# Universality Issues in <br> Reversible Computing Systems and Cellular Automata 

Kenichi Morita
Hiroshima University

## Contents

1. Introduction
2. Reversible Turing machines (RTMs)
3. Reversible logic elements and circuits
4. Reversible cellular automata (RCAs)

Even very simple reversible systems have universal computing ability!

## 1. Introduction

## Reversible Computing

- Roughly speaking, it is a "backward deterministic" computing; i.e., every computational configuration has at most one predecessor.


Computational configuration

- Though its definition is rather simple, it reflects physical reversibility well.


## Reversible Computing

- Roughly speaking, it is a "backward deterministic" computing; i.e., every computational configuration has at most one predecessor.


Computational configuration

- Though its definition is rather simple, it reflects physical reversibility well.


## Several Models of Reversible Computing

- Reversible Turing machines (RTMs)
- Reversible logic elements and circuits
- Reversible cellular automata (RCAs)
- Reversible counter machines (RCMs)
- Others
- These models are closely related each other.
- Reversible computers work in a very different fashion from classical computers!


## 2. Reversible Turing Machines

## Reversible Turing Machines (RTMs)

A "backward deterministic" TM.


## Definition of a TM

$$
T=\left(Q, S, q_{0}, q_{f}, s_{0}, \delta\right)
$$

$Q$ : a finite set of states.
$S$ : a finite set of tape symbols.
$q_{0}$ : an initial state $q_{0} \in Q$.
$q_{f}$ : a final state $q_{f} \in Q$.
$s_{0}$ : a blank symbol $s_{0} \in S$.
$\delta$ : a move relation given by a set of quintuples

$$
\left[p, s, s^{\prime}, d, q\right] \in Q \times S \times S \times\{-, 0,+\} \times Q
$$

## Definition of an RTM

A TM $T=\left(Q, S, q_{0}, q_{f}, s_{0}, \delta\right)$ is called reversible iff the following condition holds for any pair of distinct quintuples $\left[p_{1}, s_{1}, s_{1}^{\prime}, d_{1}, q_{1}\right.$ ] and [ $p_{2}, s_{2}, s_{2}^{\prime}, d_{2}, q_{2}$ ].

$$
\text { If } q_{1}=q_{2}, \text { then } s_{1}^{\prime} \neq s_{2}^{\prime} \wedge d_{1}=d_{2}
$$

(If the next states are the same, then the written symbols must be different and the shift directions must be the same.)

## Universality of RTMs

Theorem [Bennett, 1973]
For any one-tape (irreversible) TM $T$, there is a garbage-less 3-tape reversible TM which simulates the former.

## A Small Universal RTM (URTM)

A URTM is an RTM that can compute any recursive function.

Theorem The following URTMs exist:
17-state 5-symbol URTM [Morita and Yamaguchi, 2007]
15-state 6-symbol URTM [Morita, 2008]

## A Small Universal RTM (URTM)

A URTM is an RTM that can compute any recursive function.

Theorem The following URTMs exist:
17-state 5-symbol URTM [Morita and Yamaguchi, 2007] 15-state 6-symbol URTM [Morita, 2008]

These URTMs can simulate any cyclic tag system [Cook, 2004], which is proved to be universal.

## Cyclic Tag System (CTAG) [Cook, 2004]

$$
C=\left(k,\{Y, N\},\left(\text { halt }, p_{1}, \cdots, p_{k-1}\right)\right)
$$

- $k$ : the length of a cycle (positive integer).
- $\{Y, N\}$ : the alphabet used in a CTAG.
- $\left(p_{1}, \cdots, p_{k-1}\right) \in\left(\{Y, N\}^{*}\right)^{k-1}$ : production rules. An instantaneous description (ID) is a pair ( $v, i$ ), where $v \in\{Y, N\}^{*}$ and $i \in\{0, \cdots, k-1\}$.
For any $(v, i),(w, j) \in\{Y, N\}^{*} \times\{0, \cdots, k-1\}$,

$$
\begin{aligned}
(Y v, i) \Rightarrow(w, j) \text { iff } \quad & {[m \neq 0] \wedge[j=i+1 \bmod k] } \\
& \wedge\left[w=v p_{i}\right], \\
(N v, i) \Rightarrow(w, j) \text { iff } \quad & {[j=i+1 \bmod k] \wedge[w=v] . }
\end{aligned}
$$

