
Effect of BDD Optimization Effect of BDD Optimization
on Synthesis of Reversible

d Q L iand Quantum Logic

Robert Wille, Rolf Drechsler,

Institute of Computer Science
University of Bremen, GermanyUniversity of Bremen, Germany
{rwille,drechsle}@informatik.uni-bremen.de

Outline
• Motivation and Background• Motivation and Background

• BDD-based Synthesis

• Exploiting BDD-optimization

– Shared Nodes

– Complement EdgesComplement Edges

– Reordering

• Experimental Results

Conclusions

2

• Conclusions

Reversible Logic
• Applications in • Applications in

– Quantum Computing
Low Power Design– Low-Power Design

– Optical Computing
DNA C ti– DNA Computing

– …
1

1

1

1

Toffoli gate

1 0

3

Toffoli gate

Quantum Logic

• Is inherently reversible
• Signals represented by qubits• Signals represented by qubits

(i.e. non-Boolean values)
• Value of each qubit is restricted to 0 1 V or V

NOT P f i i

• Value of each qubit is restricted to 0, 1, V0 or, V1

1

0

• NOT: Peforms inversion
• CNOT: controled inversion
• V: ‘square root’ of NOT

1
1

1
0

1
V

1
1

1
V0 • V: square root of NOT

• V+: inverse of V VV
1 0 V1

V+
1 V0

4

Synthesis Problem
Gi R f ti t T k Fi d t k • Given: Rev. function to
be synthesized

• Task: Find network
(i.e. a cascade of gates)

• Previous Work:
No fanouts, no feedback

• Often rely on truth table (or similar) description
Only applicable to small functions

5

Outline
• Motivation and Background• Motivation and Background

• BDD-based Synthesis

• Exploiting BDD-optimization

– Shared Nodes

– Complement EdgesComplement Edges

– Reordering

• Experimental Results

Conclusions

6

• Conclusions

Binary Decision Diagrams (BDDs)

• Data structure for efficient representation and
manipulation of Boolean functions

• Rooted, directed, acyclic
graph, which consists of g ap , o s s s o
decision nodes and two
terminal nodes (leafs)

• Each decision node is
labeled by a Boolean
variable and has two child
nodes (low and high)

7

nodes (low and high)

BDD-based Synthesis #1

1. Build BDD for function f using existing techniques
2. Substitute each BDD node by a cascade of gates

8

BDD-based Synthesis #2

9

Example (XOR function)

10

BDD-based Synthesis #3

• Linear worst case behavior regarding run-time g g
and space requirements

• Resulting circuits are bounded by BDD size

BDD optimization can be exploited

11

Outline
• Motivation and Background• Motivation and Background

• BDD-based Synthesis

• Exploiting BDD-optimization

– Shared Nodes

– Complement EdgesComplement Edges

– Reordering

• Experimental Results

Conclusions

12

• Conclusions

Shared Nodes
• Used to represent a sub formula more than once• Used to represent a sub-formula more than once
• Need to preserve node values

(requires additional line)(requires additional line)

13

Complement Edges
• Allows to represent a function as well as its p

negation by a single node only

14

Reordering

Can be directly y
applied
(no further (no further
adjustments)

15

Outline
• Motivation and Background• Motivation and Background

• BDD-based Synthesis

• Exploiting BDD-optimization

– Shared Nodes

– Complement EdgesComplement Edges

– Reordering

• Experimental Results

Conclusions

16

• Conclusions

Experimental Setup

• Implemented on the top of CUDD
• Benchmarks from RevLib (www revlib org) and • Benchmarks from RevLib (www.revlib.org) and

LGSynth package

• Objectives:
– Circuit linesCircuit lines
– Number of Toffoli gates
– Quantum Cost Quantum Cost
– Run-time (often negligible)

17

Results (selected)

18

RMRLS G t t l @ TCAD 2006

Comparison to Previous Work

• RMRLS: Gupta et al. @ TCAD, 2006
• RMS: Maslov et al. @ TODAES, 2007

• Significant run-time for both RMRLS and RMS
• Most of the functions aborted after 500 CPU

19

seconds

Outline
• Motivation and Background• Motivation and Background

• BDD-based Synthesis

• Exploiting BDD-optimization

– Shared Nodes

– Complement EdgesComplement Edges

– Reordering

• Experimental Results

Conclusions

20

• Conclusions

Conclusions
• BDD-based synthesis has been introducedy

• Effect of BDD optimizationEffect of BDD optimization
– Shared Nodes: Always yields better results
– Compl. Edges: Better results in most casesCompl. Edges: Better results in most cases
– Orderings: Best results with exact ordering,

but Sifting also yields good circuitsg y g

• Comparison to Previous Work: Comparison to Previous Work:
– Larger functions can be handled
– Significant improvements in quantum cost

21

Significant improvements in quantum cost
– More circuit lines needed

Effect of BDD Optimization Effect of BDD Optimization
on Synthesis of Reversible

d Q L iand Quantum Logic

Robert Wille, Rolf Drechsler,

Institute of Computer Science
University of Bremen, GermanyUniversity of Bremen, Germany
{rwille,drechsle}@informatik.uni-bremen.de

