
Genetic Algorithms with Memory- and Elitism-
Based Immigrants in Dynamic Environments

Shengxiang Yang s.yang@mcs.le.ac.uk
Department of Computer Science, University of Leicester, University Road, Leicester
LE1 7RH, UK

Abstract
In recent years the genetic algorithm community has shown a growing interest in
studying dynamic optimization problems. Several approaches have been devised. The
random immigrants and memory schemes are two major ones. The random immigrants
scheme addresses dynamic environments by maintaining the population diversity
while the memory scheme aims to adapt genetic algorithms quickly to new environ-
ments by reusing historical information. This paper investigates a hybrid memory and
random immigrants scheme, called memory-based immigrants, and a hybrid elitism
and random immigrants scheme, called elitism-based immigrants, for genetic algo-
rithms in dynamic environments. In these schemes, the best individual from memory
or the elite from the previous generation is retrieved as the base to create immigrants
into the population by mutation. This way, not only can diversity be maintained but it
is done more efficiently to adapt genetic algorithms to the current environment. Based
on a series of systematically constructed dynamic problems, experiments are carried
out to compare genetic algorithms with the memory-based and elitism-based immi-
grants schemes against genetic algorithms with traditional memory and random im-
migrants schemes and a hybrid memory and multi-population scheme. The sensitivity
analysis regarding some key parameters is also carried out. Experimental results show
that the memory-based and elitism-based immigrants schemes efficiently improve the
performance of genetic algorithms in dynamic environments.

Keywords
Genetic algorithms, dynamic optimization problems, memory, random immigrants,
memory-based immigrants, elitism-based immigrants.

1 Introduction

Traditionally, the research and application of genetic algorithms (GAs) have been mainly
focused on stationary optimization problems (Holland, 1975; Goldberg, 1989). However,
a significant part of real world problems are in fact dynamic optimization problems
(DOPs) (Branke, 2002). For DOPs, the evaluation function and/or problem-specific
constraints, such as design variables and environmental conditions, may change over
time. Changes may occur due to many factors, such as the arrival of stochastic tasks,
machine faults, climatic modification, or economic and financial changes. DOPs pose
serious challenges to traditional GAs due to the convergence problem. Once converged,
GAs cannot adapt well to the changing environment.

In recent years investigating the performance of GAs in dynamic environments has
attracted a growing interest from the GA community. One simple way to deal with
DOPs is to regard the problem as a new one when a change occurs and restart GAs

C© 2008 by the Massachusetts Institute of Technology Evolutionary Computation 16(3): 385–416



S. Yang

from scratch. However, it could be useful in terms of computational cost to utilize the
information obtained in the current solutions to find new good solutions in the newly
changed environment. This is usually true if the new problem is closely related to the
old one. Over the years, several approaches have been developed for GAs to address dy-
namic environments (Branke, 2002; Morrison, 2004; Weicker, 2003), such as maintaining
diversity during the run via random immigrants (Grefenstette, 1992; Vavak and Fog-
arty, 1996), increasing diversity after a change (Cobb and Grefenstette, 1993; Morrison
and De Jong, 2000), using memory schemes to reuse stored useful information (Branke,
1999; Trojanowski and Michalewicz, 1999, 2000; Yang, 2005a, b), and multi-population
approaches (Branke et al., 2000). Among these approaches, random immigrants and
memory schemes have proved to be beneficial for many DOPs. Random immigrants
schemes aim to maintain the diversity of the population by replacing worst or randomly
selected individuals from the population with randomly created individuals. Memory
schemes work by implicitly using redundant representation or explicitly storing good
solutions, usually the best ones of the population, regularly during the run in an extra
memory and reusing them when the environment changes.

Recently, a hybrid random immigrant and memory approach, called memory-based
immigrants, and a hybrid random immigrants and elitism approach, called elitism-based
immigrants, have been proposed for GAs in dynamic environments with some prelim-
inary experiments and promising results in Yang (2005a, 2007). In the memory-based
immigrants scheme, the best solution in the memory is retrieved as the base to create
random immigrants to replace the worst individuals in the current population. In the
elitism-based immigrants scheme, the elite from the previous generation is retrieved as
the base to create random immigrants to replace the worst individuals in the current
population. This way, for both schemes, not only can diversity be maintained, but it is
done more efficiently to adapt GAs to the changing environment.

This paper further investigates the performance of the memory-based immigrants
and elitism-based immigrants schemes for GAs in dynamic environments. In Yang
(2005a) and Yang (2007), the memory-based immigrants and elitism-based immigrants
schemes were tested based on a set of random dynamic test problems constructed by
the DOP generator proposed (Yang, 2003; Yang and Yao, 2005) from some stationary
functions. This paper extends the experiments to a series of cyclic, cyclic with noise,
and random dynamic test environments, which are systematically constructed from
several stationary functions using the generalized DOP generator proposed (Yang and
Yao, 2008). Experiments are carried out based on these constructed DOPs to compare
the performance of GAs with the memory-based immigrants and elitism-based immi-
grants schemes against GAs with traditional random immigrants and memory schemes
and a hybrid memory and multi-population scheme (Branke, 1999). Based on the ex-
perimental results, an algorithm performance analysis with respect to the weakness
and strength of random immigrants, memory, memory-based immigrants, and elitism-
based immigrants schemes for GAs in dynamic environments was carried out. This
paper also carries out experiments on sensitivity analysis with respect to several im-
portant parameters, such as the ratio of immigrants and the degree of environmental
noise, on the performance of the investigated GAs. The effect of traditional memory and
random immigrants schemes for GAs in dynamic environments is also investigated in
this paper.

The rest of this paper is outlined as follows. The next section briefly reviews random
immigrants and memory schemes for GAs in dynamic environments and presents the
peer GAs studied in this paper. Section 3 presents the memory-based and elitism-based

386 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

Figure 1: Pseudocode for the standard GA (SGA) and the GA with random immigrants
(RIGA). Here, elitism of size one is used in both SGA and RIGA.

immigrants schemes for GAs in dynamic environments, previously proposed in Yang
(2005b) and Yang (2007), respectively. Section 4 describes the generalized DOP generator
proposed in Yang and Yao (2008) and the dynamic test environments for this study.
The experimental results and analysis, including the sensitivity analysis of relevant
parameters, are presented in Section 5. Section 6 concludes this paper with a discussion
on future work.

2 Random Immigrants and Memory Schemes

2.1 GAs with Random Immigrants

The standard GA maintains and evolves a population of candidate solutions via selec-
tion and variation. New populations are generated by first probabilistically selecting
relatively fitter individuals from the current population and then performing crossover
and mutation on them to create new offspring. This process continues until some ter-
mination condition becomes true, for example, the maximum allowable number of
generations tmax is reached. The pseudocode for the standard GA, henceforth denoted
SGA, is shown in Figure 1, where pc and pm are the crossover and mutation probabil-
ities, respectively. The elite in SGA (and other GAs studied in this paper) is updated
every generation. That is, the best individual generated in generation t is taken as the
elite at generation t , no matter whether it is better than the elite at generation t − 1 or
not.

Usually, with the iteration of SGA, individuals in the population will eventually
converge to the optimal solution(s) in stationary environments due to the selection
pressure. Convergence at a proper pace, instead of premature, may be beneficial and
in fact is expected for GAs in stationary environments. However, convergence becomes
a big problem for GAs in dynamic environments. In fact, it is the main reason why
traditional GAs do not perform well in dynamic environments. Convergence deprives
the population of genetic diversity. Consequently, when change occurs, it is hard for
GAs to adapt to the new environment. Hence, changing environments require GAs to

Evolutionary Computation Volume 16, Number 3 387



S. Yang

keep a certain level of population diversity or reintroduce diversity after a change is
detected to maintain their adaptability.

The random immigrants scheme is a quite simple and natural method to address the
convergence problem (Cobb and Grefenstette, 1993). It maintains the diversity level of
the population through substituting a portion of individuals in the current population
with random individuals (immigrants) every generation. As to which individuals in the
population should be replaced, there are two strategies: replacing random individuals
or replacing the worst ones (Vavak and Fogarty, 1996). In order to avoid the problem that
random immigrants disrupt the ongoing search progress too much, especially during
the period when the environment does not change, the ratio ri of the number of random
immigrants to the population size n is usually set to a small value, for example, 0.2.

The pseudocode of the GA with random immigrants, denoted RIGA in this paper,
is also shown in Figure 1. RIGA differs from SGA only in that after the evaluation
of the population, ri ∗ n worst individuals in the population are replaced by random
immigrants.

2.2 Memory-Enhanced GAs

While the random immigrants scheme uses random individuals to maintain the pop-
ulation diversity to adapt GAs to changing environments, the memory scheme aims
to enhance GA’s performance for DOPs in a different way. It works by storing useful
information from the current environment, either implicitly through redundant rep-
resentations (Dasgupta and McGregor, 1992; Goldberg and Smith, 1987; Lewis and
Ritchie, 1998; Ng and Wong, 1995; Uyar and Harmanci, 2005) or explicitly by storing
good (usually best) solutions of the current population in an extra memory (Branke,
1999; Louis and Xu, 1996; Mori and Nishikawa, 1997). The stored information can be
reused later in new environments. For example, for the explicit memory scheme, when
the environment changes, old solutions in the memory that fit the new environment
well will be reactivated and hence may adapt GAs to the new environment more di-
rectly than random immigrants would do. Especially, when the environment changes
cyclically, memory can work very well. This is because in cyclic dynamic environments,
with time moving forward, the environment will return to some old environment pre-
cisely and the solution in the memory, which has been optimized with respect to the
old environment, will instantaneously move the GA to the reappeared optimum of that
environment.

