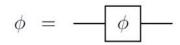
Functoriality in Reversible Circuits (Work in Progress)

Tomoo Yokoyama Aoyama Gakuin University

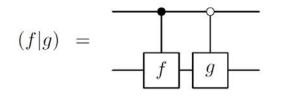
> Tetsuo Yokoyama Nagoya University

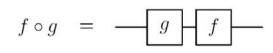
- · Characterize reversible combinatorial circuits.
 - To apply other theories, such as category theory, braid theory, and group theory.
 - To understand the differences among classical circuits, quantum circuits, etc.
- Using this experience, we want to characterize mathematical properties of reversible programming languages.

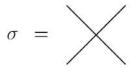
Reversible Circuits

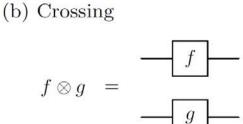


(a) Rotation (ϕ is C(1, 1) and invertible)









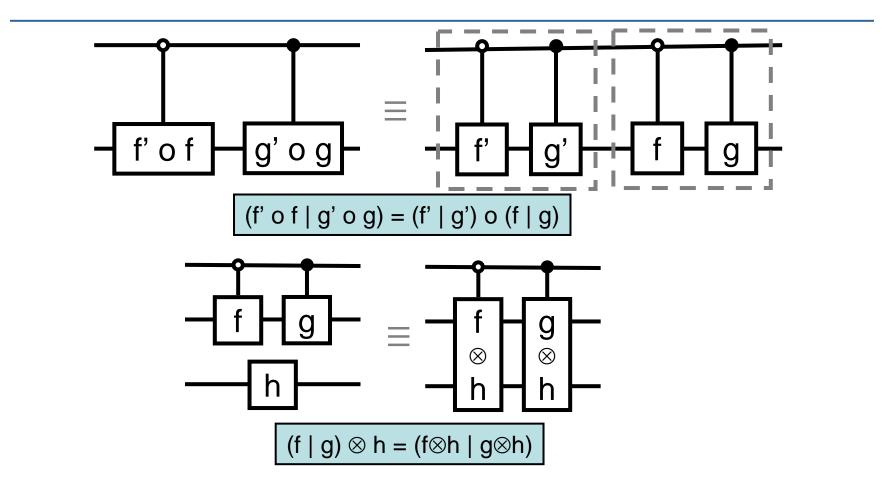
(c) Conditional composition

(d) Sequential composition

(e) Parallel composition

Fig. 1. Reversible circuits

Some Equivalence Relations of Reversible Circuits

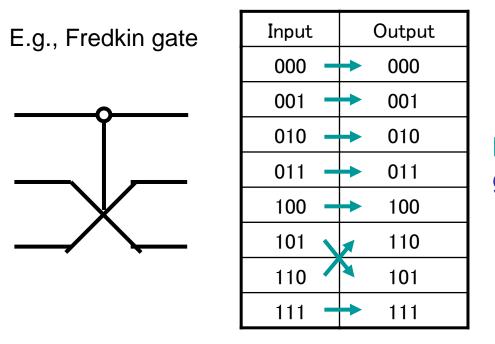


- How to model characteristics of circuits?
- What assumptions are required?

- How to model characteristics of circuits?
 - To model them, we use categorical structure, i.e., the functoriality of a tensor \otimes and a bifunctor (. | .)
- What assumptions are required?
 - Explicitly, we describe the assumptions for the family of all circuits

Group Structure in Reversible Circuits [StormeDeVosJacobs99,GreenAltenkirch08]

- A function (or morphism) realized by circuits is an isomorphism.
 - One-to-one. The domain and the target are the same size.
- Any morphism is invertible.



Morphisms comprise group structure.

⇒ Characterize a reversible circuit as a groupoid C: a category in which any morphism is invertible.

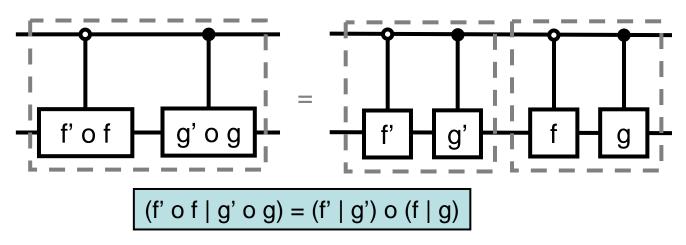
Monoidal Structure in Reversible Circuits [GreenAltenkirch08]

