate in a single end

point (with the shorthand exception of the Exceptional Delete).

Discussion:

This pattern can lead to sloppy workflow design. It would be

clearer and more precise if it was made explicit that, should no

more tasks be available for processing, the next workflow item

is the end point. Even if there are tasks still to be executed, a

deletion reconfiguration can remove them prior to completing

the workflow. At this time there is no sufficient reason to sup-

port this workflow pattern.

Chapter 7: Evaluation 176

Explicit Termination:

Description:
A process instance terminates when it reaches a nominated

state, typically identified by an end node.

Support:

Partial - StPowla provides support through having a single end

operator on each workflow and reconfiguration functions to en-

sure it is the next item reached.

Discussion:

Although StPowla provides end nodes to workflows, it does not

permit two or more branches to exist where one branch goes to

the end node whilst aborting or failing the remaining tasks in

other branches. Instead, a Conditional Merge operator will be

present to enforce completion of remaining work before termi-

nating the workflow. The policy designer must be aware of the

position in the workflow where the workflow may explicitly ter-

minate in order to know what remaining tasks may exist. This

implies that for each point at which an explicit termination is

possible, a policy may be required to delete and/or abort other

tasks.

Chapter 7: Evaluation 177

7.4.8 Trigger Patterns

Transient Trigger:

Description:
A pre-defined event from the workflow or the external environ-

ment triggers an existing activity into action.

Support:
Partial - no direct support is provided, but a policy can insert a

copy of an existing task into the current workflow location.

Discussion:

StPowla permits an event to invoke a policy, which in turn in-

vokes a reconfiguration function. If that function were to insert

a task into the workflow’s current (i.e. next) active position, the

effect is similar to this workflow pattern. At a specific event,

under defined conditions, a new task can be executed.

Persistent Trigger:

Description:

This is similar to the transient trigger, except that the workflow

does not need to execute the handling activity immediately. The

signal is retained until the workflow reaches the handling activ-

ity.

Support:
Partial - no direct support is provided, but a policy can insert a

copy of an existing task into the current workflow location.

Discussion:

As per the Transient Trigger, StPowla permits the insertion of

a new task into the workflow. A significant difference is that the

policy/workflow combination permits the user to insert a task

almost anywhere inside the workflow. Thus it can be argued

that StPowla provides support for both these trigger patterns

through the same policy usage.

Chapter 7: Evaluation 178

7.5 Policy Conflict

One significant area of research not covered by this thesis is on policy conflict. If policies

are defined as “information which can be used to modify the behaviour of a system” [59],

then policy conflict can be accurately defined as the situation when two or more policies

whose information instructs a system to modify its behaviour in incompatible ways.

Policy conflict is an example of the wider problem area known as feature interaction [74]:

if a feature f1 satisfies a property φ1 (written f1 |= φ1), and f2 |= φ2; a feature interaction

is said to occur if, when the features are composed (denoted f1 ⊕ f2) we do not have

f1 ⊕ f2 |= φ1 ∧ φ2 [41].

For example, in the world of telecoms, a user cannot completely enable both features call

waiting and call forward when busy simultaneously without conflict. The first feature

holds incoming calls until the current call has finished whereas the second forwards the

incoming call to another destination. Clearly, both are incompatible.

Business processes can also be considered in the domain of feature interaction. More

specifically, if a business process is subject to policies that can potentially define process

variability, the potential for feature interaction problems significantly increases. For ex-

ample, conflicts can occur between refinement policies (i.e. setting conflicting properties),

reconfiguration rules (i.e. setting conflicting actions) and even service selection criteria.

For more information, we refer the interested reader to [41].

In StPowla, policy conflict is a significant area of research on its own and is thus not the

focus of this thesis. Instead, for more information the reader is encouraged to read [60],

which is collaborative work.

Chapter 7: Evaluation 179

7.6 Business Value

The final evaluation perspective to consider is that of business value. All throughout this

thesis, we have emphasized StPowla as a solution aimed at a more abstract level of busi-

ness design, rather than technical implementation. As such, the connection between tasks

and services has been hypothetical and all discussion has been kept inside the business

domain.

Nevertheless, it is important to understand that there is a very real business need for

a solution like StPowla. The integration with Service Oriented Architecture has been

widely acknowledged as becoming part of the very fabric of business, rather than just a

tool that business uses2. We have already identified a simple procurement example in the

first chapter and possible variations. One may consider a number of other situations that

can frequently occur, such as in Ebay trading where the normal process ends in the buyer

providing feedback on the seller to close the process. If the buyer has any reason to object

to the business transaction (e.g. the seller did not send the item or the item was not as

described), then the buyer has the option to open a case with Ebay, who will investigate

any claims. This is clearly an extension to the normal process, but could also be seen as a

distinct process in itself.

Let us consider another business scenario. ATX Technologies3 is a company that spe-

cialises in providing innovative tools for the automated migration of legacy applications

to more modern, agile environments, such as .NET and Java. The aim is always to gen-

erate code according to the best practices of the target environment whilst maximising

the automatic conversion rate, noting that a number of situations may arise wherein some

manual work may be required on a small proportion of the generated code. In particular,

ATX’s product Forms2Net [5] automates the transformation of Oracle Forms4 applica-

tions to Microsoft .NET, with a conversion rate typically between 80 and 100%. It is on

2See article “IBM has high hopes for ‘Next Big Thing’ in software”, Times Online, 3 April 2006
3http://www.atxtechnologies.co.uk
4http://www.oracle.com/technetwork/developer-tools/forms/overview/index.html

Chapter 7: Evaluation 180

this product that we will focus.

During the Forms2Net pre-sales process, an assessment is frequently carried out on a

prospect’s Oracle Forms application. The process involves using a tool known as the

Forms2Net Analyzer to extract statistics from each module of the application. These

statistics indicate the size and complexity of each module, for example recording the

number of data blocks, items, triggers, windows, canvases, lines of code, database queries,

etc.