For explicit memory schemes, which are the concern of this paper, there are several
technical considerations: what to be stored in the memory, how to update the memory,
and how to retrieve the memory (i.e., how to reuse stored information). For the first
aspect, usually good solutions are stored and reused directly when the environment
changes (Louis and Xu, 1996; Yang, 2005c). This is called direct memory scheme. It is also
interesting to store environmental information together with good solutions, which is
called associative memory scheme. For example, Ramsey and Greffenstette (1993) devised
a GA for the robot control problem, where good solutions are stored in the memory
together with the current environmental information. When the robot comes to a new
environment similar to a stored environmental instance, the associated solution in the
memory is reactivated. In Yang (2005b) and Yang and Yao (2008), an associative mem-
ory scheme was developed for the population-based incremental learning algorithms
(Baluja, 1994) for DOPs, where the probability vector (model) is also stored and asso-
ciated with the best solution sampled from it in the memory. When the environment

388 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

changes, the stored model associated with the best reevaluated solution in the memory
is retrieved as the future working model to sample solutions for the new environment.

For the memory updating strategy, since the memory space is usually limited and
fixed for the efficiency of space usage and computational cost, it is necessary to remove
memory solutions, when it is full, to make room for new ones. A general strategy is to
select one memory point to be replaced by the best individual from the population or
to be moved toward it (Bendtsen and Krink, 2002). This can be done periodically, for
example every certain number of generations. As to which memory point should be
selected for updating, there are several memory replacement strategies. For example,
we can replace the least important one with respect to the age, contribution to diversity
and fitness, replace the one with least contribution to memory variance, replace the
most similar one if the new individual is better, or replace the less fit one of a pair of
memory points that have the minimum distance among all pairs (Branke, 1999).

For memory retrieval, a natural strategy is to use the best individual(s) in the mem-
ory to replace the worst individual(s) in the population. This can be done periodically
(e.g., every generation), or only when the environment changes.

The GA with the memory scheme studied in this paper, called memory-enhanced
GA (MEGA), is shown in Figure 2, where f (·) is the fitness function. MEGA (and other
memory based GAs studied in this paper) uses a memory of size m = 0.1 ∗ n. The
memory in MEGA is reevaluated every generation to detect environmental changes.
The environment is detected as changed if the fitness of at least one individual in the
memory has been detected to have changed its fitness. If an environmental change is
detected, the memory is merged with the old population and the best n − m individuals
are selected as an interim population to undergo standard genetic operations for a new
population while the memory remains unchanged.

The memory in MEGA is randomly initialized. Instead of updating the memory
regularly as in other memory-based GAs in the literature, the memory in MEGA is
updated in a stochastic time pattern as follows. After each memory updating, a random
integer in [5, 10] is generated to decide the next memory updating time tM . For example,
suppose a memory updating happens at generation t , then the next memory updating
time is tM = t + rand(5, 10). In order to store the most relevant information to an envi-
ronment in the memory, each time an environmental change is detected, the memory is
also updated according to the population just before the environmental change. When
the memory is due to update, if any of the randomly initialized points still exists in the
memory, the best individual of the current population (if the memory update is due to
t = tM ) or the elite from the previous population (if the memory update is because an
environmental change is detected) will replace one of them randomly; otherwise, the
best individual or the elite will replace the closest memory point if it is fitter according
to the current environment or the previous environment, respectively. It can be seen
that the most similar memory updating strategy is applied in MEGA.

2.3 GA with Memory + Random Immigrants

It is straightforward that the above discussed random immigrants and memory ap-
proaches can be combined into GAs to deal with DOPs (Trojanowski and Michalewicz,
1999). The pseudocode for the GA investigated in this paper, which combines memory
and random immigrants schemes, is also shown in Figure 2, denoted MRIGA. MRIGA
differs from MEGA only in that in MRIGA before entering the next generation, ri ∗ n

random immigrants are swapped into the population to replace the worst ones.

Evolutionary Computation Volume 16, Number 3 389



S. Yang

Figure 2: Pseudocode for the memory-enhanced GA (MEGA) and the GA with memory
and random immigrants schemes (MRIGA).

2.4 The Memory/Search Genetic Algorithm

Branke (1999, 2002) proposed a memory/search GA that combines the multi-population
and memory schemes. In this paper, a similar memory/search GA, denoted MSGA,
is also studied as a peer GA. Figure 3 shows the pseudocode of MSGA. In MSGA,
in addition to the memory, MSGA maintains two populations P1 and P2 that evolve
independently. The population sizes n1 and n2 for P1 and P2, respectively, are equally
initialized to 0.45 ∗ n, where n is the total population size, including the memory. In
order to give the better performing population more chance to search, n1 and n2 are
slightly adjusted every generation within the range of [0.3 ∗ n, 0.6 ∗ n] according to
their relative performance. The winner population wins δ = 0.05 ∗ n for its population
size from the loser; if the two populations tie, their sizes do not change. This adaptive
population size scheme was first used in Yang and Yao (2005).

As in MEGA, the memory in MSGA has a size m = 0.1 ∗ n, is randomly initialized,
and is updated in the stochastic time pattern with the most-similar updating strategy.

390 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

Figure 3: Pseudocode for the memory/search GA (MSGA).

When the memory is due to update, the best individual over P1 and P2 will replace
the closest memory solution if it is fitter than the memory solution. The memory is
reevaluated every generation. When an environmental change is detected, the memory
is merged with the old population P1 and the best individuals are selected as a new
interim population P1 with the memory unchanged. That is, only P1 retrieves the
memory and hence is called the memory population. The second population P2 is restarted
(reinitialized) when an environmental change is detected, in order to search new areas
in the search space and is hence called the search population.

3 Memory- and Elitism-Based Immigrants

3.1 The Memory-Based Immigrants Scheme

As discussed in the above section, the random immigrants approach aims to improve
GA’s performance in dynamic environments through maintaining the population di-
versity level with random immigrants and the memory approach aims to move the GA
directly to an old environment that is similar to the new one through reusing old good

Evolutionary Computation Volume 16, Number 3 391



S. Yang

Figure 4: Pseudocode for the GA with memory-based immigrants (MIGA).

solutions. These two approaches can be simply combined into GAs as in the MRIGA.
However, a more efficient approach of hybridizing memory and random immigrants for
GAs to deal with dynamic environments is the memory-based immigrants scheme pro-
posed in Yang (2005a). The pseudocode for the GA with the memory-based immigrants
scheme, denoted MIGA in this paper, is shown in Figure 4.

From Figures 4 and 2, it can be seen that MIGA uses the same memory updat-
ing scheme as MEGA and MRIGA. However, the memory retrieval does not depend
on the detection of environmental changes and is hybridized with the random im-
migrants scheme via the mutation mechanism. For every generation, the memory is
reevaluated and the best memory point BM (t) is retrieved as the base to create im-
migrants. From BM (t), a set PI (t) of ri ∗ n individuals are iteratively generated by
performing general bitwise flip mutation with a probability pi

m on BM (t). The gen-
erated individuals then act as immigrants and replace the worst ri ∗ n individuals in the
population.

The key idea behind MIGA is that the memory is used to guide the immigrants
to make them more biased to the current environment (be it a new one or not) than

392 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

Search Space

optimum
current

current best memory point random immigrants

Figure 5: Illustration of immigrants schemes for GAs in dynamic environments. The
memory-based immigrants are distributed more closely around the current optimum
than random immigrants.

random immigrants. This is illustrated in Figure 5. For the random immigrants ap-
proach, immigrants are distributed over the whole search space while for the memory-
based immigrants approach, immigrants are distributed around the base memory
point. Since the base memory point is evaluated as the best one of the memory in
the current environment (and hence may be close to the current optimum of the
dynamic problem), the immigrants created from it are distributed more precisely
around the optimum of the current environment. This bias enables the memory-based
immigrants to track the moving optima more efficiently than random immigrants
can do and hence is expected to better improve the GA’s performance in dynamic
environments.

Note that the mechanisms of diversity and memory in biology have been applied to
GAs for DOPs. For example, Simões and Costa (2003a, b) proposed an immune system
based GA (ISGA) for dynamic environments. Their ISGA maintains two populations.
The first one is the main population and evolves as follows: the individuals with the
best matches to the optimum are selected and cloned into the next generation. At times,
the best individual is stored in the second memory population and is attached a value of
the average fitness of the first population. When an environmental change is detected,
the memory individual most proximal to the new environment is activated, cloned, and
replaced into the first population. The proximity is measured by the average fitness of
the first population and the value attached to the memory individuals. A set of gene
libraries are used in ISGA, each containing a set of gene segments. During the cloning
process, an individual is subject to a transformation process with a probability (Simões
and Costa, 2001) as follows. First, one gene segment is randomly selected from one
randomly chosen gene library. Then, a transformation locus is randomly selected in the
individual and the chosen gene segment is incorporated into the individual, replacing
the genes after the transformation locus.

