Reversible computer hardware

Alexis De Vos Imec v.z.w. and Universiteit Gent Belgium

York, 22 March 2009

A logically irreversible computer

A logically reversible computer :

$$\begin{cases} P = A + B \\ Q = A - B \end{cases}$$
$$\Rightarrow \begin{cases} A = \frac{1}{2}P + \frac{1}{2}Q \\ B = \frac{1}{2}P - \frac{1}{2}Q \end{cases}$$

Truth table of three irreversible logic gates

- (a) XOR gate
- (b) NOR gate
- (c) AND gate.

Truth table of a reversible logic gate

AB	PQ
$\begin{array}{c} 0 \ 0 \\ 0 \ 1 \\ 1 \ 0 \\ 1 \ 1 \end{array}$	${ \begin{smallmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{smallmatrix} }$
P = Q =	$A \oplus B$

Groups

A group G consists of :

- \bullet a set S and
- \bullet an operation Ω .

Set and operation have to fulfil conditions :

- S has to be closed : $a \ \Omega \ b \in S$
- Ω has to be associative : ($a \ \Omega \ b$) $\Omega \ c = a \ \Omega \ (b \ \Omega \ c$)
- S has to have an identity element : $a \ \Omega \ i = a$
- each element of S has to have an inverse in S : $a \ \Omega \ a^{-1} = i$

Truth table of three reversible logic gates of width 2

- (a) an arbitrary reversible gate r
- (b) the identity gate i
- (c) the inverse r^{-1} of r

The group of reversible gates of width w is isomorphic to the symmetric group \mathbf{S}_{2^w} . Its order is $(2^w)!$.

Here w = 2Thus S_4 Its order is 4! = 24. Truth table of reversible logic gates (w = 3)

- (a) an arbitrary one
- (b) a twin gate
- (c) a control gate

$$a \in \mathbf{S}_{8}$$

$$b \in \mathbf{S}_{4} \times \mathbf{S}_{4}$$

$$c \in \mathbf{S}_{2} \times \mathbf{S}_{2} \times \mathbf{S}_{2} \times \mathbf{S}_{2}$$

The subgroup of control gates

$$P = A$$

$$Q = B$$

$$R = f(A, B) \oplus C .$$

Examples :

(a) f(A, B) = B(b) f(A, B) = AB: the TOFFOLI gate.

This subgroup of control gates is isomorphic to the Young subgroup $\mathbf{S}_2 \times \mathbf{S}_2 \times ... \times \mathbf{S}_2 = \mathbf{S}_2^{2^{w-1}}$.

Here w = 3Thus $\mathbf{S}_2 \times \mathbf{S}_2 \times \mathbf{S}_2 \times \mathbf{S}_2 = \mathbf{S}_2^4$ Its order is $2^4 = 16$. The number r of reversible gates, the number t of twin gates, the number c of control gates

w	r	t	С
1	2	1	2
2	24	4	4
3	$40,\!320$	576	16
4	20,922,789,888,000	$1,\!625,\!702,\!400$	256

$$r(w) = (2^{w})!$$

$$t(w) = [(2^{w-1})!]^{2}$$

$$c(w) = (2!)^{2^{w-1}} = 2^{2^{w-1}}$$

Cosets

Let a be a member of the group **G**. The coset of a is the set $b \Omega a$, where b is a member of the subgroup **H**.

The symmetric group \mathbf{S}_4 partitioned (a) as the four left cosets of \mathbf{S}_3 .

Double cosets

Let *a* be a member of the group **G**. The double coset of *a* is $b_1 \Omega a \Omega b_2$, where both b_1 and b_2 are members of subgroup **H**.

The symmetric group \mathbf{S}_4 partitioned

- (a) as the four left cosets of \mathbf{S}_3
- (b) as the three double cosets of $\mathbf{S}_2 \times \mathbf{S}_2$.

Double cosets

The double coset of a is $b_1 \Omega a \Omega b_2$, where both b_1 and b_2 are members of subgroup **H**.

The twin gates lead to a chain of subgroups:

 $\mathbf{S}_8 \supset \mathbf{S}_4^2 \supset \mathbf{S}_2^4 \supset \mathbf{S}_1^8 = \mathbf{I}$.

with subsequent orders

40,320 > 576 > 16 > 1.

For synthesizing all 40,320 members of \mathbf{S}_8 , they need a library of only 7 elements. The synthesis is a cascade with length of 7 or less.

