# Reversible computer hardware 

Alexis De Vos<br>Imec v.z.w. and Universiteit Gent Belgium

York, 22 March 2009


## A logically irreversible computer




## A logically reversible computer :





$$
\left.\begin{array}{rl} 
& \left\{\begin{array}{l}
P=A+B \\
Q
\end{array}=A-B\right.
\end{array}\right\}
$$

Truth table of three irreversible logic gates
(a) XOR gate
(b) NOR gate
(c) AND gate.

| $A B$ | $P$ |  |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

(a)
$P=A \oplus B$

| $A B$ | $P$ |  |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

(b)
$P=\overline{A+B}$

| $A B$ | $P$ |  |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

(c)
$P=A B$

Truth table of a reversible logic gate
$\left.\begin{array}{l}\begin{array}{|l|l|}\hline A B & P Q \\ \hline 0 & 0 \\ 0 & 0\end{array} 0 \\ 0 \\ 1\end{array}\right)$

## Groups

A group $G$ consists of :

- a set $S$ and
- an operation $\Omega$.

Set and operation have to fulfil conditions :

- $S$ has to be closed :
$a \Omega b \in S$
- $\Omega$ has to be associative :
$(a \Omega b) \Omega c=a \Omega(b \Omega c)$
- $S$ has to have an identity element :
$a \Omega i=a$
- each element of $S$ has to have an inverse in $S$ :
$a \Omega a^{-1}=i$

Truth table of three reversible logic gates of width 2
(a) an arbitrary reversible gate $r$
(b) the identity gate $i$
(c) the inverse $r^{-1}$ of $r$

| $A B$ | $P Q$ |  |  |
| :--- | :--- | :--- | :--- |
| 0 | 0 |  | 0 |
| 0 | 0 |  |  |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |

(a)

| $A B$ | $P$ |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 |

(b)

| $A B$ | $P$ |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

(c)

The group of reversible gates of width $w$ is isomorphic to the symmetric group $\mathbf{S}_{2^{w}}$. Its order is $\left(2^{w}\right)$ !.

Here $w=2$
Thus $\mathbf{S}_{4}$
Its order is $4!=24$.

Truth table of reversible logic gates $(w=3)$
(a) an arbitrary one
(b) a twin gate
(c) a control gate

| $A$ | $B$ | $C$ |  | $P$ | $Q$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

(a)

$$
\begin{aligned}
& a \in \mathbf{S}_{8} \\
& b \in \mathbf{S}_{4} \times \mathbf{S}_{4} \\
& c \in \mathbf{S}_{2} \times \mathbf{S}_{2} \times \mathbf{S}_{2} \times \mathbf{S}_{2}
\end{aligned}
$$

| $A$ | $B$ | $C$ |  | $P$ | $Q$ | $R$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| 0 | 0 | 0 |  |  |  |  |
| 0 | 0 | 1 | 0 | 1 |  |  |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 |  |
| 1 | 0 | 0 | 1 | 0 | 0 |  |
| 1 | 0 | 1 | 1 | 0 | 1 |  |
| 1 | 1 | 0 | 1 | 1 | 1 |  |
| 1 | 1 | 1 | 1 | 1 | 0 |  |

(c)

## The subgroup of control gates

$$
\begin{aligned}
& P=A \\
& Q=B \\
& R=f(A, B) \oplus C
\end{aligned}
$$

| $A$ | $B C$ |  | $P Q$ | $R$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 |

(a)

| $A B C$ | $P$ | $P R$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 |

(b)

## Examples :

(a) $f(A, B)=B$
(b) $f(A, B)=A B$ : the TOFFOLI gate.

This subgroup of control gates is isomorphic to the Young subgroup $\mathbf{S}_{2} \times \mathbf{S}_{2} \times \ldots \times \mathbf{S}_{2}=\mathbf{S}_{2}^{2^{w-1}}$.

Here $w=3$
Thus $\mathbf{S}_{2} \times \mathbf{S}_{2} \times \mathbf{S}_{2} \times \mathbf{S}_{2}=\mathbf{S}_{2}^{4}$
Its order is $2^{4}=16$.