## A Simple Example of a CTAG System

$$
C_{1}=(3,\{Y, N\},(\text { halt }, Y N, Y Y))
$$

If an initial word $N Y Y$ is given, the computing on $C_{1}$ proceeds as follows:

## The quintuple set of the $\operatorname{URTM}(17,5)$

|  | $b$ | $Y$ | $N$ | $*$ | $\$$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $q_{0}$ | $\$-q_{2}$ | $\$-q_{1}$ | $b-q_{13}$ |  |  |
| $q_{1}$ | halt | $Y-q_{1}$ | $N-q_{1}$ | $*+q_{0}$ | $b-q_{1}$ |
| $q_{2}$ | $*-q_{3}$ | $Y-q_{2}$ | $N-q_{2}$ | $*-q_{2}$ | null |
| $q_{3}$ | $b+q_{12}$ | $b+q_{4}$ | $b+q_{7}$ | $b+q_{10}$ |  |
| $q_{4}$ | $Y+q_{5}$ | $Y+q_{4}$ | $N+q_{4}$ | $*+q_{4}$ | $\$+q_{4}$ |
| $q_{5}$ | $b-q_{6}$ |  |  |  |  |
| $q_{6}$ | $Y-q_{3}$ | $Y-q_{6}$ | $N-q_{6}$ | $*-q_{6}$ | $\$-q_{6}$ |
| $q_{7}$ | $N+q_{8}$ | $Y+q_{7}$ | $N+q_{7}$ | $*+q_{7}$ | $\$+q_{7}$ |
| $q_{8}$ | $b-q_{9}$ |  |  |  |  |
| $q_{9}$ | $N-q_{3}$ | $Y-q_{9}$ | $N-q_{9}$ | $*-q_{9}$ | $\$-q_{9}$ |
| $q_{10}$ |  | $Y+q_{10}$ | $N+q_{10}$ | $*+q_{10}$ | $\$+q_{11}$ |
| $q_{11}$ |  | $Y+q_{11}$ | $N+q_{11}$ | $*+q_{11}$ | $Y+q_{0}$ |
| $q_{12}$ |  | $Y+q_{12}$ | $N+q_{12}$ | $*+q_{12}$ | $\$-q_{3}$ |
| $q_{13}$ | $*-q_{14}$ | $Y-q_{13}$ | $N-q_{13}$ | $*-q_{13}$ | $\$-q_{13}$ |
| $q_{14}$ | $b+q_{16}$ | $Y-q_{14}$ | $N-q_{14}$ | $b+q_{15}$ |  |
| $q_{15}$ | $N+q_{0}$ | $Y+q_{15}$ | $N+q_{15}$ | $*+q_{15}$ | $\$+q_{15}$ |
| $q_{16}$ |  | $Y+q_{16}$ | $N+q_{16}$ | $*+q_{16}$ | $\$-q_{14}$ |

## Simulating the CTAG $C_{1}$ by the $\operatorname{URTM}(17,5)$



## Small UTMs and URTMs

## Symbols

```
\bulletUTM(2,18)[Rogozhin,1996]
```

-UTM $(3,9)$ [Kudlek, Rogozhin, 2002]
-UTM (4,6)[Rogozhin,1996] •URTM (15,6)[Morita, 2008]
-UTM $(5,5)$ [Rogozhin, 1996] -URTM $(17,5)$ [Morita, Yamaguchi, 2007]
-UTM $(6,4)$ [Neary, Woods, 2007]
-UTM $(9,3)$ [Neary, Woods,2007]

- UTM $(18,2)$ [Neary, Woods,2007]


## 3. Reversible Logic Elements

## Reversible Logic Element

A logic element whose function is described by a one-to-one mapping.
(1) Reversible logic elements without memory (i.e., reversible logic gates):

- Toffoli gate
[Toffoli, 1980]
- Fredkin gate
[Fredkin and Toffoli, 1982]
- etc.
(2) Reversible logic elements with memory:
- Rotary element (RE)
[Morita, 2001]
- etc.


## Rotary element (RE)

A 2-state 4-input-line 4-output-line element.


## (Remark)

We assume signal " 1 " is given at most one input line.

## Operations of an RE

- Parallel case:

- Orthogonal case:



## Logical Universality of a Rotary Element

A Fredkin gate can be composed of REs and delay elements.