MIGA differs from Simões and Costa’s ISGA in two aspects. First, MIGA uses tradi-
tional crossover operators while ISGA uses the cloning scheme from biology to generate
offspring. Second, ISGA maintains an extra gene pool to provide gene materials for the
cloning process while MIGA is based on traditional memory and mutation schemes
and is more straightforward. According to our preliminary experiments, Simões and

Evolutionary Computation Volume 16, Number 3 393



S. Yang

Figure 6: Pseudocode for the elitism-based immigrants GA (EIGA).

Costa’s ISGA underperforms MIGA on most dynamic test problems studied in this
paper and underperforms other GAs investigated in this paper on many dynamic test
problems and hence will not be further discussed in this paper.

3.2 The Elitism-Based Immigrants Scheme

The traditional random immigrants approach works by inserting random individuals
into the population. This may increase the population diversity and improve the perfor-
mance of GAs in dynamic environments. However, in a slowly changing environment,
random immigrants introduced may divert the searching force of GAs during each
environment before a change occurs and hence may degrade the performance. On the
other hand, if the environment only changes slightly in terms of severity of changes,
random immigrants may not have any actual effect even when a change occurs because
individuals in the previous environment may still be quite fit in the new environment.

Based on the above consideration, an elitism-based immigrants approach was pro-
posed for GAs to address DOPs in Yang (2007). Figure 6 shows the pseudocode for
the GA with the elitism-based immigrants scheme, denoted EIGA in this paper. Within
EIGA, for each generation t , before the normal genetic operations (i.e., selection and
recombination), the elite E(t − 1) from the previous generation is used as the base to
generate a set of ri × n individuals iteratively by a bitwise mutation with a probability
pi

m, where ri is the ratio of the elitism-based immigrants to the population size. The
generated immigrants replace the worst individuals in the current population.

The elitism-based immigrants scheme combines the idea of elitism with the random
immigrants scheme. It differs from the aforementioned memory-based immigrants
scheme in that the elite from the previous population instead of the best memory
point is used to guide the immigrants toward the current environment.

Another thing to notice is the difference between EIGA and a standard GA with
a high selection pressure. In EIGA, a set of immigrants (or offspring) are created only

394 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

from the elite of the previous generation with the standard mutation. For a standard
GA, when the selection pressure is very high (e.g., when a tournament selection is used
with a tournament size much greater than two), it may also lead to several offspring
created by crossing over the elite with the elite (i.e., no effect) and then mutating it.
However, a very high selection pressure may deprive the diversity of the population
too much and hence may degrade the performance of GAs in dynamic environments.
For EIGA, the effect of the elite is limited by the ratio of immigrants (i.e., ri).

The effect of the selection pressure for a standard GA in dynamic environments
has been studied recently by Yang and Tinós (2008). Their experimental results show
that increasing the selection pressure does have an important effect on the performance
of the standard GA in dynamic environments, but whether the effect is positive or
negative depends on the dynamic problem. Their experimental results also show that
EIGA outperforms the standard GA with different levels of selection pressure and an
adaptive selection pressure scheme, called hyper-selection, on most tested DOPs. Because
of the experimental results in Yang and Tinós (2008) and also because the selection
pressure is not the main concern of this study, it will not be further studied in this
paper.

4 Dynamic Test Environments

4.1 General Dynamic Environment Generators

In order to compare the performance of the developed GA approaches in dynamic
environments, researchers have developed a number of dynamic problem generators.
Generally speaking, dynamic problems are constructed via changing (the parameters
of) stationary base problem(s). And ideally through proper control, different dynamic
environments can be constructed from the stationary base problem(s) regarding the
characteristics of the environmental dynamics, such as the frequency, severity, pre-
dictability, and cyclicity of environmental changes.

In the early days, the dynamic environment generators were quite simple and just
switch between two or more stationary problems (or states of a problem). For example,
the dynamic knapsack problem where the knapsack capacity oscillates between two or
more fixed values has been frequently used in the literature (Dasgupta and McGregor,
1992; Lewis and Ritchie, 1998; Mori and Nishikawa, 1997; Ng and Wong, 1995). Cobb and
Grefenstette (1993) used a dynamic environment that oscillates between two different
fitness landscapes. Later in 1999, several researchers independently developed several
dynamic environment generators by changing a base fitness landscape predefined in
n-dimensional real space (Branke, 1999; Grefenstette, 1999; Morrison and De Jong,
1999; Trojanowski and Michalewicz, 1999). This base landscape consists of a number of
peaks. Each peak can change its own morphology independently, such as the height,
slope and location of the peak. The center of the peak with the highest height is taken
as the optimal solution of the landscape. Dynamic problems can be created through
changing the parameters of each peak.

Recently, a dynamic problem generator based on the bitwise exclusive-or (XOR)
operator, called the XOR generator in short henceforth, was proposed in Yang (2003),
and Yang and Yao (2005). This XOR generator can construct dynamic environments from
any binary-encoded stationary function f (�x) (�x ∈ {0, 1}l where l is the length of binary
representation) as follows. Suppose the environment is periodically changed every τ

generations. For each environmental period k, an XOR mask �M(k) is first incrementally

Evolutionary Computation Volume 16, Number 3 395



S. Yang

generated as follows:

�M(k) = �M(k − 1) ⊕ �T (k) (1)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 0 = 0) and �T (k) is an inter-
mediate binary template randomly created with ρ × l ones for environmental period k.
For the first period k = 1, �M(1) is set to a zero vector. Then, the population at generation
t is evaluated as below:

f (�x, t) = f (�x ⊕ �M(k)) (2)

where k = �t/τ� is the environmental period index.
With the XOR generator, the parameter τ controls the change speed while ρ ∈ (0.0,

1.0) controls the severity of environmental changes. A bigger value of ρ implies a more
severe environmental change and hence greater challenge to GAs.

4.2 Dynamic Environment Generator for Testing Memory Schemes

In order to better test the memory schemes for GAs in dynamic environments, we need
a dynamic problem generator that can control the cyclicity of the environments con-
structed since memory schemes are expected to work well in cyclic environments. Only
under dynamic environments of varying cyclicity can the memory schemes for GAs
be fully tested and justified. The aforementioned XOR generator in fact can construct
non-cyclic dynamic environments, also called random dynamic environments in this paper,
because there is no guarantee that the environment will return to a previous one after
certain changes. Recently, the XOR generator has been extended to construct cyclic dy-
namic environments in Yang (2005c) and cyclic dynamic environments with noise further in
Yang and Yao (2008).

With the XOR generator, cyclic dynamic environments can be constructed as fol-
lows. First, we can generate 2K XOR masks �M(0), . . . , �M(2K − 1) as the base states in
the search space randomly. Then, the environment can cycle among these base states
in a fixed logical ring. Suppose the environment changes every τ generations, then the
individuals at generation t are evaluated as follows:

f (�x, t) = f (�x ⊕ �M(It )) = f (�x ⊕ �M(k%(2K))) (3)

where k = �t/τ	 is the index of current environmental period and It = k%(2K) is the
index of the base state that the environment is in at generation t .

The 2K XOR masks can be generated in the following way. First, we construct K

binary templates �T (0), . . . , �T (K − 1) that form a random partition of the search space
with each template containing ρ × l = l/K bits of ones1. Let �M(0) = �0 denote the initial
state. Then, the other XOR masks are generated iteratively as follows:

�M(i + 1) = �M(i) ⊕ �T (i%K), i = 0, . . . , 2K − 1 (4)

1In the partition each template �T (i) (i = 0, . . . , K − 1) has randomly but exclusively selected ρ × l

bits set to 1 while other bits set to 0. For example, �T (0) = 0101 and �T (1) = 1010 form a partition of the
four-bit search space.

396 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

The templates �T (0), . . . , �T (K − 1) are first used to create K masks till �M(K) = �1
and then orderly reused to construct another K XOR masks till �M(2K) = �M(0) = �0. The
Hamming distance between two neighbor XOR masks is the same and equals ρ × l.
Here, ρ ∈ [1/l, 1.0] is the distance factor, determining the number of base states.

From the above cyclic environment generator, we can further construct cyclic dy-
namic environments with noise as below. Each time the environment is about to move
to a next base state �M(i), �M(i) is bitwise flipped with a small probability, denoted pn in
this paper.

4.3 Dynamic Test Environments for This Study

In this paper, three 100-bit binary-encoded problems are selected as the stationary
functions. The first one is the OneMax function, which aims to maximize the number
of ones in a chromosome. The second one, denoted Plateau, consists of 25 contiguous
four-bit building blocks. Each building block for Plateau contributes four (or two) to the
total fitness if its unitation (i.e., the number of ones inside the building block) is four
(or three); otherwise, it contributes zero. The third problem is a 100-item 0-1 knapsack
problem with the weight and profit of each item randomly created in the range of [1, 30]
and the capacity of the knapsack set to half of the total weight of all items. The fitness
of a feasible solution is the sum of the profits of the selected items. If a solution overfills
the knapsack, its fitness is set to the difference between the total weight of all items and
the weight of selected items, multiplied by a small factor 10−5 to make it in-competitive
with those solutions that do not overfill the knapsack.