Synthesis according to double coset space

 $\mathbf{S}_8\!\!\times \mathbf{S}_8\!\!\setminus \mathbf{S}_{16} \; / \; \mathbf{S}_8\!\!\times \mathbf{S}_8$

Synthesis according to double coset space

 $\mathbf{S}_8\!\!\times\,\mathbf{S}_8\!\!\setminus\,\mathbf{S}_{16}\;/\;\mathbf{S}_8\!\!\times\,\mathbf{S}_8$

Electronic implementation is based on the subgroup of control gates : w inputs A, B, C, ..., J, and K and w outputs P, Q, R, ..., Y, and Z, such that :

$$P = A$$

$$Q = B$$

$$R = C$$

$$\dots = \dots$$

$$Y = J$$

$$Z = f(A, B, C, \dots, J) \oplus K$$

where f is an arbitrary boolean function of the w - 1 variables A, B, C, ..., J. The subgroup is isomorphic to $\mathbf{S}_2^{2^{w-1}}$ of order $2^{2^{w-1}}$.

Three special examples:

Electronics

- If f = 0, then Z = K. Then the gate is the identity gate *i*.
- If f = 1, then $Z = 1 \oplus K = \overline{K}$. Then the gate is the inverter or NOT gate.
- If f(A, B, C, ..., J) = ABC...J, then the gate is the CONTROLLED^{w-1} NOT gate or TOFFOLI gate.

The NOT gate:

$$P = \overline{A}$$

The CONTROLLED NOT gate:

$$P = A$$
$$Q = A \oplus B .$$

is equivalent with

$$P = A$$

$$Q = \mathbf{if} (A = 0) \mathbf{then} \ B \mathbf{else} \ \overline{B} \ .$$

The CONTROLLED CONTROLLED NOT gate or TOFFOLI gate:

$$P = A$$
$$Q = B$$
$$R = AB \oplus C .$$

is equivalent with

$$P = A$$

$$Q = B$$

$$R = \mathbf{if} (AB = 0) \mathbf{then} \ C \mathbf{else} \ \overline{C} \ .$$

Schematic for

- (a) CONTROLLED NOT gate
- (b) CONTROLLED CONTROLLED NOT gate
- (c) CONTROLLED SWAP gate

Transistor cost:

The CONTROLLED NOT gate : 8 transistors

The CONTROLLED CONTROLLED NOT gate or TOFFOLI gate: 16 transistors

The CONTROLLED SWAP gate or FREDKIN gate : 16 transistors.

Microscope photograph (140 μ m × 120 μ m) of 2.4- μ m 4-bit reversible ripple adder (192 transistors).

Truth table of full adder

- (a) irreversible
- (b) reversible

	A	В	C_{in}	Р	C_{out}	S	G_1	G_2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0	0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
	(b)							

Thus : one extra input bit : preset Pand two extra output bits : garbages G_1 and G_2

Microscope photograph (610 μ m × 290 μ m) of 0.8- μ m 4-bit reversible carry-look-ahead adder (320 transistors).

Truth table of Boolean function f(A, B, C)

(a) irreversible

(b) reversible

	A	В	C	Р	G_1	G_2	G_3	$f\oplus P$
$\begin{array}{c c} ABC & f \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{array}$ (a)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\$	0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0
	(b)							

Thus : one extra input bit : preset Pand MANY extra output bits : garbages G_i

Microscope photograph $(1,430 \ \mu m \times 300 \ \mu m)$ of 0.35- μm 8-bit reversible multiplier (2,504 transistors).

Microscope photograph (140 μ m × 230 μ m) of 0.35- μ m 8-bit Cuccaro adder (2002) (392 transistors).

Oscilloscope view of 0.35 μm full adder.

Moore's law for dimensions L, W, and tthreshold voltage V_t heat dissipation Q

$\begin{array}{c} \text{technology} \\ (\mu \text{m}) \end{array}$	L (μ m)	W (μ m)	t (nm)	V_t (V)	Q (f J)
2.4 0.8 0.35	$2.4 \\ 0.8 \\ 0.35$	$2.4 \\ 2.0 \\ 0.5$	$42.5 \\ 15.5 \\ 7.4$	$0.9 \\ 0.75 \\ 0.6$	$38 \\ 2.0 \\ 0.30$

Energy dissipation per computational step:

 $Q \approx CV_t^2$,

where

$$C \approx \epsilon_0 \, \epsilon \, \frac{WL}{t}$$

We compare with the Landauer quantum

 $kT \log(2) \approx 3 \ \mathbf{z} \ \mathbf{J} = \mathbf{0.000} \ \mathbf{003} \ \mathbf{f} \ \mathbf{J}$.

C =transistor capacitance

