
Extending a Policy Language in a Structured
way using Model Driven Techniques

Zohra Ahsan Khowaja and Stephan Reiff-Marganiec

Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{zak4, srm13}@le.ac.uk

Abstract. Policy languages have been used for a variety of applications
in software systems – usually each application has received its own lan-
guage. An example of a policy language that has been designed with do-
main specialization in mind is Appel, however so far no structured way
for domain specialization has been designed. In this paper we use model
driven design techniques, in particular parameterization, to present a
framework for providing said structured way for adopting/extending Ap-
pel to a specific domain. We exemplify the approach with a case study.

1 Introduction and Motivation

Policies are descriptive and provide information which can be used to modify
the behaviour of a system without the need of recompilation and deployment
[1]. They are usually written in a policy description language (PDL) which allows
end users to specify their requirements, preferences and constraints [2] and are
used in software application areas such as e-commerce, network management and
access control where specific languages are developed for each area. Appel (the
Adaptable Programmable Policy Environment Language)[3] is a generic PDL
which can be used in a variety of application domains once a domain extension
has been defined.

Concerns about policy languages in addition to being domain specific, include
simplicity and analysability. Using models will aid with analysing policies, e.g. for
policy conflict [4], as some issues can be addressed at more abstract model levels
and will then automatically hold for all specializations.

Typically new languages (or language variants) are developed in a pragmatic
way when a new domain is being addressed, which clearly is a shortcoming.
Furthermore specializations are often quite refined in order to enable end users
to write meaningful policies – we shall see in the example that they are not just
for the domain, but actually much closer to an application level.

In this paper we us a model driven development approach to develop a frame-
work for extensions of policy languages in a structured way – hence the main
contribution is applying existing model driven techniques in a what we believe a
new domain. We will use the Appel language as an example, and use the process
of parametrization twice, first to specialize Appel with domain concepts in the
Workflow and SoA domain and then for bringing the concepts of a particular
application into the language.

2 Background

Appel [3] is a general language for expressing policies in variety of application
domains. It is conceived with a clear separation between core language and
specialization for concrete domains. Appel is designed for end users; its style is
close to natural language permitting ordinary user to formulate policies.

Appel has been developed for call control but has since been used for a num-
ber of other domains, including sensor networks and service oriented architecture
(SoA)[5]. Each time the specialization has been ad-hoc.

StPowla (Service Target Policy Workflow Approach) [5] addresses the in-
tegration of business processes, policies and SoA at a high level of abstraction.
It captures essential requirements at a business level in the form of workflows
and the variability in terms of policies that are expressed in a language close to
the business goals. The domain specialisation is for workflows, but clearly those
and the policies themselves need to also talk about application specific concepts:
for example banking applications differ from traffic management.

The syntax of the ad-hoc extension to Appel used in StPowla introduces
special tigger events such as task entry notifying of starting a task in the work-
flow and specific actions, e.g. req(, ,) which takes three arguments: the type
of Service (i.e. the basic functionality), a list of service parameters and a service
level requirement both of which are application specific. There are further addi-
tional triggers and actions that can be used in policies; these are not application
but rather workflow domain specific (for details see [6]).

Model Driven Development (MDA) provides a conceptual framework for us-
ing models and applying transformations thus allowing to understand complex
ideas while providing reuse of common approaches [7]. Models can be used as
concrete artefacts [8] and be subjected to operations such as construction, pro-
jection and transformation. In particular, meta models allow the definition of
models by specifying abstract and concrete syntax as well as semantics of a
problem domain. Parameterization allows for a metamodel to be enriched by
means of another metamodel, or in our case the core language model can be
specialised for domains that are modelled seperately.

3 Metamodel for APPEL Policy Language

The Appel policy language has been designed with extensibility and domain
customization in mind. So far extension have been rather ad-hoc. This section
formalizes Appel by providing a metamodel as a basis for structured extensions.
The core language defines the basic constructs needed in all policies such as
triggers, conditions and actions and their relationships. The details are left for
later definition as required for a particular domain. We use the core concepts of
Appel to design a metamodel for Appel, shown in Fig. 1. A policy contains
a policy rule group, that contains one or more policy rules. Policy rules can be
combined with operators (g:guarded, u:unguarded, par:parallel, seq: sequential).
Each policy rule consists of triggers, conditions and actions, where triggers and
conditions are optional. A policy rule is applicable if its trigger occurred and its

condition is satisfied (if no trigger or condition is specified they are considered
to be trivially true). Triggers, conditions and actions occur in both simple and
complex forms where the latter are obtained using specific operators. Addition-
ally policies are assigned a location, the exact semantics of this depends on the
domain (for workflows a task forms a suitable location).