- (C, \otimes ,0): a strict symmetric monoidal category
 - C: a groupoid
 - \otimes : a tensor product
 - $n \otimes m := n + m$ for any $n,m \in C$
 - (\otimes ,0) and (\otimes ,id) are monoids.
 - $-(n \otimes m) \otimes I = n \otimes (m \otimes I), 0 \otimes n = n \otimes 0 = n$
 - $-(f \otimes g) \otimes h = f \otimes (g \otimes h)$, id $\otimes f = f \otimes id = f$



Functoriarity in Reversible Circuits

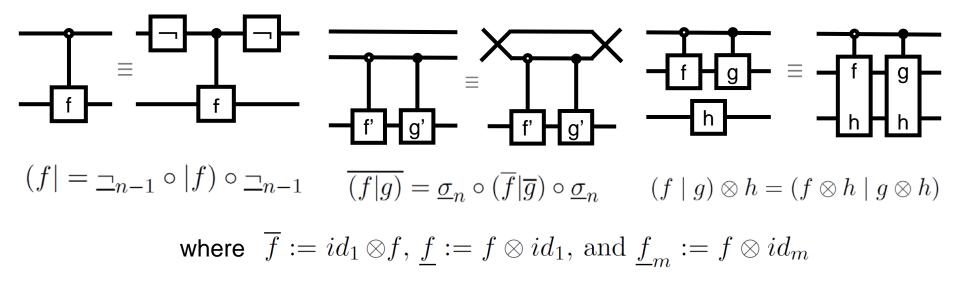
- Functor F: C \rightarrow D
 - $F(id_C) = id_D$, $F(f \circ g) = F(f) \circ F(g)$
- · Bifunctor G
 - $G(id_C, id_C) = (id_D, id_D)$, $G(f' \circ f, g' \circ g) = G(f', g') \circ G(f, g)$
- We characterize a conditional composition (. | .) as a bifunctor.



It should be noted that we do not have semantics of O and O.

Wired Category [Informal definition]

- (C, \otimes ,(. | .)) is called wired if
 - Negations \Box and wire crossings $\sigma = X$ are welldefined, and all the circuits can be appropriately generated.
 - Wirings are well-defined.
 - The following holds:



For a category C, define a subcategory Diag(C)of a category $C \times C$ as follows:

 $ob(Diag(C)) := \{(c,c) \mid c \in ob(C)\},\$ $Diag(C)((c,c), (d,d)) := \{(f,g) \mid f,g \in C(c,d)\}.$

Wired Category [Formal Definition] (2/3)

Let $(\cdot | \cdot)$: Diag $(C) \to C$ be a functor with $(\cdot | \cdot)(n, n) = n + 1$ for any object n. The tuple $(C, \otimes, (\cdot | \cdot))$ is called *wired* if

(i) $C(n,m) := \{\}$ if $n \neq m$, $C(0,0) := \{id_0\}$, $C(1,1) := \{id_1, \phi_1, \phi_2, \ldots\}$, and there are a negation $\neg \in C(1,1)$ and a wire crossing $\sigma \in C(2,2)$ such that $\neg \circ \neg = id_1 \neq \neg$ and $\sigma \circ \sigma = id_2 \neq \sigma$, respectively. For each $n \geq 2$, each hom-set C(n,n) is generated by taking \circ, \otimes and $(\cdot \mid \cdot)$ of C(m,m) and σ where $1 \leq m < n$.

(ii) (a) Let $\sigma_l := id_{i+j-1-l} \otimes \sigma \otimes id_{l-1}, \ \sigma_{i,l} := \sigma_l \circ \cdots \circ \sigma_{i-1} \circ \sigma_i, \text{ and } \Sigma_{j,i} := \sigma_{i+j-1,j} \circ \cdots \circ \sigma_{i+1,2} \circ \sigma_{i,1} \in C(i+j,i+j) \text{ for any } l = 1, 2, \dots, i+j-1.$ For $f \in C(j,j)$ and $g \in C(i,i)$,

$$f \otimes g = (\Sigma_{j,i})^{-1} \circ (g \otimes f) \circ \Sigma_{j,i} \,. \tag{3}$$

(b) $\overline{\sigma} \circ \underline{\sigma} \circ \overline{\sigma} = \underline{\sigma} \circ \overline{\sigma} \circ \underline{\sigma}$.