With the results from the Forms2Net Analyzer, an ATX consultant will upload the statis-

tics to an internal server in order to generate two effort estimation reports. The first report

indicates the structural complexity of each module and the second indicates the migra-

tion complexity. The structural complexity of each module, combined with the number

of lines of embedded PL/SQL code provides a means of estimating the amount of time

it could take to rewrite the application by hand to the chosen target environment. The

migration complexity provides a means of estimating how much time it could take to per-

form the stage known as code completion. This stage is the manual work required after

the automatic conversion to finish the application prior to testing.

The process of generating a project assessment report is relatively straightforward. It

involves ascertaining the structural and migration complexities and inserting the resulting

data into a report generator that provides a document suitable for customers. However,

there are situations in which the process is not straightforward.

The structural complexity of each module is important as it helps understand how long it

could take to recreate an equivalent structure in .NET by hand, and also provides initial

estimations as to the duration required for preparing new test scripts and the amount of

time required for testing. However, Oracle Forms applications can exist in many different

sizes, from 1 module to over 10,000 modules and potentially more5. The current esti-

5From ATX’s experience it is difficult to quantify the size of the average Oracle Forms application since
it depends on the business problem the application addresses and the design in which it was made. However,
a rough estimate suggests that an average size application is between 200 and 500 modules.

Chapter 7: Evaluation 181

mation mechanism is though unable to provide accurate estimations for applications of

extremely small size and those of extremely large size. The reason for this is that Oracle

Forms provides significant functionality at runtime as part of the environment. For ex-

ample, connections to the database are provided and managed for free. A set of in-built

functions are available to the developer and a number of triggers are predefined to react

to specific events. All these aspects contribute towards an application infrastructure that

would need to be recreated accordingly to have a perfectly migrated application in .NET.

The issue is that small applications need at least the same framework as the larger appli-

cations. Thus, the work to recreate the framework is the same regardless of application

size. Therefore, the structural complexity of each module may vary from small projects

to large projects as the overhead time required for recreating the infrastructure is shared

per module.

Therefore, when situations arise that an extremely small application is analysed, an ATX

consultant must examine the results carefully and decide whether they need to be re-

vised. Likewise, for extremely large projects, estimations will also need to be revised,

for example to accommodate additional development work to Forms2Net to improve the

conversion rate and thus decrease the amount of code completion required.

So even in this real life situation, a core workflow sometimes needs revision based on

exceptional circumstances. Despite a core workflow being easy to follow and mostly

automated, circumstances define whether or not this workflow can be rigidly adhered to,

or modified to suit a specific situation. It is highly likely that numerous other business

situations exist in which a core workflow is not enough to model every single situation.

Therefore, some means of expressing variability, as we have demonstrated with StPowla,

is a valuable addition to normal business processes.

Chapter 7: Evaluation 182

7.7 Summary

In this section, we have taken an objective view of the role that StPowla, and in partic-

ular the reconfiguration functions, can play in the business domain. We have compared

StPowla notation and the reconfiguration functions to workflow patterns, using them as

the benchmark for expressibility.

We have also discussed the business value of StPowla and specifically the need for vari-

ability in exceptional circumstances. As we briefly discussed in the opening chapter,

workflows are constrained by design whereas human though is not generally limited to

the design and thus there always exists scope for variability for even the most standard

processes.

Thus we can conclude that StPowla has both a business value and a good technical match

to the requirements of workflow modelling. It is not expected for StPowla to be able to

model all workflow control flow patterns due to the difference in perspective, remem-

bering that StPowla is targeted towards business users whereas workflow patterns are

generally more technical in nature. The most notable constraint is the lack of support for

multiple instance patterns, however they are less relevant in the context of this thesis.

More crucially, the reconfiguration functions we have described provide a powerful ex-

tension to standard StPowla notation, allowing better support for workflow patterns in

general, through the capability of allowing wholesale changes to a workflow from a even

a small set of functions. The notation itself provides little more than other workflow lan-

guages or notations, other than simplicity and domain suitability. However the addition

of the reconfiguration functions allows the dynamic change we have been seeking.

Chapter 8

Conclusion

8.1 Introduction

We now return to the situation presented in Chapter 1. A simple procurement scenario

consists of a supplier receiving an order, collecting items, packing items, shipping the

package to the customer and invoicing them. Under most circumstances, this process is

correct, although there may be some circumstances in which it is desirable to modify the

process for that particular executing instance. The example we gave was where an incom-

ing order had a substantially high value and the supplier desired to charge the customer a

deposit first.

Our aim was to provide a mechanism whereby business users could define variability over

a business-level workflow such that the core process remains the same and is affected only

when required. We identified two extremes: Workflow A specifies no tasks at all and the

control flow is empty. It is populated with tasks through policy functions at runtime.

Workflow B is a significantly complex workflow with every single possible condition

identified and embedded into the control flow.

Both situations bring unnecessary complexities. In the first situation, a lot of effort is re-

183

Chapter 8: Conclusion 184

quired to define a process in abstract terms without seeing the final model, even in a visual

model. The potential for conflict between rules which introduce tasks becomes signifi-

cant due to the possibility of numerous rules being present and active simultaneously.

One might also consider concurrency issues when actioning those rules. In the second

situation, the workflow remains rigid, even after comprehensive specification. This im-

plies there is no scope for change outside what has already been defined and is thus still

representative of the problem we identified.

We wanted a solution that would sit comfortably between these two scenarios, yet at

a level abstract from technological implementation that would be suitable for business

users. We proposed and presented StPowla as a solution to this problem. A graphical no-

tation provides a visual way of describing workflows. Policies provide a loosely-coupled

way of defining variability over workflows. Service Oriented Architecture (SOA) pro-

vides the underlying functionality.

We now reflect on the presented work, considering the original research questions to see

if they were suitably answered. We proceed to discussing the potential implications of the

work at both a technical and business level.