Policy

+policyId: String

+owner: String

+enabled: Boolean

+changed: Date

Policy_Rule_Group

+name: String

pol_rule_group

0..*

Policy_Rule

+name: String

polrule

0..*

Triggers

+name: String

Conditions

Actions

triggers

+0..*

conditions

+0..*

actions

+1..*

Location

appliesTo

+1..*

Triggertrigger +0..*

Condition

condition

+0..*

Action

action

+0..*

Op

operator

+0..*

ActionOp

actionOp

+0..*

policy

0..*

pol_rule_group

0..*

triggers

0..*

actions
0..*

conditions

0..*

conds

0..*

Template tam

U

g

Par

Seq

and or

andthen orelse

Fig. 1. APPEL Metamodel

Business_ Objectives

Task

+name: String

task

1..*

TaskType

trigger

+name

when

TaskEntry

TaskEnd

AnError

AttributestaskAttributes 0..*

SLA

uses

SlaDim* *

Request

+condition

do

1..*
conditioncheck0..*

1

+sla

1..*

service

offers

1

1

refinement reconfigration

Insert Delete

Fig. 2. Domain Model: Service Oriented
Business Process

4 PDL Specialisation for Domains and Applications

A domain is an area giving specific meaning to a set of concepts and terminology.
A policy language needs vocabulary to reflect this, typically actions and triggers
are specific to the domain. When Appel has been extended to deal with work-
flows, new concepts have been made available, e.g. “task entry” as a trigger.
The domain specialization to workflows needs a domain model for workflows to
be composed with Appel. However, the case of workflows brings a very inter-
esting item to be: What is an action at domain level? Leeting it simply be the
execution of a task is not of much use to the practioner who requires concepts
from a specific application domain and hence specialization beyond “workflows”
is needed to express e.g “the booking of a hotel” or “payment for a car repair”.

Clearly this argument is not restricted to actions, but applies to other ele-
ments as well. We refer to this second level of specialization as application, but
it is again just a model composition. Based on this argument, we will now con-
sider model composition by parameterization and apply this twice to specialize
a policy language: first to make the language domain specific, then to add the
specific concepts for an application domain.

The Appel core language leaves the details of triggers, conditions and ac-
tions undefined, leaving a need to specialize these with domain concepts. This
is achieved by defining the domain concept as a metamodel which is then used
as a parameter to the Appel metamodel, to produce a target model using a

standard composition approach. In general, parameterization results in some el-
ements in a model being refine by concepts from another model. The process of
parameterization [9] can be defined in terms of the Appel policy language as:

tm = am[tam
φ←− dm,Fdm].

The metamodel of the APPEL policy language am is represented in Fig. 1.
We consider the elements location, trigger, condition and action as template
tam – they are the places where the Appel core language is specialised to a
new domain. The domain model dm is represented in Fig. 2 . The operator φ
replaces elements of tam by dm as follows1:

φ : {< Location, Task >,< tam.Trigger, dm.Trigger >,
< tam.Condition, dm.Condition >,< Action,Request >}

By applying φ elements in the am are replaced resulting in an Appel model
specialized for the Business Workflows domain tm.

The domain model represented in Fig. 2 represents the concepts of service ori-
ented business processes. These concepts are abstract at this stage, for example
TaskType cannot be defined at this level and attributes also come from specific
application domains. The model tm can be enriched by filling these further gaps
with concepts from the specific application.

In this paper we consider an On Road Assistant scenario from the SENSORIA
project as an application model, but the technique is general for any application
domain. In brief the scenario is as follows: The diagnostic system of a car engine
reports a severe failure in the engine, for example a low oil level. This triggers
sending of a message with the diagnostic data and the vehicles GPS data to
a service centre. Based on availability and the drivers preferences, the service
discovery system identifies and selects the appropriate services for garages, tow
trucks and rental cars in the area. An appointment is booked with the garage, a
towing service is identified and notified to attend to the problem and to tow to
the selected garage. The example introduces many domain concepts and these
are modeled as in Fig. 4.

In order to specialize the target model tm with the application we have to
repeat the process of parameterization to bring the concepts of the application
into the language. The final model fm is shown in Fig. 3.

The following policy is a typical example of a policy – it is a policy that refers
to the example workflow (Figure 5) where it attaches to the OrderGarage task
and expresses that if the car fault happens in the driver’s home town the driver
will select the garage, otherwise one is chosen automatically:

Policy P1 appliesTo OrderGarage

when taskEntry if location=myTown do req (main, [], [Automation = interactive])

seq

when taskEntry do req (main, [], [Automation = Automatic])

The policy contains some core concepts (e.g. when, if and do), some workflow
specific (aka domain) concepts (taskEntry and req) but also some application
specific terms (OrderGarage, the automation attribute and also the fact that
location inside conditions applies to geographic locations). The language gener-

1 Some of the elements names occur in both the tam and dm model so we reference
by prefixing the model using common notation of < model.element >

