CO7216 Semantic Web

Credits: 15 Convenor: tba Semester: 2nd

Prerequisites: Essential: Background in HTML and XML

Assessment: Coursework: 40% Two hour exam in May/June: 60%

Lectures: 24 hours
Surgeries: 8 hours
Laboratories: 8 hours

Subject Knowledge

Aims The aim of this course is to teach the students the concepts, technologies and techniques underlying
and making up the Semantic Web.

Learning Outcomes At the end of the course the student should be able to: understand and discuss funda-
damental concepts, advantages and limits of the semantic web; understand and use ontologies in the context of
Computer Science and the semantic web; use the RDF framework and associated technologies such as RDFa;
understand the relationship between Semantic Web and Web 2.0.

 Methods Lectures, tutorials and practical sessions together with course notes, recommended reading, work-
sheets and some additional handouts.

Assessment Assessed coursework; traditional written exam

Skills

Aims Students who have taken this module should be able to understand the rationale behind Semantic
web. They should be able to model and query domain knowledge as ontologies defined using standards such as
RDF and OWL. Students should be able to apply the principles of ontological engineering to modelling exercises.
Finally they should be able to understand the applications of semantic web to web services and Web 2.0.

Learning Outcomes On successful completion of the module students should be able to:

• understand the rationale behind Semantic Web.
• model ontologies using Resource Description Framework (RDF).
• design RDF Schemas for ontologies.
• model and design ontologies using Web Ontology Language (OWL).
• query ontologies using SPARQL.
• understand and reflect on the principles of Ontology Engineering.
• make an association between Semantic web and Web 2.0.
• apply Semantic web technologies to real world applications.

Methods Class sessions together with worksheets and lab assignments.

Explanation of Prerequisites Students should have a basic understanding and knowledge of HTML and
XML and related technologies.
Course Description
The Web, as it exists today, primarily supports human understanding and the interpretation of the vast information space it encompasses. However the Web was originally designed with a goal to support not only human-human communication but also as one that would enable automated machine processing of data with minimal human intervention. The Semantic Web is Tim Berners-Lee’s vision of a machine understandable and unambiguously computer interpretable Web. The rationale behind such a system is that most of the data currently posted on the web is buried in HTML files suitable for human reading and not for computers to manipulate meaningfully. The semantic Web, an extension of the current web, can be thought of as a globally linked database where information is given well-defined meaning using metadata for better enabling computers and humans to work in close cooperation. The realisation of a Semantic Web will thus make machine reasoning more ubiquitous and devastatingly powerful, creating an environment where intelligent software agents can roam, carrying out sophisticated tasks for their users.

This course is about investigating the next generation of the Web whose key distinguishing characteristics will be the support for and use of semantics in new, more effective, more intelligent, ways of managing information and supporting applications.

Detailed Syllabus
Topics to be covered include:

- Introduction to the Semantic Web
- Introduction to Ontologies
- Ontology Languages for the Semantic Web
 - Resource Description Framework (RDF)
 - Lightweight ontologies: RDF Schema
 - Web Ontology Language (OWL)
 - A query language for RDF: SPARQL
- Ontology Engineering
- Semantic web and Web 2.0
- Applications of Semantic Web

Reading List

Resources
Course notes, web page, study guide, worksheets, handouts, lecture rooms with two OHPs.

Module Evaluation
Course questionnaires, course review.

The Department of Computer Science