Finally, we consider the limitations of the work presented so far and discuss ideas for

future work in order to either address those limitations or extend the existing work. We

find that there is rich ground for future research, which does not negate the value of the

work done so far, but rather demonstrates the potential impact of StPowla.

8.2 Reflection on Research Questions

In Chapter 1, we highlighted a number of research questions that we were to tackle in this

thesis. In this section, we will reflect on the work done to answer those original questions.

Chapter 8: Conclusion 185

Design: We asked first for a suitable method of defining service-targeted workflows.

Those are defined at the business level, abstract from implementation details and espe-

cially functional implementation. The information included with each workflow activity,

known as a task, should extend as far as the requirements for that task. Neither did we look

for a means to match services to tasks - this was an assumption made at the beginning.

After a review of business process solutions, we identified three different categories

of ways to define workflows: code-based descriptions, notation-based descriptions and

calculi-based descriptions. We identified a number of solutions in these categories and

elected to provide a basic graphical notation that would be abstract from all current solu-

tions and focus on the core issue of defining the workflow. The StPowla notation includes

a relatively small number of operators that permits the organisation of tasks into a flexible

and expressive execution schedule, known as the task map (i.e. the workflow). We believe

the notation to be highly effective in what it attempts to achieve: the description of a wide

range of business processes using a simplified language suitable for the business domain.

We asked second for a means to specifying the variability over those workflows. A re-

view concluded that there were no suitable options available at this level of abstraction,

although there were a small number of proposals at the orchestration or logical level. Poli-

cies provided a good solution at the business level, with Appel selected as the candidate

language due to its makeup of the core language and domain-dependent extension.

We elected to use policies as they fit our purposes well: policies are defined separately to

the system which they affect (in keeping with the service oriented nature of this subject)

and they are highly expressive.

It was this extension possibility that we used to customize Appel to this domain. Ap-

pel also allowed us to define policies as either goals or event-condition-action (ECA)

rules, both of which are useful for our purposes. Variability specification was available

through the use of functions on the workflow and property modification expressions, both

potentially composed through the use of logical operators.

Chapter 8: Conclusion 186

In Chapter 3, we identified both the notation constructs and the policy syntax available.

We provided a brief discussion on how workflow tasks map to services (although this was

outside the scope of our work) and we provided more information on the Service Level

Agreement (SLA) language. We also briefly discussed the pragmatics of the customiza-

tion, i.e. how one can compose two or more policies on the same workflow task. Thus we

have satisfied our research questions on the subject of design.

Scope: We asked three questions on the subject of scope. First, we asked what kind of

variability we need and second in what way can the business process be changed. These

questions are difficult to answer as the problem resides within human thought. Since hu-

mans are able to think “outside the box”, i.e. bend the rules, we needed to be capable

of defining almost any change on the workflow. Thus, we defined a set of functions that

would allow us to make several powerful modifications to the workflow structure. Chap-

ter 4 provides the full description of those functions, which we identified as reconfigura-

tion functions. These descriptions included graph transformation rules to visualize their

effects. Those functions enabled us to add any workflow item to an existing workflow,

remove any existing item and modify any properties.

Third, we asked what limitations should there be. In the definition of reconfiguration

functions, there were restrictions, for example the insertion of a task in parallel with

another item could only be done using a predefined split/merge operator. Furthermore, a

task could not be inserted in parallel with an operator. The reasons for these constraints

though are natural - they maintain the integrity of the workflow.

Our evaluation on the scope of the reconfiguration showed that, compared to workflow

patterns which were used as the benchmark, StPowla notation and reconfiguration func-

tions satisfied partially or fully 29 out of a total of 43 patterns. Of the remaining 14

patterns, we determined that the 7 multiple instance patterns were not crucial to our needs

and the final 7 each had either a suitable justification for its non-inclusion or a suggestion

Chapter 8: Conclusion 187

for potential inclusion.

Combination: Our final research subject was the combination of the business processes

and the variability we wished to apply to them. Firstly we asked how we can achieve

the combination in a generalized way. Our solution was to define the reconfiguration

functions and visualize them using graph transformation rules in Chapter 4. These rules

allowed us to see the reconfiguration function in the context of the workflow that we were

considering. Furthermore, the rules allowed us to visualize the result of applying two or

more rules to the same workflow in a structured way. Thus the graph transformation rules

provided us with a generalization of the reconfiguration approach.

We also asked how we could combine an arbitrary number of variability items on a single

business process. Our solution, using policies, was to have each policy explicitly say what

target item that policy applied to. The pragmatics of the policy customization (Chapter 3)

also permitted the composition of multiple policies in an ordered way.

Finally, we asked what limits the combination. The most obvious limitation is that despite

the loosely-coupled nature of policies and workflows, the policy author still needs to know

about the workflow before writing a suitable policy. This information is exposed through

a workflow ontology and thus the policy author needs access to this ontology.

This combination is analogous to normal service oriented development, in which a de-

veloper must already know about the service they wish to consume through a descriptive

interface.

We also discussed the idea that business rules can sometimes be overarching concerns,

over all other workflows executing within the same environment. Typically, such policies

must be goals and not ECA rules. Otherwise, we would expect each workflow to contain

the same event for the policy to react to, if indeed the policy was designed to be applicable

to each workflow. As it is, goals define constraints such as maximum property values and

potentially service selection criteria. Policies can define these using the SLA language

Chapter 8: Conclusion 188

and thus be applicable to multiple workflows.

8.3 Limitations and Further Research

StPowla is still only in an infant stage where the concepts are clearly defined yet no

implementation exists to demonstrate clearly the ideas StPowla covers. Furthermore,

StPowla is aimed only at the business level, leaving several lower levels of detail to be

carefully defined. SRML is the first part of this, but modelling tasks still remain for

example between tasks and services, in binding, in configuration and in compensation. In

this section, we discuss the limitations of StPowla as a means of providing suggestions

of future work.