The number $r$ of reversible gates, the number $t$ of twin gates, the number $c$ of control gates

| $w$ | $r$ | $t$ | $c$ |
| ---: | ---: | ---: | ---: |
| 1 | 2 | 1 | 2 |
| 2 | 24 | 4 | 4 |
| 3 | 40,320 | 576 | 16 |
| 4 | $20,922,789,888,000$ | $1,625,702,400$ | 256 |

$$
\begin{aligned}
r(w) & =\left(2^{w}\right)! \\
t(w) & =\left[\left(2^{w-1}\right)!\right]^{2} \\
c(w) & =(2!)^{2^{w-1}}=2^{2^{w-1}}
\end{aligned}
$$

$$
w=3
$$



## Cosets

Let $a$ be a member of the group $\mathbf{G}$.
The coset of $a$ is the set $b \Omega a$, where $b$ is a member of the subgroup $\mathbf{H}$


The symmetric group $\mathbf{S}_{4}$ partitioned
(a) as the four left cosets of $\mathbf{S}_{3}$.

## Double cosets

Let $a$ be a member of the group $\mathbf{G}$.
The double coset of $a$ is $b_{1} \Omega a \Omega b_{2}$, where both $b_{1}$ and $b_{2}$ are members of subgroup $\mathbf{H}$.


The symmetric group $\mathbf{S}_{4}$ partitioned
(a) as the four left cosets of $\mathbf{S}_{3}$
(b) as the three double cosets of $\mathbf{S}_{2} \times \mathbf{S}_{2}$.

## Double cosets

The double coset of $a$ is $b_{1} \Omega a \Omega b_{2}$, where both $b_{1}$ and $b_{2}$ are members of subgroup $\mathbf{H}$.

The twin gates lead to a chain of subgroups:

$$
\mathbf{S}_{8} \supset \mathbf{S}_{4}^{2} \supset \mathbf{S}_{2}^{4} \supset \mathbf{S}_{1}^{8}=\mathbf{I} .
$$

with subsequent orders

$$
40,320>576>16>1
$$

For synthesizing all 40,320 members of $\mathbf{S}_{8}$, they need a library of only 7 elements.
The synthesis is a cascade with length of 7 or less.


Synthesis according to
double coset space
$\mathbf{S}_{8} \times \mathbf{S}_{8} \backslash \mathbf{S}_{16} / \mathbf{S}_{8} \times \mathbf{S}_{8}$


Synthesis according to
double coset space
$\mathbf{S}_{8} \times \mathbf{S}_{8} \backslash \mathbf{S}_{16} / \mathbf{S}_{8} \times \mathbf{S}_{8}$


## Electronics



Electronic implementation is based on the subgroup of control gates :
$w$ inputs $A, B, C, \ldots, J$, and $K$ and
$w$ outputs $P, Q, R, \ldots, Y$, and $Z$, such that:

$$
\begin{aligned}
P & =A \\
Q & =B \\
R & =C \\
\ldots & =\ldots \\
Y & =J \\
Z & =f(A, B, C, \ldots, J) \oplus K
\end{aligned}
$$

where $f$ is an arbitrary boolean function of the $w-1$ variables $A, B, C, \ldots, J$.
The subgroup is isomorphic to $\mathbf{S}_{2}^{2 w-1}$ of order $2^{2^{w-1}}$.

Three special examples:

- If $f=0$, then $Z=K$.

Then the gate is the identity gate $i$.

- If $f=1$, then $Z=1 \oplus K=\bar{K}$.

Then the gate is the inverter or NOT gate.

- If $f(A, B, C, \ldots, J)=A B C \ldots J$, then the gate is the CONTROLLED ${ }^{w-1}$ NOT gate or TOFFOLI gate.

The NOT gate:

$$
P=\bar{A}
$$

The CONTROLLED NOT gate:

$$
\begin{aligned}
P & =A \\
Q & =A \oplus B
\end{aligned}
$$

is equivalent with

$$
\begin{aligned}
P & =A \\
Q & =\text { if }(A=0) \text { then } B \text { else } \bar{B} .
\end{aligned}
$$

The CONTROLLED CONTROLLED NOT gate or TOFFOLI gate:

$$
\begin{aligned}
P & =A \\
Q & =B \\
R & =A B \oplus C .
\end{aligned}
$$

is equivalent with

$$
\begin{aligned}
& P=A \\
& Q=B \\
& R=\text { if }(A B=0) \text { then } C \text { else } \bar{C} .
\end{aligned}
$$

## Schematic for

(a) CONTROLLED NOT gate
(b) CONTROLLED CONTROLLED NOT gate
(c) CONTROLLED SWAP gate


Transistor cost:

The CONTROLLED NOT gate :
8 transistors

The CONTROLLED CONTROLLED NOT gate or TOFFOLI gate : 16 transistors

The CONTROLLED SWAP gate or FREDKIN gate : 16 transistors.