Three kinds of dynamic environments, cyclic, cyclic with noise, and random, are
constructed from each of the three base functions using the aforementioned extended
XOR generator. For all the dynamic environments, the landscape is periodically changed
every τ generations during the run of an algorithm. In order to test the effect of envi-
ronmental change speed on the performance of algorithms, τ is set to 10 and 50. The
environmental change severity parameter ρ is set to 0.1, 0.2, 0.5, and 1.0 for all dynamic
problems. With this setting of ρ, for cyclic dynamic problems, with and without noise,
the environment cycles among 20, 10, 4, and 2 base states respectively. For cyclic dy-
namic problems with noise, the probability pn is set to 0.05 in the basic experiments and
to different values in the sensitivity analysis experiments.

In total, a series of 24 DOPs, that is, two values of τ combined with four values
of ρ under three kinds of dynamic environments, are constructed from each stationary
function.

5 Experimental Study

5.1 Experimental Design

Experiments were carried out to compare different GAs on the above described dynamic
environments. For the basic experiments, typical generators and parameters are used
for all GAs as follows: generational GAs with uniform crossover with pc = 0.6, flip
mutation with pm = 0.01, and fitness proportionate selection and elitism of size one. In
order to have fair comparisons among GAs, the population size and immigrants ratios
are set such that each GA has 120 fitness evaluations per generation as follows.

(1 + ri) ∗ n = 120 (5)

Evolutionary Computation Volume 16, Number 3 397



S. Yang

where ri is the immigrants ratio for GAs with immigrants and n is the whole population
size including the memory size if memory is used. If memory is used, its size m is set
to m = 0.1 ∗ n. Hence, we have n = 120 for SGA, MEGA, and MSGA, and n = 100 for
RIGA, MRIGA, EIGA, and MIGA, and m = 12 for MEGA and MSGA and m = 10 for
MRIGA and MIGA. The immigrants ratio ri for RIGA, MRIGA, EIGA, and MIGA is set
to 0.2. For EIGA and MIGA pi

m of bitwise mutating the elite of previous generation or
best individual from the memory for immigrants is set to 0.01.

For each experiment of an algorithm on a dynamic test problem, 50 independent
runs were executed with the same set of random seeds. For each run, 200 environmental
changes were allowed, which are equivalent to 2000 and 10,000 generations for τ = 10
and 50, respectively. For each run, the best-of-generation fitness was recorded every
generation. The overall offline performance of a GA on a DOP is defined as:

F BOG = 1
G

G∑
i=1

(
1
N

N∑
j=1

FBOGij

)
(6)

where G = 200 × τ is the total number of generations for a run, N = 50 is the total
number of runs, and FBOGij

is the best-of-generation fitness of generation i of run j .
F BOG is the off-line performance, that is, the best-of-generation fitness averaged over
the 50 runs and then over the data gathering period.

5.2 Basic Experimental Results and Analysis

The basic experimental results of GAs on the three kinds of dynamic environments:
cyclic, cyclic with noise, and random, are presented in Figure 7 to Figure 9, respectively.
The corresponding statistical results of comparing GAs by a one-tailed t-test with
98 degrees of freedom at a 0.05 level of significance are given in Table 1 to Table 3,
respectively. In these tables, the t-test result regarding Alg. 1 − Alg. 2 is shown as
“+”, “−”, “s+” and “s−” when Alg. 1 is insignificantly better than, insignificantly
worse than, significantly better than, and significantly worse than Alg. 2, respectively.
In order to better understand the performance of the investigated GAs in dynamic
environments, the dynamic behavior of GAs with respect to best-of-generation fitness
against generations on the dynamic test functions with τ = 50 and ρ = 0.2 under cyclic
and random environments is plotted in Figure 10 and Figure 11, respectively, where the
last cycle of 10 environmental changes (i.e., 500 generations) is shown. From Figures 7
to 11 and Tables 1 to 3, several results can be observed and are analyzed as follows.

First, a prominent result is that MIGA significantly outperforms SGA, RIGA, MEGA,
MRIGA, and MSGA (the performance of EIGA will be analyzed later) on most dynamic
test problems; see the relevant t-test results in Table 1 to Table 3. This result validates
our expectation of the memory-based immigrants scheme for GAs in dynamic envi-
ronments. When τ = 10, MIGA underperforms some of these GAs on a few cyclic with
noise and random dynamic functions. The reason is that when the environment changes
quickly, the best memory point may not be able to track the optimum of the current
environment and hence may misguide the immigrants to a less fit area.

The good performance of MIGA over SGA, RIGA, MEGA, MRIGA, and MSGA can
be further observed in the dynamic behavior of GAs plotted in Figures 10 and 11, where
MIGA is able to maintain a much higher fitness level in the dynamic environments. For
example, the performance of MIGA is F BOG(MIGA) = 95.7, 91.3, and 1218.7 on random

398 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 10

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1
O

ff
lin

e 
Pe

rf
or

m
an

ce
ρ

Plateau, τ = 10

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 10

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

 60

 65

 70

 75

 80

 85

 90

 95

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 50

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Plateau, τ = 50

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 50

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

Figure 7: Experimental results of GAs in cyclic dynamic environments.

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 10

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Plateau, τ = 10

 850

 900

 950

 1000

 1050

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 10

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

 60

 65

 70

 75

 80

 85

 90

 95

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 50

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Plateau, τ = 50

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 50

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

Figure 8: Experimental results of GAs in cyclic dynamic environments with noise.

Evolutionary Computation Volume 16, Number 3 399



S. Yang

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 10

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1
O

ff
lin

e 
Pe

rf
or

m
an

ce
ρ

Plateau, τ = 10

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 10

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

 60

 65

 70

 75

 80

 85

 90

 95

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 50

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Plateau, τ = 50

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

1.00.50.20.1

O
ff

lin
e 

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 50

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

Figure 9: Experimental results of GAs in random dynamic environments.

OneMax, Plateau, and Knapsack with τ = 50 and ρ = 0.1, respectively. These results
are significantly better than the best performance of SGA, RIGA, MEGA, MRIGA, and
MSGA on the three DOPs, respectively, that is, F BOG(MSGA) = 83.8 on random One-
Max, F BOG(MRIGA) = 77.6 on random Plateau, and F BOG(MRIGA) = 1126.4 on random
Knapsack, respectively.

Second, the traditional memory scheme improves the performance of GAs for most
DOPs; see the t-test results regarding MEGA – SGA and MRIGA – RIGA in Table 1
to Table 3. And when viewing across Figure 7 to Figure 9, it can be seen that the
impact of memory in MEGA and MRIGA changes with the cyclicity of dynamic
environments. For the same τ and ρ, the performance improvement of MEGA over
SGA and MRIGA over RIGA, that is, F BOG(MEGA) − F BOG(SGA) and F BOG(MRIGA) −
F BOG(RIGA), reaches the highest value in cyclic environments while it is significantly
reduced in cyclic with noise and random environments. And under cyclic environments
for each DOP with the same value of τ , the impact of memory increases with the value
of ρ. From each individual picture in Figure 7, it can be seen that the performance of
GAs with memory, that is, MEGA, MRIGA, MSGA, and MIGA, basically increase from
ρ = 0.1 to ρ = 1.0. This is because a bigger ρ means fewer base states and hence memory
points are more accurate to relevant base states when they were stored. However, the
performance of SGA, RIGA, and EIGA on cyclic DOPs decreases when ρ increases.
This is natural because, without memory, a bigger ρ means more severe environmental
changes to SGA, RIGA, and EIGA.

When ρ = 1.0, the environment switches between two fitness landscapes that
are complementary to each other. The dynamic behavior of GAs with respect to the

400 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

Table 1: The t-test Results of Comparing GAs on Cyclic DOPs
t-test Result OneMax Plateau Knapsack

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
RIGA − SGA s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+
MEGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MRIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MRIGA − MEGA s+ s+ s+ s+ s+ + s+ s+ s+ s+ + −
MSGA − MRIGA s− s− s− s+ s− + s− s− s− − + s+
EIGA − RIGA s+ s− s− s− s+ s− s− s+ s+ s− s− s−
EIGA − MRIGA s+ s− s− s− s+ s− s− s− + s− s− s−
EIGA − MSGA s+ s− s− s− s+ s− s− s− s+ s− s− s−
MIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MEGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MRIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − EIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
RIGA − SGA s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MEGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MRIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MRIGA − MEGA s− s− s+ s+ s+ s− s+ s+ s+ s+ s+ s+
MSGA − MRIGA s+ s+ + − s− + s− s− s− s− s− s−
EIGA − RIGA s+ s+ s+ s− s+ s+ s+ s− s+ s+ s+ s−
EIGA − MRIGA s+ s+ s− s− s+ s+ s− s− s+ s+ s− s−
EIGA − MSGA s+ s+ s− s− s+ s+ s− s− s+ s+ s− s−
MIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MEGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MRIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − EIGA s− s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+

best-of-generation fitness against generations on the cyclic and noisy Plateau functions
with τ = 50 and ρ = 1.0 is plotted for the first 500 generations in Figure 12. The dy-
namic performance of GAs is the same on the random Plateau function with τ = 50 and
ρ = 1.0 as on the cyclic Plateau function with τ = 50 and ρ = 1.0 and is not plotted in
Figure 12. This is because when ρ = 1.0 a cyclic environment is equivalent to a random
one. From Figure 12, it can be seen that after several environmental changes the memory
scheme clearly drives GAs with memory toward a high fitness level while SGA, RIGA,
and EIGA struggle to climb from a low fitness level during each environmental period.