Event Model: The event model employed by StPowla is relatively simplistic, with

events for starting, completing or failing each workflow, task or service. There remains

plenty of scope for introducing new events into StPowla, for example:

• When a variable value changes;

• When a workflow is interrupted;

• When a condition test passes or fails;

• When a policy is invoked or completed.

The list of potential new events to embed could be potentially vast and as such we cannot

cover all of them here. It is sufficient for us to say that a business user may find more

benefit (i.e. the ability to model more business processes or more accurately) if they could

apply policies to more events.

Chapter 8: Conclusion 189

Task/Service Transaction Modelling: Any events to do with services are not consid-

ered in this thesis as they are out of scope, however it is worthwhile taking these business-

level StPowla concepts and establishing deeper technical modelling details, for example

using process calculi to model the interactions between tasks and services. The purpose

for such modelling is to establish the pattern of transactions between tasks and services,

such that modelling at the SRML level and at the StPowla level shall be more precise.

Workflow System Support: We argued previously that StPowla concepts at the work-

flow level were notation or language agnostic. Any existing workflow system could be

adapted to introduce StPowla concepts, namely the event model, policy handler and

workflow reconfiguration function (based on graph transformation). As such, a review of

existing workflow systems, similar to what is found in [78] for workflow patterns, would

provide a suitable picture of the applicability of StPowla to real workflow management

systems.

Compensation: Currently, StPowla does not provide support for rollback and compen-

sation. At a stretch, StPowla could be said to support compensation tasks through the use

of Abort and Fail output paths from tasks, although there is still no support for rollback.

Thus, a workflow cannot undo any task it has completed thus far. The use of rollback has

significant value due to the number of situations it can be used in, for example:

• Cancelling an order if the delivery date is too late;

• Withdrawing a service request if the cost is too high;

• Cancelling activities due to extraordinary circumstances.

The issue of compensation and rollback is not trivial. Consider that two parallel branches

are prematurely cancelled and their compensation actions are invoked. After they have

completed, any previous task in the control flow may also need to have its compensation

Chapter 8: Conclusion 190

action invoked. This requires tracking of the exact control flow path taken (including

chosen output paths from Flow Junctions, Strict Preferences and Random Choices), and

potentially also requires partial compensation for tasks that were started but not completed

and for tasks that were completed but whose results were not required (in the case of

Random Choice).

Similarly, suppose a task fails in one of two or more parallel branches and its compen-

sation action is invoked. The remaining question is what happens to the other branches

that are executing successfully? In this vein, a new strand of research for StPowla is

proposed, using the work of [18] as a suitable starting point.

8.4 Beyond SOA

One significant aspect of this work that came apparent during its conception is that it

is not limited to SOA. Although SOA provided the backdrop and initial motivation for

the work, we could easily remove SOA and still have a valid means to separating core

functionality from variability. This is an important aspect to identify with, because it

widens the applicability of our work to further scenarios.

For example, a Workflow Management System may make use of local services (not neces-

sarily Web Services) or user-driven tasks. Neither require SOA. Runtime reconfiguration

of systems is already available for autonomic (“self-healing”) systems and the potential is

also there for product line technology. This thesis though applies the concept of runtime

modification to processes in a mostly-generic way. The specific implementation details

we used were those of policies and SOA.

In fact, one could easily consider that it is rare for processes not to require some form of

human involvement. Suppose a form has been received in an administration office (e.g.

insurance office), which needs to be processed. The logical first step would be to have

Chapter 8: Conclusion 191

someone enter details from the form into a database, then perform whatever actions are

necessary. However, one might want to consider that the real first step is not the processing

of the form, but the receipt of it. No system needs to be invoked when receiving mail, nor

is any service a requirement when entering data into a system (assuming that the data

entry system is not Web Service-based1.

The point being made here is that several actions can be classed as tasks in our workflow,

yet not all of them require a service to implement the required functionality. At the ex-

treme, no services are used to implement the workflow. All tasks could be user-oriented

and potentially no computation is required anywhere. But the principle of separation of

core functionality and process variability still stands.

8.5 Summary

As a final conclusion, we return to the issue of inevitable choice. The problem of choice is

that we might not know all the potential options available to us. In the context of business

processes, this implies that we may never be able to appropriately define a workflow

completely that describes the business process for the simple reason that many possible

options of variability may be required. Thus there is a definite need for being able to

naively define a core process with the option of defining variability later on and distinct

from that process.

StPowla offers a solution in a service oriented context such that the promise of truly dy-

namic applications can be realised through having dynamic workflows. Although still in

its early stages, StPowla notation and reconfiguration functions already provide a solu-

tion to this problem. In conjunction with the evaluation, there are areas which can be

improved upon, namely support for new workflow patterns, including those relating to

1Even still, this would not change our argument that a user manually entering data is an interactive task,
not fully automated. Even using Optical Character Recognition requires a user to set the document in the
correct feeder tray and then initiate the scan.

Chapter 8: Conclusion 192

data and exception handling, plus improved scope for workflow intervention and com-

pensation actions.

In the future, as business seeks further automation in more areas to improve operational

efficiency and maintain competitiveness, we strongly believe that StPowla and the ideas

it encapsulates can have a significant impact.

Bibliography

[1] João Abreu, Laura Bocchi, José Luiz Fiadeiro, and Antónia Lopes. Specifying and
Composing Interaction Protocols for Service-Oriented System Modelling. In John
Derrick and Jüri Vain, editors, FORTE, volume 4574 of Lecture Notes in Computer
Science, pages 358–373. Springer, 2007.

[2] João Abreu and José Luiz Fiadeiro. A Coordination Model for Service-Oriented
Interactions. In Doug Lea and Gianluigi Zavattaro, editors, COORDINATION,
volume 5052 of Lecture Notes in Computer Science, pages 1–16. Springer, 2008.

[3] Michael Adams, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P. van der
Aalst. Worklets: A Service-Oriented Implementation of Dynamic Flexibility in
Workflows. In Robert Meersman and Zahir Tari, editors, OTM Conferences (1),
volume 4275 of Lecture Notes in Computer Science, pages 291–308. Springer,
2006.