Microscope photograph ( $140 \mu \mathrm{~m} \times 120 \mu \mathrm{~m}$ ) of $2.4-\mu \mathrm{m} 4$-bit reversible ripple adder (192 transistors).

## Truth table of full adder

(a) irreversible
(b) reversible

| $A$ | $B$ | $C_{\text {in }}$ | $P$ | $C_{\text {out }}$ | $S$ | $G_{1}$ | $G_{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | 0 | $\mathbf{0}$ | $\mathbf{0}$ | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | 0 | $\mathbf{0}$ | $\mathbf{1}$ | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | 0 | $\mathbf{0}$ | $\mathbf{1}$ | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | 0 | $\mathbf{1}$ | $\mathbf{0}$ | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | 0 | $\mathbf{0}$ | $\mathbf{1}$ | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | 0 | $\mathbf{1}$ | $\mathbf{0}$ | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | 0 | $\mathbf{1}$ | $\mathbf{0}$ | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | 0 | $\mathbf{1}$ | $\mathbf{1}$ | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
|  |  |  |  |  |  |  |  |

(b)

Thus : one extra input bit : preset $P$ and two extra output bits: garbages $G_{1}$ and $G_{2}$


Microscope photograph ( $610 \mu \mathrm{~m} \times 290 \mu \mathrm{~m}$ ) of $0.8-\mu \mathrm{m} 4$-bit reversible carry-look-ahead adder (320 transistors).

Truth table of Boolean function $f(A, B, C)$
(a) irreversible
(b) reversible

| $A B C$ | $f$ |  |  |
| :--- | :--- | :--- | :--- |
| 0 | 0 |  |  |
| 0 | 0 | 0 |  |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

(a)

| $A$ | $B$ | $C$ | $P$ | $G_{1}$ | $G_{2}$ | $G_{3}$ | $f \oplus P$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | 0 | 0 | 0 | 1 | $\mathbf{0}$ |
| $\mathbf{0}$ | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | 0 | 0 | 1 | 0 | $\mathbf{0}$ |
| $\mathbf{0}$ | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | 0 | 0 | 1 | 1 | $\mathbf{1}$ |
| $\mathbf{0}$ | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | 0 | 1 | 0 | 0 | $\mathbf{0}$ |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | 0 | 1 | 0 | 1 | $\mathbf{1}$ |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | 0 | 1 | 1 | 0 | $\mathbf{1}$ |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | 0 | 1 | 1 | 1 | $\mathbf{1}$ |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |

(b)

Thus : one extra input bit : preset $P$ and MANY extra output bits : garbages $G_{i}$


Microscope photograph ( $1,430 \mu \mathrm{~m} \times 300 \mu \mathrm{~m}$ ) of $0.35-\mu \mathrm{m}$ 8-bit reversible multiplier (2,504 transistors).


Microscope photograph ( $140 \mu \mathrm{~m} \times 230 \mu \mathrm{~m}$ ) of $0.35-\mu \mathrm{m} 8$-bit Cuccaro adder (2002) (392 transistors).


Oscilloscope view of $0.35 \mu \mathrm{~m}$ full adder.

Moore's law for dimensions $L, W$, and $t$ threshold voltage $V_{t}$ heat dissipation $Q$

| technology <br> $(\mu \mathrm{m})$ | $L$ <br> $(\mu \mathrm{~m})$ | $W$ <br> $(\mu \mathrm{~m})$ | $t$ <br> $(\mathrm{~nm})$ | $V_{t}$ <br> $(\mathrm{~V})$ | $Q$ <br> $(\mathrm{f} \mathrm{J})$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2.4 | 2.4 | 2.4 | 42.5 | 0.9 | 38 |
| 0.8 | 0.8 | 2.0 | 15.5 | 0.75 | 2.0 |
| 0.35 | 0.35 | 0.5 | 7.4 | 0.6 | 0.30 |

Energy dissipation per computational step:

$$
Q \approx C V_{t}^{2}
$$

where

$$
C \approx \epsilon_{0} \epsilon \frac{W L}{t}
$$

We compare with the Landauer quantum

$$
k T \log (2) \approx 3 \mathbf{z} \mathbf{J}=\mathbf{0 . 0 0 0} \mathbf{0 0 3} \mathbf{f} \mathbf{J} .
$$

$C=$ transistor capacitance
$V_{d d}=$ power-supply voltage
$V_{t}=$ transistor threshold voltage


A perspective from the 2003 ITRS
$=$ International Technology Roadmap of Semiconductors.