Third, MSGA outperforms MEGA on many DOPs. This result justifies the intro-
duction of an extra population that restarts when the environment changes. However,
MSGA is beaten by MRIGA on most DOPs; see the t-test results regarding MSGA –
MRIGA in Tables 1 to 3. This result shows that the simple restart scheme in MSGA may
not be as efficient as the random immigrants scheme in MRIGA.

Fourth, we now examine the performance of EIGA on the DOPs. From Figures 7
to 9, it can be seen that, generally speaking, the performance of EIGA drops with the
rising value of ρ on each DOP with fixed τ under three types of dynamic environments
and the degree of performance dropping of EIGA is much more significant than that
of SGA and RIGA. For example, on the random Knapsack problem with τ = 50, the

Evolutionary Computation Volume 16, Number 3 401



S. Yang

Table 2: The t-test Results of Comparing GAs on Cyclic DOPs with Noise
t-test Result OneMax Plateau Knapsack

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
RIGA − SGA s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+
MEGA − SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MRIGA − RIGA − s+ s+ s+ s− s+ s+ s+ + s+ s+ s+
MRIGA − MEGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MSGA − MRIGA s− s− s− s− s− s− s− s− s− s− s+ s+
EIGA − RIGA s+ s− s− s− s+ s− s− s+ s+ s− s− s−
EIGA − MRIGA s+ s− s− s− s+ s− s− s− s+ s− s− s−
EIGA − MSGA s+ s+ s− s− s+ s− s− s− s+ s− s− s−
MIGA − RIGA s− s− s+ s+ s− s− s+ s+ s+ s− s+ s+
MIGA − MEGA s+ s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s−
MIGA − MRIGA s− s− s+ s+ s− s− s+ s+ s+ s− s− s−
MIGA − MSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s−
MIGA − EIGA s− s+ s+ s+ s− s+ s+ s+ s− s+ s+ s+
τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
RIGA − SGA s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MEGA − SGA s+ s+ s+ s+ s− s− s+ s+ s− − s+ s+
MRIGA − RIGA − s− s+ s+ s− s− s+ s+ + + s+ s+
MRIGA − MEGA s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MSGA − MRIGA s+ s− s− s− s− s− s− s− s− s− s− s−
EIGA − RIGA s+ s+ s+ s− s+ s+ s+ s− s+ s+ s+ s−
EIGA − MRIGA s+ s+ s+ s− s+ s+ s− s− s+ s+ s− s−
EIGA − MSGA s+ s+ s+ s− s+ s+ s− s− s+ s+ s+ s−
MIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MEGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MRIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − EIGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s+

performance of EIGA F BOG(EIGA) drops from 1228.8 at ρ = 0.1 to 1183.6 at ρ = 0.2,
1069.1 at ρ = 0.5, and 924.2 at ρ = 1.0 while the performance of SGA F BOG(SGA) drops
from 1110.3 at ρ = 0.1 to 1077.4 at ρ = 0.2, 1011.1 at ρ = 0.5, and 929.7 at ρ = 1.0.

In comparison with the performance of other GAs, EIGA performs quite inconsis-
tently over the DOPs. When the environment changes slightly, for example, ρ = 0.1,
EIGA outperforms other GAs on most cases; see the t-test results regarding EIGA –
RIGA, EIGA – MRIGA, EIGA – MSGA, and MIGA – EIGA in Tables 1 to 3 (other t-test
results are not shown). This happens because under slightly changing environments,
when a change occurs, the elitism mechanism will drive EIGA to a high fitness level
directly since the elite from the previous generation is quite likely to still fit the new
environment. This can be more clearly observed in the dynamic behavior of GAs in
Figures 10 and 11, where EIGA can climb to a high fitness level quite fast after a change
occurs.

It is noticeable that on random DOPs with small ρ, MIGA also outperforms other
GAs except EIGA. This is because on such DOPs the memory-based immigrants scheme
in MIGA is in fact similar to the elitism-based immigrants scheme in EIGA since the
best memory solution extracted as the base for immigrants is usually the elite from the
previous environment. This result can be further observed in the dynamic behavior of

402 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

Table 3: The t-test Results of Comparing GAs on Random DOPs
t-test Result OneMax Plateau Knapsack

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
RIGA − SGA s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+
MEGA − SGA s+ s+ s+ s+ − s− s+ s+ − + s+ s+
MRIGA − RIGA + + s+ s+ s− s− s+ s+ s− − s+ s+
MRIGA − MEGA + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ −
MSGA − MRIGA s− s− s− − s− s− s− s− s− s− s− +
EIGA − RIGA s+ s+ s− s− s+ s+ s− s+ s+ s+ s− s−
EIGA − MRIGA s+ s+ s− s− s+ s+ s− s− s+ s+ s− s−
EIGA − MSGA s+ s+ s− s− s+ s+ s− s− s+ s+ s− s−
MIGA − RIGA s+ s+ s− s+ s+ s− s− s+ s+ s+ s− s+
MIGA − MEGA s+ s+ s+ s+ s+ s− s− s+ s+ s+ s− s+
MIGA − MRIGA s+ s+ s− s+ s+ s− s− s+ s+ s+ s− s+
MIGA − MSGA s+ s+ s− s+ s+ s− s− s+ s+ s+ s− s+
MIGA − EIGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s+
τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
RIGA − SGA s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MEGA − SGA s+ s+ s+ s+ − s− s+ s+ s− s− s+ s+
MRIGA − RIGA s+ + s+ s+ + s− s+ s+ s+ s+ s+ s+
MRIGA − MEGA s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MSGA − MRIGA s+ s+ s− + s− s− s− s− s− s− s− s−
EIGA − RIGA s+ s+ s+ s− s+ s+ s+ s− s+ s+ s+ s−
EIGA − MRIGA s+ s+ s+ s− s+ s+ s+ s− s+ s+ s+ s−
EIGA − MSGA s+ s+ s+ s− s+ s+ s+ s− s+ s+ s+ s−
MIGA − RIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MEGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MRIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − MSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MIGA − EIGA s− s− s− s+ s− s− s− s+ s− s− s− s+

MIGA in Figure 11: similar to EIGA, MIGA can also climb to a high fitness level quite
quickly after a change occurs. When the degree of environmental change increases, for
example, ρ = 0.5 and 1.0, EIGA underperforms other GAs in most cases, see Figures 7
to 9 and relevant t-test results in Tables 1 to 3. This happens because when a change
occurs with big ρ the elite from the previous generation will be far away from the
optima of the new environment and hence will be less efficient or even misleading
in guiding immigrants toward the new environment. This effect can be observed in
Figure 12 regarding the dynamic behavior of EIGA over other GAs on the random
Plateau function with τ = 50 and ρ = 1.0. Here, when a change occurs, EIGA climbs
toward the high fitness level even slower than RIGA because the elitism scheme is
misleading immigrants in EIGA and hence has a negative effect.

Another observation regarding the performance of EIGA for DOPs is that on DOPs
with τ = 50 its relative performance to other GAs is better than on DOPs with τ = 10.
This happens because the elitism mechanism in EIGA works well when the environment
does not change. The longer the time between two environmental changes, the better
the chance for the elitism mechanism in EIGA to express its effect.

Fifth, as mentioned before, the key idea behind MIGA and EIGA is to use the
memory or elite from a previous generation to bias immigrants toward the current

Evolutionary Computation Volume 16, Number 3 403



S. Yang

 70

 75

 80

 85

 90

 95

 100

500049004800470046004500

B
es

t-O
f-

G
en

er
at

io
n 

Fi
tn

es
s

Generation

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(a)

 50

 60

 70

 80

 90

 100

500049004800470046004500

B
es

t-O
f-

G
en

er
at

io
n 

Fi
tn

es
s

Generation

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(b)

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

500049004800470046004500

B
es

t-O
f-

G
en

er
at

io
n 

Fi
tn

es
s

Generation

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(c)

Figure 10: Dynamic behavior of GAs on cyclic DOPs with τ = 50 and ρ = 0.2:
(a) OneMax, (b) Plateau, and (c) Knapsack.

environment. In order to show this bias, the diversity of the population was also
recorded every generation in the experiments. The diversity of the population at time t

in the k-th run of a GA on a DOP is defined as:

Div(k, t) = 1
ln(n − 1)

n∑
i=1

n∑
j �=i

HD(Ii, Ij ) (7)

404 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

 70

 75

 80

 85

 90

 95

 100

500049004800470046004500

B
es

t-O
f-

G
en

er
at

io
n 

Fi
tn

es
s

Generation

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(a)

 50

 60

 70

 80

 90

 100

500049004800470046004500

B
es

t-O
f-

G
en

er
at

io
n 

Fi
tn

es
s

Generation

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(b)

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

500049004800470046004500

B
es

t-O
f-

G
en

er
at

io
n 

Fi
tn

es
s

Generation

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(c)

Figure 11: Dynamic behavior of GAs on random DOPs with τ = 50 and ρ = 0.2:
(a) OneMax, (b) Plateau, and (c) Knapsack.

where l = 100 is the encoding length, n is the population size, and HD(Ii, Ij ) is the
Hamming distance between the i-th individual Ii and the j -th individual Ij in the
population. The overall diversity of a GA on a DOP over 50 runs is calculated as
follows.