[4] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraiu. Web Services:
Concepts, Architectures and Applications. Springer, 2004.

[5] Luis Filipe Andrade, João Gouveia, Miguel Antunes, Mohammad El-Ramly, and
Georgios Koutsoukos. Forms2Net - Migrating Oracle Forms to Microsoft .NET.
In Ralf Lämmel, João Saraiva, and Joost Visser, editors, GTTSE, volume 4143 of
Lecture Notes in Computer Science, pages 261–277. Springer, 2006.

[6] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi,
David Orchard, Stefano Pogliani, Karsten Riemer, Susan Struble, Pal Takacsi-
Nagy, Ivana Trickovic, and Sinisa Zimek. Web Services Choreography Interface
(WSCI). W3C, Aug 2002. http://www.w3.org/TR/wsci/.

[7] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Ventakash Chopella, Kan-
nan Govindarajan, Alan Karp, Harumi Kuno, Mike Lemon, Gregory Pogossiants,
Shamik Sharma, and Scott Williams. Web Services Conversation Language
(WSCL). W3C, Mar 2002. http://www.w3.org/TR/wscl10/.

[8] Tom Bellwood, Steve Capell, Luc Clement, John Colgraveand, Matthew J. Dovey,
Daniel Feygin, Andrew Hately, Rob Kochman, Paul Macias, Mirek Novotny, Mas-
simo Paolucci, Claus von Riegen, Tony Rogers, Katia Sycara, Pete Wenzel, and
Zhe Wu. Universal Description Discovery & Integration Technical Specification
Version 3.0.2. http://uddi.org/pubs/uddi_v3.htm, 10 2004. Accessed on
30 April 2011.

193

Bibliography 194

[9] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,
and Massimo Mecella. A Foundational Vision of e-Services. In Christoph Bussler,
Dieter Fensel, Maria E. Orlowska, and Jian Yang, editors, WES, volume 3095 of
Lecture Notes in Computer Science, pages 28–40. Springer, 2003.

[10] Laura Bocchi, José Luiz Fiadeiro, and Antónia Lopes. A Use-Case Driven Ap-
proach to Formal Service-Oriented Modelling. In Tiziana Margaria and Bernhard
Steffen, editors, ISoLA, volume 17 of Communications in Computer and Informa-
tion Science, pages 155–169. Springer, 2008.

[11] Laura Bocchi, José Luiz Fiadeiro, and Antónia Lopes. Service-Oriented Modelling
of Automotive Systems. In COMPSAC, pages 1059–1064. IEEE Computer Soci-
ety, 2008.

[12] Laura Bocchi, Stephen Gorton, and Stephan Reiff-Marganiec. Engineering Service
Oriented Applications: From StPowla Processes to SRML Models. In José Luiz
Fiadeiro and Paola Inverardi, editors, FASE, volume 4961 of Lecture Notes in Com-
puter Science, pages 163–178. Springer, 2008.

[13] Laura Bocchi, Stephen Gorton, and Stephan Reiff-Marganiec. From StPowla pro-
cesses to SRML models. Formal Asp. Comput., 22(3-4):243–268, 2010.

[14] Laura Bocchi, Yi Hong, Antónia Lopes, and José Luiz Fiadeiro. From BPEL to
SRML: A Formal Transformational Approach. In Dumas and Heckel [24], pages
92–107.

[15] Laura Bocchi, Cosimo Laneve, and Gianluigi Zavattaro. A Calculus for Long-
Running Transactions. In Elie Najm, Uwe Nestmann, and Perdita Stevens, editors,
FMOODS, volume 2884 of Lecture Notes in Computer Science, pages 124–138.
Springer, 2003.

[16] Mario Bravetti and Gianluigi Zavattaro. Service Oriented Computing: A New
Challenge for Process Algebras. Electr. Notes Theor. Comput. Sci., 162:121–125,
2006.

[17] Christoph Bussler, Richard Hull, Sheila A. McIlraith, Maria E. Orlowska, Bar-
bara Pernici, and Jian Yang, editors. Web Services, E-Business, and the Semantic
Web, CAiSE 2002 International Workshop, WES 2002, Toronto, Canada, May 27-
28, 2002, Revised Papers, volume 2512 of Lecture Notes in Computer Science.
Springer, 2002.

[18] Luı́s Caires, Carla Ferreira, and Hugo Torres Vieira. A Process Calculus Analysis
of Compensations. In Christos Kaklamanis and Flemming Nielson, editors, TGC,
volume 5474 of Lecture Notes in Computer Science, pages 87–103. Springer, 2008.

[19] Fabio Casati, Eric Shan, Umeshwar Dayal, and Ming-Chien Shan. Business-
oriented management of Web services. Commun. ACM, 46(10):55–60, 2003.

[20] Anis Charfi and Mira Mezini. AO4BPEL: An Aspect-oriented Extension to BPEL.
In World Wide Web, pages 309–344, 2007.

Bibliography 195

[21] Jean-Philip Pritchard Colin Armistead and Simon Machin. Strategic Business
Process Management for Organisational Effectiveness. Long Range Planning,
32(1):96–106, March 1999.

[22] Andrea Corradini and Reiko Heckel. Graph Transformation and Visual Modeling
Techniques: Workshop Summary and HowTo. Bulletin of the EATCS, 72:69–76,
2000.

[23] Carine Courbis and Anthony Finkelstein. Towards an Aspect Weaving BPEL en-
gine. In Y. Coady and D. H. Lorenz, editors, the Third AOSD Workshop on As-
pects, Components, and Patterns for Infrastructure Software, Lancaster, United
Kingdom, March 2004.

[24] Marlon Dumas and Reiko Heckel, editors. Web Services and Formal Methods,
4th International Workshop, WS-FM 2007, Brisbane, Australia, September 28-29,
2007. Proceedings, volume 4937 of Lecture Notes in Computer Science. Springer,
2008.