Policy

+policyId: String

+owner: String

+enabled: Boolean

+changed: Date

Policy_Rule_Group

+name: String

pol_rule_group

0..*

Policy_Rule

+name: String

polrule

0..*

Triggers

+name: String

Conditions

Actions

triggers

+0..*

conditions

+0..*

actions

+1..*

appliesTo +1..*

trigger
+0..*

condition

+0..*

action

+0..*

actionOp

+0..*

policy

0..*

pol_rule_group

0..*

triggers

0..*

actions
0..*

conditions

0..*

conds

0..*

Business_ Objectives

Task

+name: String

task
1..*

trigger

+name

when

TaskEntry

TaskEnd

AnError

taskAttributes
0..*

SLA

uses

SlaDim * *

Request

+condition

condition

1

+sla

1..*

service

offers

1

1

refinement reconfigration

Insert Delete

check

0..*
do

1..*

Vehicle

+owner: String

+model: String

+number: String

+Registration: Date
Location

+Town: String

+Street: String

+PostCode: String

+failesat

1

RepairServices

+name: String

Garage TowTruck RentalCar

+requestFor

0..*

CardCharge

+owner: String

+type: Sting

+cardnumber: String

+scode: Integer

cardcharge

1..*

Fault

+typeOfFault: String

faults0..*

Op

U

g

Par

Seq

operator
+0..*

ActionOpand or

andthen orelse

Fig. 3. Appel with Specific Domain and Application

Vehicle

+owner: String

+model: String

+number: String

+Registration: Date

Location

+Town: String

+Street: String

+PostCode: String

+failesat

1

RepairServices

+name: String

Garage TowTruck RentalCar

+requestFor

0..*

CardCharge

+owner: String

+type: Sting

+cardnumber: String

+scode: Integer

cardcharge 1..*

Fault

+typeOfFault: String
faults

0..*

Fig. 4. Application Model: On Road Assis-
tant scenario

start

RequestVehicleRepairServices

CardCharge

OrderGarage

OrgerTowTruck

RejectRequest

OrderCarRental

end

end

yes no

Fig. 5. Workflow: Car Repair Scenario

ated through the two levels of parameterization introduced earlier allows for the
specification of exactly these policies.

5 Related Work

Model composition techniques are use in many approaches. The metamodel
merge method represented in [10] composes two modeling languages, the con-
structs of the two languages share a set of real world entities, those concepts
are used as join points to stitch the two languages together into a unified whole.
This method is of course very close to what we have used in the paper.

The conceptual framework and methodology presented in [9] allows the cre-
ation of DSMLs (domain specific modelling languages) for prototyping and veri-
fication. This represents the concepts and framework of metamodel extension by

parameterization. Our approach is inspired by the mechanism, but we have to
apply the parameterization process several times to get the required metamodel.

[11] introduces a generic policy model where specific PDLs are created as sim-
ple extensions of this model. They represents the core concepts of the languages
but do not propose an approach or methodology for extending the languages.
Our approach is applied to a specific policy language (albeit it will be transfer-
able to other such languages) and focuses on providing a structured approach
for tailoring this to specific domains and applications.

6 Conclusion and Future Work

We have presented a framework for using parameterization to specialize general
purpose policy languages in a structured way. This has been employed to spe-
cialize a specific language (Appel) to the domain of workflows and then further
for specific applications in this domain (we presented a car repair scenario as a
sample). What is possibly unique about policy languages is that they are usually
created in rather ad-hoc ways for specific application domains. What we think
is also quite interesting is the two levels of domain specialization required.

In future work we will consider how the models can be used to provide tools
for policy editing in standard ways. More interestingly, we believe that certain
aspects of policy conflict can be identified at the model level and dealt with in
the abstract. This aspect will deserve some future consideration.

References

1. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management.
IEEE Transactions on software engineering 25(6) (1999) 852–869

2. Gorton, S., Reiff-Marganiec, S.: Policy-driven Business Management over Web
Services. Integrated Network Management, 2007 (2007)

3. Reiff-Marganiec, S., Turner, K.J., Blair, L.: Appel: The accent policy environ-
ment/language. Technical Report CSM-164, University of Stirling (2005)

4. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-based conflict detection for
distributed policies. Fundam. Inform. 89(4) (2008) 511–538

5. Gorton, S., Montangero, C., Reiff-Marganiec, S., Semini, L.: StPowla: SOA, Policies
and Workflows. Lecture Notes In Computer Science (2009) 351–362

6. Bocchi, L., Gorton, S., Reiff-Marganiec, S.: From StPowla processes to SRML
models. Formal Aspects of Computing (2009)

7. Brown, A.: An Introduction to Model Driven Architecture. Website (2004) http:

//www.ibm.com/developerworks/rational/library/3100.html.
8. Muller, A., Caron, O., Carre, B., Vanwormhoudt, G.: On some properties of pa-

rameterized model application. Lecture Notes in Computer Science (2005) 130–144
9. Pedro, L.V., Amaral, V., Buchs, D.: Foundations for a domain specific model-

ing language prototyping environment: A compositional approach. In: Proc. 8th
OOPSLA ACM-SIGPLAN Workshop on Domain-Specific Modeling (DSM). (2008)

10. Emerson, M., Sztipanovits, J.: Techniques for metamodel composition. In: 6th
OOPSLA Workshop on Domain-Specific Modeling (DSM06). (2006) 123

11. Verlaenen, K., De Win, B., Joosen, W.: Towards simplified specification of poli-
cies in different domains. In: Integrated Network Management, 2007. IM’07. 10th
IFIP/IEEE International Symposium on. (2007) 20–29