Wired Category [Formal Definition] (3/3)

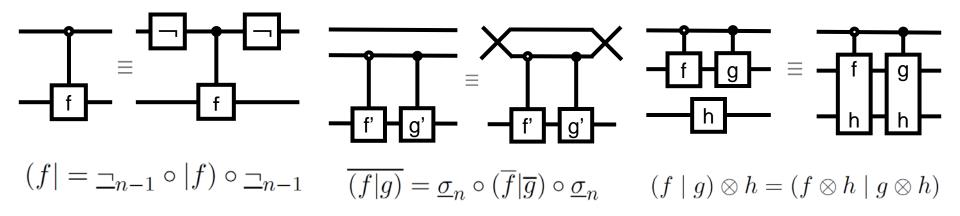
(iii) $(\cdot \mid \cdot)$ satisfies the following: For $f, g \in C(n, n)$ and $h \in C(m, m)$,

$$(f| = \underline{\neg}_{n-1} \circ |f) \circ \underline{\neg}_{n-1} \tag{4}$$

$$\overline{(f|g)} = \underline{\sigma}_n \circ (\overline{f}|\overline{g}) \circ \underline{\sigma}_n \tag{5}$$

$$(f \mid g) \otimes h = (f \otimes h \mid g \otimes h) \tag{6}$$

where $(f| := (f \mid id_n) \text{ and } |f) := (id_n \mid f).$



Properties of Circuits

Lemma 2.1 Let C be a wired category. For $f_n, g_n, h_n, k_n, t_n, s_n \in C(n, n)$,

$$\neg \circ \sigma = \sigma \circ \underline{\neg} \tag{7}$$

$$(id_n|id_n) = (id_n| = |id_n) = id_{n+1}$$
(8)

$$\overline{h_n} = (h_n | h_n) \tag{9}$$

$$(f_n|g_n) \circ (h_n|k_n) = (f_n \circ h_n|g_n \circ k_n)$$
(10)

In particular,
$$(f_n|g_n) \circ \overline{h_n} = (f_n \circ \overline{h_{n-1}}|g_n \circ \overline{h_{n-1}})$$
 (11)

$$t_l \otimes s_m \otimes (f_n | g_n) = \Sigma^{-1} \circ t_l \otimes (f_n | g_n) \otimes s_m \circ \Sigma$$
(12)

$$(f_n \mid g_n) = |g_n) \circ (f_n| \tag{13}$$

$$(f_n \otimes g_m) \circ (h_n \otimes k_m) = (f_n \circ h_n) \otimes (g_m \circ k_m)$$

$$(14)$$

In particular,
$$\psi \circ \underline{\phi} = \phi \otimes \psi = \underline{\phi} \circ \psi$$
 (15)

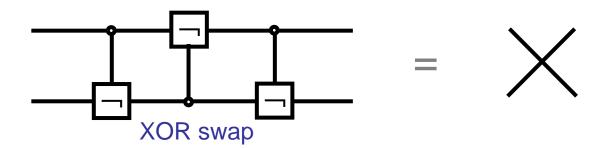
where $\Sigma = id_l \otimes \Sigma_{m,n+1}$.

It should be noted that we do not use truth values. Therefore, this holds for any circuits that satisfy wired properties.

- A wired category C is called *classical* if C(1,1) has exactly two morphisms.
- **Remark** Since C is a groupoid, $id_1 \in C(1,1)$ and there is $\psi \neq id_1$ s.t. ψ o $\psi = id_1$. ψ is a negation and hereafter we denote it by \neg .

C: a classically wired category

Suppose that $(\neg | \circ \sigma \circ (\neg | \circ \sigma \circ (\neg | = \sigma)))$



C(2,2) can be transformed into the following 24 elements:

The number corresponds to the number of all circuits: 4!

Proof (Sketch)

- 1. f can be transformed into a sequence of functional compositions of id_2 , \neg , \neg , $|\neg$), $(\neg|$, and σ .
- 2. Any subcircuit of a form $(B_3 \circ \sigma) \circ (B_2 \circ \sigma) \circ (B_1 \circ \sigma)$ in f' can be replaced with id_2, \neg, \neg, \neg , or $\neg \otimes \neg$.
- 3. Using an XOR swap, we can move $(\neg | \text{ or } | \neg)$ to the rightmost if it exists.
- 4. Many repeats of this step can reduce f to one of the 24 elements.

Concluding Remark

- Using functoriarity of (. | .) and \otimes models characteristic of circuits, effectively.
- None of the proofs of the properties of circuits requires the truth tables.
- Our results in the general case hold for non 0/1 circuits.