[25] Marlon Dumas and Arthur H. M. ter Hofstede. UML Activity Diagrams as a Work-
flow Specification Language. In Martin Gogolla and Cris Kobryn, editors, UML,
volume 2185 of Lecture Notes in Computer Science, pages 76–90. Springer, 2001.

[26] Rik Eshuis. Semantics and Verification of UML Activity Diagrams for Workflow
Modelling. PhD thesis, University of Twente, 2002.

[27] Rik Eshuis and Roel Wieringa. A Formal Semantics for UML Activity Diagrams.
Technical Report TR-CTIT-01-04, Centre for Telematics and Information Technol-
ogy, University of Twente, 2001.

[28] Rik Eshuis and Roel Wieringa. A Real-Time Execution Semantics for UML Activ-
ity Diagrams. In Heinrich Hußmann, editor, FASE, volume 2029 of Lecture Notes
in Computer Science, pages 76–90. Springer, 2001.

[29] José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. A Formal Approach to
Service Component Architecture. In Mario Bravetti, Manuel Núñez, and Gianluigi
Zavattaro, editors, WS-FM, volume 4184 of Lecture Notes in Computer Science,
pages 193–213. Springer, 2006.

[30] José Luiz Fiadeiro, Antónia Lopes, Laura Bocchi, and João Abreu. A Formal
Approach to Service-Oriented Modelling. University of Leicester, 2009. A com-
prehensive account of SRML.

[31] National Institute for Standards and Technology. http://csrc.nist.gov/

groups/SNS/cloud-computing/index.html. accessed 15 April 2011.

[32] Organisation for the Advancement of Structured Information Standards. Web
Services Business Process Execution Language Version 2.0. http://docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, April 2007. Accessed on
16 April 2011.

Bibliography 196

[33] Xiang Fu, Tevfik Bultan, and Jianwen Su. Formal Verification of e-Services and
Workflows. In Bussler et al. [17], pages 188–202.

[34] Stefania Gnesi and Franco Mazzanti. A model checking verification environment
for UML statecharts. In AICA, Udine 2005, 5-7 October 2005.

[35] Nicolas Gold, Andrew Mohan, Claire Knight, and Malcolm Munro. Understanding
Service-Oriented Software. IEEE Software, 0740-7459(04):71–77, March/April
2004.

[36] Stephen Gorton, Carlo Montangero, Stephan Reiff-Marganiec, and Laura Semini.
StPowla: SOA, Policies and Workflows. In Nitto and Ripeanu [63], pages 351–
362.

[37] Stephen Gorton and Stephan Reiff-Marganiec. Policy Support for Business-
oriented Web Service Management. In J. Alfredo Sánchez, editor, LA-WEB, pages
199–202. IEEE Computer Society, 2006.

[38] Stephen Gorton and Stephan Reiff-Marganiec. Towards a Task-Oriented, Policy-
Driven Business Requirements Specification for Web Services. In Schahram Dust-
dar, José Luiz Fiadeiro, and Amit P. Sheth, editors, Business Process Management,
volume 4102 of Lecture Notes in Computer Science, pages 465–470. Springer,
2006.

[39] Stephen Gorton and Stephan Reiff-Marganiec. Towards a Task-Oriented, Policy-
Driven Business Requirements Specification for Web Services. Research Reports
in Computer Science 009, University of Leicester, 2006.

[40] Stephen Gorton and Stephan Reiff-Marganiec. Policy-driven Business Manage-
ment over Web Services. In Integrated Network Management, pages 721–724.
IEEE, 2007.

[41] Stephen Gorton and Stephan Reiff-Marganiec. Towards Feature Interactions in
Business Processes. In Lydie du Bousquet and Jean-Luc Richier, editors, ICFI,
pages 99–113. IOS Press, 2007.

[42] Business Rules Group. Defining Business Rules - What Are They Re-
ally? http://www.businessrulesgroup.org/first_paper/br01c0.htm,
July 2000. Accessed on 16 April 2011.

[43] Claus Hagen and Gustavo Alonso. Exception Handling in Workflow Management
Systems. IEEE Trans. Software Eng., 26(10):943–958, 2000.

[44] Rachid Hamadi and Boualem Benatallah. A Petri Net-based Model for Web Ser-
vice Composition. In Klaus-Dieter Schewe and Xiaofang Zhou, editors, ADC,
volume 17 of CRPIT, pages 191–200. Australian Computer Society, 2003.

[45] Michael Hammer. Reengineering Work: Don’t Automate, Obliterate. Harvard
Business Review, pages 104–112, July/August 1990.

Bibliography 197

[46] Reiko Heckel. A Formal Approach to Service Specification and Matching based on
Graph Transformation. 4th International Workshop on Web Services and Formal
Methods WSFM-2004, 2004. Included in slides based on a presented paper.

[47] Reiko Heckel. Stochastic Analysis of Graph Transformation Systems: A Case
Study in P2P Networks. In Dan Van Hung and Martin Wirsing, editors, Proc. Intl.
Colloquium on Theoretical Aspects of Computing (ICTAC’05), Hanoi, Vietnam,
volume 3722. Springer-Verlag, October 2005. Invited paper.

[48] Sebastian Hinz, Karsten Schmidt 0004, and Christian Stahl. Transforming BPEL
to Petri Nets. In Wil M. P. van der Aalst, Boualem Benatallah, Fabio Casati, and
Francisco Curbera, editors, Business Process Management, volume 3649, pages
220–235, 2005.

[49] Hugo Haas and Allen Brown. Web Services Glossary. W3C Working Group
Note, World Wide Web Consortium (W3C), 2004. http://www.w3.org/TR/
ws-gloss/.

[50] IBM. IBM Solutions Grid for Business Partners. http://joung.im.ntu.edu.
tw/teaching/distributed_systems/documents/IBM_grid_wp.pdf,
March 2002. accessed 15 April 2011.