Div = 1
G

G∑
t=1

(
1

50

50∑
k=1

Div(k, t)

)
(8)

where G = 200 × τ = 5000 is the total number of generations for a run.

Evolutionary Computation Volume 16, Number 3 405



S. Yang

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5004003002001000

B
es

t-O
f-

G
en

er
at

io
n 

Fi
tn

es
s

Generation

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5004003002001000

B
es

t-O
f-

G
en

er
at

io
n 

Fi
tn

es
s

Generation

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(b)

Figure 12: Dynamic behavior of GAs on dynamic Plateau function with τ = 50 and
ρ = 1.0 under (a) cyclic environment and (b) cyclic environment with noise.

The overall diversity of GAs on cyclic and random DOPs with τ = 50 and dif-
ferent values of ρ is plotted in Figure 13. From Figure 13, it can be seen that both
MIGA and EIGA maintain a much lower diversity level than other GAs while random
immigrants based RIGA and MRIGA maintain the highest diversity level. This result
shows that immigrants in MIGA and EIGA are really guided. Whether this guidance
is helpful or not depends on the GAs and the DOPs. For MIGA, the memory mech-
anism efficiently directs the immigrants toward the current optimum, which results
in low diversity but high fitness at the same time. Hence, MIGA significantly outper-
forms other GAs on these DOPs; see the corresponding t-test results in Tables 1 and 3.
However, for EIGA the situation is different. As analyzed before, the guidance of the
elitism toward immigrants is helpful when ρ is small while it may be harmful when ρ is
large.

Finally, for each DOP with fixed ρ, the performance of GAs rises when the value of
τ increases from 10 to 50. This is easy to understand. When the environment changes
slower, that is, when τ is large, GAs have more time to reach a higher fitness level
between two environmental changes. And GAs perform worse on dynamic Plateau
problems than on corresponding OneMax problems with the same environmental dy-
namics, that is, the same values of τ and ρ. This is natural because the dynamic problem

406 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1.00.50.20.1

D
iv

er
si

ty

ρ

OneMax

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1.00.50.20.1
D

iv
er

si
ty

ρ

Plateau

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1.00.50.20.1

D
iv

er
si

ty

ρ

Knapsack

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1.00.50.20.1

D
iv

er
si

ty

ρ

OneMax

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1.00.50.20.1

D
iv

er
si

ty

ρ

Plateau

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1.00.50.20.1

D
iv

er
si

ty

ρ

Knapsack

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(b)

Figure 13: Experimental results regarding the diversity of the population of GAs on
(a) cyclic and (b) random DOPs with τ = 50.

during each environmental period can be taken as a stationary problem and the sta-
tionary Plateau problem is harder than the stationary OneMax problem for GAs.

5.3 Sensitivity Analysis on the Effect of the Noise Probability pn

In the basic experimental results, shown in Figures 7 to 9, it can be seen that given the
same ρ and τ , when the cyclicity of dynamic environments decreases from cyclic to
cyclic with noise, the performance of GAs degrades. That is, cyclic environments with
noise are harder than cyclic environments. The existence of noise reduces the effect of
memory schemes because the environment will return to previous states less accurately.
However, GAs perform better on some DOPs in random environments than in cyclic
environments with noise with the same ρ and τ . This means that noise may outweigh
randomness in terms of the difficulty of dynamic environments.

In order to investigate the effect of the degree of noise on the performance of GAs,
we further carry out experiments in cyclic environments with noise with τ = 50 and
ρ = 0.1 and 0.5. The noise probability pn, which determines the degree of noise, is now
set to 0.01, 0.02, 0.5, and 0.1, respectively. The other experimental settings are the same
as in the basic experiments. The experimental results are plotted in Figure 14.

From Figure 14, the following results can be observed. First, the noise probability pn

does affect the performance of GAs and the effect differs with GAs. Generally speaking,
when the value of pn increases from 0.01 to 0.1, the performance of GAs decreases.

Evolutionary Computation Volume 16, Number 3 407



S. Yang

 65

 70

 75

 80

 85

 90

 95

 100

0.10.050.020.01

O
ff

li
ne

 P
er

fo
rm

an
ce

pn

OneMax, ρ = 0.1

 50

 60

 70

 80

 90

 100

0.10.050.020.01
O

ff
li

ne
 P

er
fo

rm
an

ce
pn

Plateau, ρ = 0.1

 950

 1000

 1050

 1100

 1150

 1200

 1250

0.10.050.020.01

O
ff

li
ne

 P
er

fo
rm

an
ce

pn

Knapsack, ρ = 0.1

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

 65

 70

 75

 80

 85

 90

 95

 100

0.10.050.020.01

O
ff

li
ne

 P
er

fo
rm

an
ce

pn

OneMax, ρ = 0.5

 50

 60

 70

 80

 90

 100

0.10.050.020.01

O
ff

li
ne

 P
er

fo
rm

an
ce

pn

Plateau, ρ = 0.5

 950

 1000

 1050

 1100

 1150

 1200

 1250

0.10.050.020.01

O
ff

li
ne

 P
er

fo
rm

an
ce

pn

Knapsack, ρ = 0.5

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

Figure 14: Experimental results of GAs in cyclic environments with noise with different
noise probability pn and τ = 50 and ρ = 0.1 and 0.5.

Especially, the performance of memory based GAs decreases quite significantly with
the rising of pn. For example, on the OneMax function with ρ = 0.5, the performance of
MIGA drops from 97.8 at pn = 0.01 to 95.9 at pn = 0.02, to 89.7 at pn = 0.05, and to 82.9
at pn = 0.1. This effect is natural since the higher degree of noise means the environment
will return to a base state less accurately, which makes the memory scheme less efficient.
However, for GAs without memory, that is, SGA, RIGA, and EIGA, the value of pn is
much less sensitive to their performance since they have no way to sense the accuracy
of the environment returning to an old state. When pn is big, the random immigrants
scheme in RIGA may beat the memory scheme in some GAs. For example, when
pn = 0.1, RIGA outperforms MEGA on the OneMax function with ρ = 0.5.

Second, the value of pn does not affect much the relative ranking of the performance
of GAs on DOPs. However, pn does affect the performance difference between GAs. In
general, with the increase of pn, the performance difference between GAs decreases. For
example, on the OneMax function with ρ = 0.5, the performance improvement of MIGA
over EIGA, that is, F BOG(MIGA) − F BOG(EIGA), decreases from 97.8 − 81.0 = 16.8 at
pn = 0.01 to 82.9 − 81.3 = 1.6 at pn = 0.1.

5.4 Sensitivity Analysis on the Effect of Parameters ri and pi
m

There are several parameters within the investigated GAs, of which one key parameter is
the immigrants ratio ri that determines the degree of diversity introduced to the current

408 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

 70

 75

 80

 85

 90

 95

 100

0.50.40.20.10.05

O
ff

li
ne

 P
er

fo
rm

an
ce

ri

OneMax, ρ = 0.1

 50

 60

 70

 80

 90

 100

0.50.40.20.10.05

O
ff

li
ne

 P
er

fo
rm

an
ce

ri

Plateau, ρ = 0.1

 950

 1000

 1050

 1100

 1150

 1200

 1250

0.50.40.20.10.05

O
ff

li
ne

 P
er

fo
rm

an
ce

ri

Knapsack, ρ = 0.1

RIGA
MRIGA

EIGA
0.005-MIGA
0.01-MIGA
0.02-MIGA
0.05-MIGA

 70

 75

 80

 85

 90

 95

 100

0.50.40.20.10.05

O
ff

li
ne

 P
er

fo
rm

an
ce

ri

OneMax, ρ = 0.5

 50

 60

 70

 80

 90

 100

0.50.40.20.10.05

O
ff

li
ne

 P
er

fo
rm

an
ce

ri

Plateau, ρ = 0.5

 950

 1000

 1050

 1100

 1150

 1200

 1250

0.50.40.20.10.05

O
ff

li
ne

 P
er

fo
rm

an
ce

ri

Knapsack, ρ = 0.5

RIGA
MRIGA

EIGA
0.005-MIGA
0.01-MIGA
0.02-MIGA
0.05-MIGA

Figure 15: Experimental results of RIGA, MRIGA, EIGA, and MIGAs with different
immigrants ratio on cyclic DOPs with noise with τ = 50 and ρ = 0.1 and 0.5.

population by the immigrants and for MIGA the probability pi
m of bitwise mutating

the best memory point for immigrants determines the degree of diversity among the
immigrants. In the basic experiments, we have set ri and pi

m to fixed values. In order to
investigate the effect of immigrants ratio ri on the performance of GAs and the effect of
pi

m on MIGA (and EIGA), we further carried out experiments on RIGA, MRIGA, EIGA,
and MIGA on DOPs with τ = 50 and ρ = 0.1 and 0.5. We now set ri for RIGA, MRIGA,
EIGA, and MIGA to 0.005, 0.1, 0.2, 0.4, and 0.5, respectively, and the population size n

and memory size m for GAs were set according to Eq. (5) correspondingly. For example,
for MIGA with ri = 0.5, we set n = 80 and m = 8. For MIGA, we set pi

m to 0.005, 0.01,
0.02, and 0.05, and for EIGA we still fix pi

m to 0.01 since our preliminary experiments
show that pi

m has the similar effect on EIGA as on MIGA. The other experimental
settings were the same as in the basic experiments.