(Remark) But, this is not a good method to use REs.

## Any Reversible Turing Machine Can Be Composed Only of REs

[Morita, 2001]


A Simple Example of an RTM $T_{\text {parity }}$

$$
T_{\text {parity }}=\left(Q,\{0,1\}, q_{0}, q_{\mathrm{acc}}, 0, \delta\right)
$$

$Q=\left\{q_{0}, q_{1}, q_{2}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}$
$\delta=\left\{\left[q_{0}, 0,1, R, q_{1}\right]\right.$,
[ $q_{1}, 0,1, N, q_{\mathrm{acc}}$ ],
[ $q_{1}, 1,0, R, q_{2}$ ],
[ $\left.q_{2}, 0,1, N, q_{\text {rej }}\right]$,
[ $\left.\left.q_{2}, 1,0, R, q_{1}\right]\right\}$.

## A Simple Example of an RTM $T_{\text {parity }}$



## A Simple Example of an RTM $T_{\text {parity }}$



## A Simple Example of an RTM $T_{\text {parity }}$



## A Simple Example of an RTM $T_{\text {parity }}$



## A Simple Example of an RTM $T_{\text {parity }}$








## Billiard Ball Model (BBM)

- A reversible physical model of computing -
[Fredkin and Toffoli, 1982]


Realization of an RE by BBM [Morita, 2008]


## Parallel Case



Movements of Balls (State: $V$, Input: $s$ )


## Orthogonal Case

## $t=0$ <br> 

$t=1$


Movements of Balls (State: $H$, Input: $s$ )


Movements of Balls (State: $H$, Input: $s$ )

3. Reversible Cellular Automata

## Reversible Cellular Automata (RCAs)

- It is a CA whose global function is one-to-one.
- A kind of spatio-temporal model of a physically reversible space.
- In spite of the strong restriction of reversibility, they have rich ability of computing.
- Computation-universality
- Self-reproduction
- Synchronization
- etc.


## Partitioned Cellular Automata

- 1D Partitioned CA (PCA)


A local function $f$ of a 1D PCA.

- We can design RCAs easily using PCAs.


## Universal Reversible CAs

## - 1D Case -

- On infinite configurations: 24-state RPCA
[Morita, 2008]
- On finite configurations: 98-state RPCA
[Morita, 2007]
cf. 1D Universal Irreversible CAs:
- On infinite configurations: 2-state CA (ECA of rule 110)
[Cook, 2004]
- On finite configurations:

7-state CA (a modified model) [Lindgren et al., 1990]

## Universal Reversible CAs <br> - 2D Case

- On infinite configurations:
- 2-state Margolus-neighbor RCA [Margolus, 1984]
- 16-state RPCAs [Morita and Ueno, 1992]
- 8-state triangular RPCA [Imai and Morita, 1998]


## An 8-State Triangular RPCA $T_{1}$ <br> [Imai and Morita, 1998]

- It has an extremely simple local function:



## A Fredkin Gate in a Triangular 8-State RPCA $T_{1}$



## Universal Reversible CAs

- 2D Case
- On infinite configurations:
- 2-state Margolus-neighbor RCA [Margolus, 1984]
- 16-state RPCAs [Morita and Ueno, 1992]
- 8-state triangular RPCA [Imai and Morita, 1998]
- On finite configurations:
- 81-state RPCA
[Morita and Ogiro, 2001]

A $3^{4}$-State Universal RPCA $P_{3}$
$P_{3}=\left(Z^{2},\{0,1,2\}^{4}, g_{3},(0,0,0,0)\right)$

(a)

(f)

(b)

(g)

(c)

(h)


(e)

The rule scheme ( $m$ ) represents 33 rules not specified by (a)-(I) $(w, x, y, z \in\{$ blank, $0, \bigcirc\}=\{0,1,2\})$.

## Reversible Counter Machine in $P_{3}$ Space



## Movie of an RCM(2) in $P_{3}$



## Self-Reproduction of a Worm in 2D RCA

[Morita and Imai, 1996]


## Self-Reproduction of a Loop in 3D RCA

[Imai, Hori and Morita, 2002]


## Concluding Remarks

- We saw even very simple reversible systems have computation-universality.
- Computation can be carried out in a very different way from that of conventional computers.
- We expect that further studies on them will give new insights for future computing.

Thank you for your attention!