[51] Ivar Jacobson, Grady Booch, and James Rambaugh. The Unified Software Devel-
opment Process. Addison-Wesley Longman, 1998.

[52] Faouzi Kamoun. A Roadmap towards the Convergence of Business Process Man-
agement and Service Oriented Architecture. Ubiquity, 2007(April):1–1, 2007.

[53] Dimka Karastoyanova and Frank Leymann. BPEL’n’Aspects: Adapting Service
Orchestration Logic. In ICWS, pages 222–229. IEEE, 2009.

[54] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In ECOOP, pages 220–242, 1997.

[55] Vadim Kotov. Towards Service-Centric System Organization. Technical Report
HPL-2001-54, Hewlett Packard, 2001. Accessed on 15 April 2011.

[56] Akhil Kumar and J. Leon Zhao. Workflow support for electronic commerce appli-
cations. Decision Support Systems, 32(3):265–278, 2002.

[57] Frank Leymann. Web Service Flow Language. Technical report, IBM
Software Group, 2001. http://www-306.ibm.com/software/solutions/

webservices/pdf/WSFL.pdf.

[58] Antónia Lopes, José Luiz Fiadeiro, and Laura Bocchi. Algebraic Semantics of
Service Component Modules. In Algebraic Development Techniques, volume 4409
of Lecture Notes in Computer Science, pages 37–55. Springer, 2007.

[59] Emil Lupu and Morris Sloman. Conflicts in Policy-Based Distributed Systems
Management. IEEE Trans. Software Eng., 25(6):852–869, 1999.

Bibliography 198

[60] Carlo Montangero, Stephan Reiff-Marganiec, and Laura Semini. Logic-based Con-
flict Detection for Distributed Policies. Fundam. Inform., 89(4):511–538, 2008.

[61] Robert Müller, Ulrike Greiner, and Erhard Rahm. Agentwork: a workflow system
supporting rule-based workflow adaptation. Data Knowl. Eng., 51(2):223–256,
2004.

[62] Surya Nepal, Alan Fekete, Paul Greenfield, Julian Jang, Dean Kuo, and Tony Shi.
A service-oriented workflow language for robust interacting applications. In Robert
Meersman, Zahir Tari, Mohand-Said Hacid, John Mylopoulos, Barbara Pernici,
Özalp Babaoglu, Hans-Arno Jacobsen, Joseph P. Loyall, Michael Kifer, and Ste-
fano Spaccapietra, editors, OTM Conferences (1), volume 3760 of Lecture Notes in
Computer Science, pages 40–58. Springer, 2005.

[63] Elisabetta Di Nitto and Matei Ripeanu, editors. Service-Oriented Computing - IC-
SOC 2007 Workshops, International Workshops, Vienna, Austria, September 17,
2007, Revised Selected Papers, volume 4907 of Lecture Notes in Computer Sci-
ence. Springer, 2009.

[64] Jasmine Noel. BPM and SOA: Better Together. IBM White Paper, IBM Corpo-
ration, 2005. http://www.findwhitepapers.com/docs/vendors/IBM/BPM\
%20SOA\%20BetterTogether\%20-\%20Offer.pdf.

[65] Object Management Group (OMG). Business Process Model and Notation
(BPMN) Specification, August 2009. http://www.omg.org/spec/BPMN/Current.

[66] David O’Riordan. Business Process Standards for Web Services. http://www.
webservicesarchitect.com/content/articles/oriordan01.asp. Ac-
cessed on 16 April 2011.

[67] Justin O’Sullivan, David Edmond, and Arthur H. M. ter Hofstede. What’s in a
Service? Distributed and Parallel Databases, 12(2/3):117–133, 2002.

[68] Chun Ouyang, Marlon Dumas, Arthur H. M. ter Hofstede, and WilM. P. van der
Aalst. From BPMN Process Models to BPEL Web Services. In ICWS, pages 285–
292. IEEE Computer Society, 2006.

[69] Flavio De Paoli, Andrea Maurino, Ioan Toma, Justin O’Sullivan, Marcel Tilly,
and Glen Dobson. Non-Functional Properties and Service Level Agreements in
Service-Oriented Computing (NFPSLA-SOC ’07) - Organizers’ Workshop Sum-
mary. In Nitto and Ripeanu [63], pages 43–44.

[70] Maja Pesic and Wil M. P. van der Aalst. A Declarative Approach for Flexible
Business Processes Management. In Johann Eder and Schahram Dustdar, editors,
Business Process Management Workshops, volume 4103 of Lecture Notes in Com-
puter Science, pages 169–180. Springer, 2006.

[71] Jan Recker and Jan Mendling. On the Translation between BPMN and BPEL:
Conceptual Mismatch between Process Modeling Languages. In Thiband Latour
and Michaël Petit, editors, EMMSAD, pages 521–532. IEEE Computer Society,
2006.

Bibliography 199

[72] Manfred Reichert and Peter Dadam. ADEPTflex-Supporting Dynamic Changes of
Workflows Without Losing Control. J. Intell. Inf. Syst., 10(2):93–129, 1998.

[73] Stephan Reiff-Marganiec and Kenneth J. Turner. Use of Logic to Describe En-
hanced Communications Services. In Doron Peled and Moshe Y. Vardi, editors,
FORTE, volume 2529 of Lecture Notes in Computer Science, pages 130–145.
Springer, 2002.

[74] Stephan Reiff-Marganiec and Kenneth J. Turner. Feature Interaction in Policies.
Computer Networks, 45(5):569–584, 2004.

[75] Stephan Reiff-Marganiec, Kenneth J. Turner, and Lynne Blair. Appel: The Accent
Policy Environment/Language. Technical Report CSM-164, University of Stirling,
Jun 2005.

[76] Dirk Riehle and Heinz Züllighoven. Understanding and Using Patterns in Software
Development. TAPOS, 2(1):3–13, 1996.