The experimental results in cyclic environments with noise2 are plotted in Figure 15,
where MIGA with pi

m is marked as pi
m-MIGA. Several results can be observed from

Figure 15 and are described as follows.
First, the immigrants ratio ri does affect the performance of relevant GAs on the

DOPs. Generally speaking, the performance of GAs increases when the value of ri

increases from 0.05 to 0.4 (with an exceptional case on the OneMax function with

2The experimental results in cyclic and random environments show similar observations and are
not presented here.

Evolutionary Computation Volume 16, Number 3 409



S. Yang

ρ = 0.1 where the performance of RIGA and MRIGA decreases with the rising of ri). For
example, on the OneMax with ρ = 0.5, the performance of EIGA improves from 74.6 at
ri = 0.05 to 83.3 at ri = 0.4. When ri is further increased from 0.4 to 0.5, the performance
of GAs does not increase much. For example, the performance of EIGA on the OneMax
with ρ = 0.5 is 83.7 at ri = 0.5, which is only a little better than the performance 83.3 at
ri = 0.4.

The degree of sensitivity of ri on the performance of GAs depends on the DOP and
the value of ρ. For example, MRIGA is much less sensitive to the value of ri on the
OneMax and Plateau functions than on the Knapsack problems. And EIGA is much less
sensitive to ri on DOPs with ρ = 0.5 than on DOPs with ρ = 0.1.

Second, the effect of pi
m is relatively smaller than the effect of ri on the performance of

MIGAs. For example, on the Knapsack problem with ρ = 0.5, the maximum performance
improvement of MIGAs with fixed ri happens at ri = 0.5 where F BOG(0.05-MIGA, ri =
0.5) − F BOG(0.005-MIGA, ri = 0.5) = 1125.4 − 1096.7 = 28.7. On the contrary, the max-
imum performance improvement of MIGAs with fixed pi

m occurs at pi
m = 0.05 where

F BOG(0.05-MIGA, ri = 0.5) − F BOG(0.05-MIGA, ri = 0.05) = 1125.4 − 1031.3 = 94.1.
The effect of pi

m on the performance of MIGAs depends on the dynamic test prob-
lems. With the increasing of the value of pi

m, the performance of MIGAs decreases on
the dynamic OneMax and Plateau functions, while increases on the dynamic Knapsack
problems.

Third, comparing Figure 15 with Figures 7, 8, 9, and 14, it can be seen that the effect
of ri and pi

m on the performance of relevant GAs is much less significant than the effect
of the environmental dynamics parameters τ , ρ, and pn.

5.5 Experiments on Random DOPs with Random Severities of Changes

In the basic experiments, we have investigated the performance of GAs under three
kinds of dynamic environments with different but fixed values of ρ. However, for real
world problems, the environment may be subject to different severities of changes over
time. That is, each environment change may involve different values of ρ. In order
to study the performance of GAs in dynamic environments with random degrees of
changes, experiments are further carried out on random DOPs with τ = 50 and the value
of ρ randomly generated with a uniform distribution in [0.0, 1.0] (i.e., ρ = rand(0.0, 1.0))
for each environmental change. Here, the experimental settings, including genetic op-
erators and relevant parameters for GAs and the performance measure, are the same as
those for the basic experiments and 50 runs of each GA on a DOP are also executed.

The experimental results regarding the offline performance and the standard de-
viation are presented in Table 4. The statistical results of comparing GAs by one-
tailed t-test with 98 degrees of freedom at a 0.05 level of significance are also given
in Table 4. The dynamic performance of a typical run of GAs on the dynamic Knapsack
problem with τ = 50 and ρ = rand(0.0, 1.0) for the first 15 environments is plotted in
Figure 16(a) and the value of ρ for each environmental change for this typical run is
shown in Figure 16(b).

The results in Table 4 basically match our previous analysis regarding the compar-
ison of GAs. It is interesting to see that MIGA outperforms EIGA. This seems contrary
to the result in our basic experiments under random environments; see the t-test results
regarding MIGA – EIGA in Table 3 and Table 4. This result can be explained via ob-
serving the dynamic behavior of GAs in a typical run shown in Figure 16. Whenever
the environment involves a significant change, for example, ρ = 0.91 at generation 150,

410 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

Table 4: The Experimental Results on Random DOPs with τ = 50 and
ρ = rand(0.0, 1.0)

Function OneMax Plateau Knapsack

Offline Performance (Standard Deviation)
SGA 72.7 (0.45) 57.2 (0.75) 1010.8 (4.85)
RIGA 76.5 (0.25) 63.8 (0.53) 1052.7 (3.38)
MEGA 74.6 (0.32) 61.9 (0.52) 1029.6 (3.14)
MRIGA 76.7 (0.30) 64.7 (0.62) 1060.8 (3.83)
MSGA 75.6 (0.32) 62.9 (0.42) 1038.1 (2.88)
EIGA 81.6 (0.64) 65.6 (1.04) 1069.7 (5.77)
MIGA 82.6 (0.53) 66.8 (0.89) 1092.7 (5.09)

t-test Result
RIGA − SGA s+ s+ s+
MEGA − SGA s+ s+ s+
MRIGA − RIGA s+ s+ s+
MRIGA − MEGA s+ s+ s+
MSGA − MRIGA s− s− s−
EIGA − RIGA s+ s+ s+
EIGA − MRIGA s+ s+ s+
EIGA − MSGA s+ s+ s+
MIGA − RIGA s+ s+ s+
MIGA − MEGA s+ s+ s+
MIGA − MRIGA s+ s+ s+
MIGA − MSGA s+ s+ s+
MIGA − EIGA s+ s+ s+

the performance of EIGA drops significantly because the elite from the previous gener-
ation does not fit at all in the new environment. On the contrary, the best point in the
memory in MIGA may be much fitter in the new environment than the elite from the
previous generation, which leads to a much less significant drop of the performance of
MIGA. This gives MIGA an overall better performance over EIGA. When the environ-
ment involves a slight change, for example, ρ = 0.08 at generation 550, the performance
of MIGA and EIGA only drops slightly and then quickly rises, due to the embedded
elitism-based immigrants, to a higher level than achieved at the end of the previous
environment. This leads to better performance of both MIGA and EIGA over other GAs.

6 Conclusions and Future Work

Random immigrants and memory are two major approaches developed for GAs to
address dynamic environments. This paper investigates a memory-based immigrants
scheme and an elitism-based immigrants scheme for GAs in dynamic environments,
where the best memory point or elite from the previous generation is used as the base to
generate immigrants via mutation. This way, the immigrants may be more adapted and
hence more efficient for the current environment. Using the extended XOR generator
(Yang and Yao, 2008), dynamic test problems under three kinds of environments, that
is, cyclic, cyclic with noise, and random, were systematically constructed. Experiments
were carried out to compare the performance of the memory- and elitism-based im-
migrants GAs against several peer GAs. From the experimental results and analysis,
several conclusions can be drawn on the dynamic test problems.

Evolutionary Computation Volume 16, Number 3 411



S. Yang

 600

 700

 800

 900

 1000

 1100

 1200

 1300

7006005004003002001000

B
es

t-
O

f-
G

en
er

at
io

n 
Fi

tn
es

s

Generation

Knapsack, τ = 50, ρ = rand(0.0, 1.0)

SGA
RIGA

MEGA
MRIGA
MSGA

EIGA
MIGA

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

7006005004003002001000

D
eg

re
e 

of
 C

ha
ng

e 
(ρ

)

Generation

Knapsack, τ = 50, ρ = rand(0.0, 1.0)

ρ

(b)

Figure 16: Dynamic behavior of a typical run of GAs on the dynamic Knapsack problem
with τ = 50 and ρ = rand(0.0, 1.0) for the first 15 environments: (a) dynamic perfor-
mance and (b) the value of ρ for each environmental change.

First, the memory-based immigrants scheme combines the principles of memory
and random immigrants and consistently improves the performance of GAs in dynamic
environments. On the other hand, the elitism-based immigrants scheme has inconsistent
effect on the performance of GAs in dynamic environments. When the environment
involves slight changes (i.e., small ρ) consistently, EIGA outperforms MIGA.

Second, random immigrants are usually beneficial to improve the performance
of GAs in dynamic environments. The immigrants ratio generally has a significant
effect on the performance of GAs and can be set to the range of [0.2, 0.4]. However,
maintaining a high diversity level in the population, though usually useful, may not lead
to better performance for GAs in dynamic environments. It is problem dependent. On
the contrary, the traditional memory scheme has a more consistently positive effect than
the random immigrants scheme on the performance of GAs in dynamic environments.

Third, introducing an extra population with restart scheme into memory based GA
improves the performance in dynamic environments. However, the effect may not be
as strong as the effect of combining the random immigrants scheme with memory on
the performance of GAs in dynamic environments.

Fourth, the difficulty of DOPs for GAs depends on the difficulty of the base func-
tion and depends significantly on the environmental dynamics, for example, the speed,

412 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

severity, and cyclicity of environmental changes. Under cyclic with noise environments,
the degree of noise significantly affects the performance of memory-based GAs and
when the degree of noise reaches a certain level, DOPs may become harder than corre-
sponding DOPs under random environments for GAs. This is due to the fact that for
a fixed ρ with a random environment, the number of bits to be flipped by the DOP
generator for a new environment is constant, while for a cyclic with noise environment,
it is not, and in random environments, some previous changes may be reversed.