[77] Florian Rosenberg and Schahram Dustdar. Business Rules Integration in BPEL -
A Service-Oriented Approach. In CEC, pages 476–479. IEEE Computer Society,
2005.

[78] Nick Russell, Arthur H.M. ter Hofstede, Wil M.P. van der Aalst, and Nataliya
Mulyar. Workflow Control-Flow Patterns: A Revised View. Technical Report
BPM-06-22, BPM Center, 2006.

[79] Wasim Sadiq, Olivera Marjanovic, and Maria E. Orlowska. Managing Change and
Time in Dynamic Workflow Processes. Int. J. Cooperative Inf. Syst., 9(1-2):93–
116, 2000.

[80] Christian Stahl. A Petri Net Semantics for BPEL. Technical report, University,
2004.

[81] Stefano Bistarelli and Ugo Montanari and Francesca Rossi. Semiring-based con-
straint satisfaction and optimization. J. ACM, 44(2):201–236, 1997.

[82] Christian Stefansen. SMAWL: A SMAll Workflow Language Based on CCS. In
Oscar Pastor and João Falcão e Cunha, editors, CAiSE Short Paper Proceedings,
volume 3520 of Lecture Notes in Computer Science. Springer, 2005.

[83] Harald Störrle. Semantics of Control-Flow in UML 2.0 Activities. In VL/HCC,
pages 235–242. IEEE Computer Society, 2004.

[84] Harald Störrle and Jan Hendrik Hausmann. Towards a Formal Semantics of UML
2.0 Activities. In Peter Liggesmeyer, Klaus Pohl, and Michael Goedicke, editors,
Software Engineering, volume 64 of LNI, pages 117–128. GI, 2005.

[85] Stefan Tai, Rania Khalaf, and Thomas A. Mikalsen. Composition of Coordinated
Web Services. In Hans-Arno Jacobsen, editor, Middleware, volume 3231 of Lec-
ture Notes in Computer Science, pages 294–310. Springer, 2004.

Bibliography 200

[86] Satish Thatte. XLANG. Microsoft Corporation. http://www.gotdotnet.com/
team/xml$_$wsspecs/xlang-c/default.htm.

[87] Kenneth J. Turner. The Accent Policy Wizard. Technical Report CSM-166, Uni-
versity of Stirling, December 2005.

[88] Moe Thandar Tut and David Edmond. The Use of Patterns in Service Composition.
In Bussler et al. [17], pages 28–40.

[89] Wil M. P. van der Aalst, Alistair P. Barros, Arthur H. M. ter Hofstede, and Bartek
Kiepuszewski. Advanced Workflow Patterns. In Opher Etzion and Peter Scheuer-
mann, editors, CoopIS, volume 1901 of Lecture Notes in Computer Science, pages
18–29. Springer, 2000.

[90] Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter Hofstede. Web
Service Composition Languages: Old Wine in New Bottles? In EUROMICRO,
pages 298–307. IEEE Computer Society, 2003.

[91] Wil M P van der Aalst and Stefan Jablonski. Dealing with Workflow Change:
Identification of Issues and Solutions. International Journal of Computer Systems
Science and Engineering, 15(5):267–276, September 2000.

[92] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: Yet Another
Workflow Language. Inf. Syst., 30(4):245–275, 2005.

[93] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alis-
tair P. Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51,
2003.

[94] Aad P. A. van Moorsel. Ten-Step Survival Guide for the Emerging Business Web.
In Bussler et al. [17], pages 1–11.

[95] Dániel Varró. Towards Symbolic Analysis of Visual Modeling Languages. Electr.
Notes Theor. Comput. Sci., 72(3), 2003.

[96] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad
Yendluri, Toufic Boubez, and Umit Yalconalp. Web Services Policy 1.5 - Frame-
work. http://www.w3.org/TR/ws-policy/, September 2007. Accessed on 16
April 2011.

[97] Harry Jiannan Wang. A Logic-based Methodology for Business Process Analysis
and Design: Linking Business Policies to Workflow Models. PhD thesis, University
of Arizona, 2006.

[98] Stephen A. White. Using BPMN to model a BPEL Process. BPTrends, 2005.
http://www.bptrends.com, accessed on 15/03/06.

[99] Arthur H.M. ter Hofstede Wil M.P. van der Aalst, Marlon Dumas and Petia Wohed.
Pattern-Based Analysis of BPML (and WSCI). Technical Report FIT-TR-2002-05,
Queensland University of Technology, 2002.

Bibliography 201

[100] Martin Wirsing, Laura Bocchi, Allan Clark, José Luiz Fiadeiro, Stephen Gilmore,
Matthias Hölzl, Nora Koch, and Rosario Pugliese. SENSORIA: Engineering for
Service-Oriented Overlay Computers. MIT, June 2007.

[101] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter Hofst-
ede. Analysis of Web Services Composition Languages: The Case of BPEL4WS.
In Il-Yeol Song, Stephen W. Liddle, Tok Wang Ling, and Peter Scheuermann, ed-
itors, ER, volume 2813 of Lecture Notes in Computer Science, pages 200–215.
Springer, 2003.

[102] Dong Yang and Shen sheng Zhang. Using π-calculus to Formalize UML Activity
Diagrams. In ECBS, pages 47–54. IEEE Computer Society, 2003.

[103] Hong Qing Yu and Stephan Reiff-Marganiec. A Method for Automated Web Ser-
vice Selection. In SERVICES I, pages 513–520. IEEE Computer Society, 2008.

[104] Hong Qing Yu and Stephan Reiff-Marganiec. A Backwards Composition Context
Based Service Selection Approach for Service Composition. In IEEE SCC, pages
419–426. IEEE Computer Society, 2009.

[105] Hong Qing Yu and Stephan Reiff-Marganiec. Automated Context-Aware Service
Selection for Collaborative Systems. In Pascal van Eck, Jaap Gordijn, and Roel
Wieringa, editors, CAiSE, volume 5565 of Lecture Notes in Computer Science,
pages 261–274. Springer, 2009.