Fifth, the internal parameters, for example, ri and pi
m, of GAs do affect the per-

formance of GAs in dynamic environments. However, their effect is generally less
significant than the effect of external environmental dynamics parameters, for example,
τ , ρ, pn, and cyclicity of environments. And the difference between different parameter
settings of an algorithm is much less significant than the difference between different
algorithms. This means that the type of algorithm is more important.

Generally speaking, the experimental results indicate that MIGA can be a good
optimizer under dynamic environments and EIGA can be another good choice under
dynamic environments where the environment is subject to slight and slow changes.

This paper, though experimentally validating the efficiency of MIGA and EIGA for
DOPs, also inspires several topics for future research. First, the experimental results
show that higher diversity schemes lead to a good performance on some DOPs and/or
within some GAs while a bad performance on other DOPs and/or within other GAs.
This contrary phenomenon surely deserves further research in order to achieve efficient
diversity for GAs in dynamic environments.

Second, another interesting work is to investigate the effect of combining the
memory- and elitism-based immigrants schemes with other approaches, for example,
multi-population (Branke et al., 2000) and adaptive selection (Yang and Tı́nos, 2008)
schemes, for GAs for problem optimization in dynamic environments.

Third, the memory schemes studied in this paper are mainly explicit direct mem-
ory schemes. It is worth carrying out a higher level of comprehensive comparison of
memory-based evolutionary algorithms (EAs), including GAs studied in this paper,
GAs with implicit memory schemes, such as the diploidy GAs (Ng and Wong, 1995;
Uyar and Harmanci, 2005), and EAs with associative memory schemes, such as the asso-
ciative memory-based PBIL algorithms (Yang, 2005b; Yang and Yao, 2008), for dynamic
optimization problems.

Finally, although the environmental dynamics parameters have a larger impact on
the performance of GAs in dynamic environments than the algorithm parameters, it is
still important to tune the algorithm parameters. This is because, usually, a dynamic
problem with its environmental dynamics parameters has to be accepted as given. All
one can do is try to find the best algorithm for the particular problem, and parameter
settings are part of the algorithm. However, instead of tuning algorithm parameters
with a prescribed policy for DOPs, it may be more important to devise algorithms
that can capture the environmental dynamics and adapt to the dynamic environments
accordingly. This will be an important issue to pursue in the future.

Acknowledgments

The author would like to thank the anonymous action editor and reviewers for their
thoughtful suggestions and constructive comments. This work was supported by the
Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom
under Grant EP/E060722/01.

Evolutionary Computation Volume 16, Number 3 413



S. Yang

References

Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning. Technical Report CMU-CS-94-163,
Carnegie Mellon University, Pittsburgh, PA.

Bendtsen, C. N. and Krink, T. (2002). Dynamic memory model for non-stationary optimization.
In Proceedings of the 2002 Congress on Evolutionary Computation, pages 145–150.

Branke, J. (1999). Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In Proceedings of the 1999 Congress on Evolutionary Computation, volume 3, pages 1875–
1882.

Branke, J. (2002). Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publish-
ers, Dordrecht, The Netherlands.

Branke, J., Kaußler, T., Schmidth, C., and Schmeck, H. (2000). A multi-population approach to
dynamic optimization problems. In Proceedings of the 4th International Conference on Adaptive
Computing in Design and Manufacturing, pages 299–308.

Cobb, H. G. and Grefenstette, J. J. (1993). Genetic algorithms for tracking changing environments.
In S. Forrest, editor, Proceedings of the 5th International Conference on Genetic Algorithms, pages
523–530.

Dasgupta, D. and McGregor, D. (1992). Nonstationary function optimization using the structured
genetic algorithm. In R. Männer and B. Manderick, editors, Proceedings of the 2nd International
Conference on Parallel Problem Solving from Nature, pages 145–154.

Goldberg, D. E. and Smith, R. E. (1987). Nonstationary function optimization using genetic
algorithms with dominance and diploidy. In Proceedings of the 2nd International Conference on
Genetic Algorithms, pages 59–68.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, MA.

Grefenstette, J. J. (1992). Genetic algorithms for changing environments. In R. Männer and B. Man-
derick, editors, Proceedings of the 2nd International Conference on Parallel Problem Solving from
Nature, pages 137–144.

Grefenstette, J. J. (1999). Evolvability in dynamic fitness landscapes: A genetic algorithm ap-
proach. In Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pages 2031–
2038.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI.

Lewis, E. H. J. and Ritchie, G. (1998). A comparison of dominance mechanisms and simple
mutation on non-stationary problems. In Proceedings of the 5th International Conference on
Parallel Problem Solving from Nature, pages 139–148.

Louis, S. J. and Xu, Z. (1996). Genetic algorithms for open shop scheduling and re-scheduling. In
Proceedings of the 11th ISCA International Conference on Computers and their Applications, pages
99–102.

Mori, H. K. N. and Nishikawa, Y. (1997). Adaptation to changing environments by means of
the memory based thermodynamical genetic algorithm. In Proceedings of the 7th International
Conference on Genetic Algorithms, pages 299–306.

Morrison, R. W. and De Jong, K. A. (1999). A test problem generator for non-stationary environ-
ments. In Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pages 2047–
2053.

414 Evolutionary Computation Volume 16, Number 3



GAs with Memory- and Elitism-Based Immigrants in Dynamic Environments

Morrison, R. W. and De Jong, K. A. (2000). Triggered hypermutation revisited. In Proceedings of
the 2000 Congress on Evolutionary Computation, pages 1025–1032.

Morrison, R. W. (2004). Designing Evolutionary Algorithms for Dynamic Environments. Springer-
Verlag, Berlin.

Ng, K. P. and Wong, K. C. (1995). A new diploid scheme and dominance change mechanism
for non-stationary function optimisation. In Proceedings of the 6th International Conference on
Genetic Algorithms, pages 159–166.

Ramsey, C. L. and Greffenstette, J. J. (1993). Case-based initialization of genetic algorithms. In
Proceedings of the 5th International Conference on Genetic Algorithms, pages 84–91.

Simões, A. and Costa, E. (2001). On biologically inspired genetic operators: Using transforma-
tion in the standard genetic algorithm. In Proceedings of the 2001 Genetic and Evolutionary
Computation Conference, pages 584–591.

Simões, A. and Costa, E. (2003a). An immune system-based genetic algorithm to deal with dy-
namic environments: Diversity and memory. In Proceedings of the 6th International Conference
on Neural Networks and Genetic Algorithms, pages 168–174.

Simões, A. and Costa, E. (2003b). Improving the genetic algorithm’s performance when using
transformation. In Proceedings of the 6th International Conference on Neural Networks and Genetic
Algorithms, pages 175–181.

Trojanowski, K. and Michalewicz, Z. (1999). Searching for optima in non-stationary environments.
In Proceedings of the 1999 Congress on Evolutionary Computation, pages 1843–1850.

Trojanowski, K. and Michalewicz, Z. (2000). Evolutionary optimization in non-stationary envi-
ronments. Journal of Computer Science and Technology, 1(2): 93–124.

Uyar, A. Ş. and Harmanci, A. E. (2005). A new population based adaptive dominance change
mechanism for diploid genetic algorithms in dynamic environments. Soft Computing, 9(11):
803–815.

Vavak, F. and Fogarty, T. C. (1996). A comparative study of steady state and generational genetic
algorithms for use in nonstationary environments. In T. C. Fogarty, editor, AISB Workshop
on Evolutionary Computing, Lecture Notes in Computer Science 1143, pages 297–304, Springer,
Berlin.

Weicker, K. (2003). Evolutionary Algorithms and Dynamic Optimization Problems. Der andere Verlag,
Osnabrück, Germany.

Yang, S. (2003). Non-stationary problem optimization using the primal-dual genetic algorithm.
In Proceedings of the 2003 Congress on Evolutionary Computation, Vol. 3, pages 2246–2253.

Yang, S. (2005a). Memory-based immigrants for genetic algorithms in dynamic environments. In
Proceedings of the 2005 Genetic and Evolutionary Computation Conference, Vol. 2, pages 1115–
1122.

Yang, S. (2005b). Population-based incremental learning with memory scheme for changing
environments. In Proceedings of the 2005 Genetic and Evolutionary Computation Conference,
Vol. 1, pages 711–718.

Yang, S. (2005c). Memory-enhanced univariate marginal distribution algorithms for dynamic
optimization problems. In Proceedings of the 2005 Congress on Evolutionary Computation, Vol. 3,
pages 2560–2567.

Yang, S. (2007). Genetic algorithms with elitism-based immigrants for changing optimization
problems. In Applications of Evolutionary Computing, Lecture Notes in Computer Science 4448,
pages 627–636.

Evolutionary Computation Volume 16, Number 3 415



S. Yang

Yang, S. and Tinós, R. (2008). Hyper-selection in dynamic environments. Proceedings of the 2008
Congress on Evolutionary Computation, pages 3184–3191.

Yang, S. and Yao, X. (2005). Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Computing, 9(11): 815–834.

Yang, S. and Yao, X. (2008). Population-based incremental learning with associative memory
for dynamic environments. IEEE Transactions on Evolutionary Computation. IEEE Press,
Piscataway, NJ, to appear.

416 Evolutionary Computation Volume 16, Number 3


