Conservativity of Boolean algebras with operators over semilattices with operators

A. Kurucz, Y. Tanaka*, F. Wolter and M. Zakharyaschev

*Kyushu Sangyo University

August 11, 2011
Table of contents

Introduction
 Background and motivation
 Algebraic semantics for \mathcal{EL}

 Conservativity and completeness
 Conservativity, completeness and embedding
 Some completeness and incompleteness results
 \mathcal{EL}-theories over $S5$

 Undecidability of completeness
 Undecidability of completeness
 Further research
Description logic \mathcal{EL}

In this talk, we develop an algebraic semantics for \mathcal{EL}.

- \mathcal{EL} is a tractable description logic, and is used for representing large scale ontologies in medicine and other life sciences.
- The profile OWL 2 EL of OWL 2 Web Ontology Language is based on \mathcal{EL}.

Example: SNOMED CT – Comprehensive health care terminology with approximately 400,000 definitions.

Examples of concept inclusions of \mathcal{EL}:
- Pericardium \sqsubseteq Tissue $\sqcap \exists$ contained_in.Heart
- Pericarditis \sqsubseteq Inflammation $\sqcap \exists$ has_location.Pericardium
- Inflammation \sqsubseteq Disease $\sqcap \exists$ acts_on.Tissue
Concept and Theory of \mathcal{EL}

Concepts of \mathcal{EL}:
- Two disjoint countably infinite sets NC of concept names and NR of role names.
- \mathcal{EL}-concepts C are defined inductively as follows:

$$C ::= \top \mid \bot \mid A \mid C_1 \cap C_2 \mid \exists r.C,$$

where $A \in NC$, $r \in NR$ and C_1, C_2 and C are \mathcal{EL}-concepts.

Concept inclusions and theories of \mathcal{EL}:
- A concept inclusion is an expression $C \sqsubseteq D$, where C and D are \mathcal{EL}-concepts.
- An \mathcal{EL}-theory is a set of \mathcal{EL} concept inclusions.

\mathcal{EL} can be regarded as a fragment of modal logic constructed from propositional variables, \top, \bot, \land and \diamond_r for each $r \in NR$.
Interpretation of \mathcal{EL}

An *interpretation* of \mathcal{EL} is a structure $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$, where

- $\Delta^\mathcal{I} \neq \emptyset$ is the *domain* of interpretation and
- $A^\mathcal{I} \subseteq \Delta^\mathcal{I}$ for each $A \in \text{NC}$ and $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$ for each $r \in \text{NR}$.
- $\top^\mathcal{I} = \Delta^\mathcal{I}$, $\bot^\mathcal{I} = \emptyset$.
- $(C_1 \cap C_2)^\mathcal{I} = C_1^\mathcal{I} \cap C_2^\mathcal{I}$.
- $(\exists r. C)^\mathcal{I} = \{x \in \Delta^\mathcal{I} \mid \exists y \in C^\mathcal{I} ((x, y) \in r^\mathcal{I})\}$.

We say that \mathcal{I} satisfies $C \subseteq D$ and write $\mathcal{I} \models C \subseteq D$, if $C^\mathcal{I} \subseteq D^\mathcal{I}$.

Certain constraints could be put on binary relations $r^\mathcal{I}$. Standard constraints on OWL 2 EL are transitivity and reflexivity as well as symmetry and functionality.

Interpretation of \mathcal{EL} can be regarded as a Kripke model, equivalently, a model on a complex Boolean algebra with operators.
Model of \mathcal{EL}-theories and quasi-equations

Let \mathcal{X} be an \mathcal{EL}-theory. An interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ is a model of \mathcal{X} if it satisfies $C^\mathcal{I} \subseteq D^\mathcal{I}$ for every $C \subseteq D \in \mathcal{X}$.

Theorem (Sofronie-Stokkermans 08). For any finite \mathcal{EL}-theory \mathcal{X} and any concept inclusion $C \subseteq D$, the following two conditions are equivalent:

- $C \subseteq D$ is valid in every models of \mathcal{X}.
- $\text{BAO} \models \bigwedge \mathcal{X} \rightarrow C \subseteq D$, where BAO is the class of Boolean algebras with operators.

Validity of concept inclusions in the models of an \mathcal{EL}-theory corresponds to validity of quasi-equations in BAOs.

What is a proof system, or, in other words, an algebraic semantics for \mathcal{EL}?
Algebraic semantics of \mathcal{EL}

An algebraic semantics of \mathcal{EL}:

- The underlying algebras are bounded meet-semilattices with monotone operators f_r for each $r \in \text{NR}$ (SLOs, for short).
- An \mathcal{EL} concept is interpreted as a term of the language of SLOs.
- A concept inclusion $C \sqsubseteq D$ is interpreted as an equation $C \leq D$.
- Relational constraints of original interpretation are given by equational theories of SLO. For example, $x \leq fx$ for reflexivity.

Is the SLO semantics equivalent to original interpretation for \mathcal{EL}?
Conservativity and completeness

Let \mathcal{C} denotes the class of algebras, \mathcal{T} a set of equations of SLO and \mathbf{q} a quasi-equation of SLO. We say

- $\mathcal{T} \models_{\mathcal{C}} \mathbf{q}$ if $\mathcal{A} \models \mathbf{q}$ for every $\mathcal{A} \in \mathcal{C}$ with $\mathcal{A} \models \mathcal{T}$;
- \mathcal{T} is \mathcal{C}-conservative if $\mathcal{T} \models_{\mathcal{C}} \mathbf{q}$ implies $\mathcal{T} \models_{\text{SLO}} \mathbf{q}$ for every \mathbf{q};
- \mathcal{T} is complete if it is CA-conservative, where CA is the set of all complex Boolean algebras with operators.

Theorem
(Sofronie-Stokkermans 08). Any subset of the following theory is complete:

$$\{ f_{r_2} \circ f_{r_1}(x) \leq f_r(x) \mid r_1, r_2, r \in \text{NR} \} \cup \{ f_r(x) \leq f_s(x) \mid r, s \in \text{NR} \}$$

Completeness of $\{ffx \leq fx\}$ for transitivity follows from the above theorem.

Which relational constraints are complete?
Completeness and embedding

We give relational constraints of original interpretation by equational theories \mathcal{T} of SLO. Is it complete with respect to the original interpretation?

Let $V(\mathcal{T})$ be the variety of SLOs axiomatized by \mathcal{T}. We say that \mathcal{T} is complex if every $\mathfrak{A} \in V(\mathcal{T})$ is embeddable in a complex BAO \mathfrak{B} whose reduct to SLO is in $V(\mathcal{T})$.

Theorem

For every \mathcal{T}, the following conditions are equivalent:

1. \mathcal{T} is complex.
2. \mathcal{T} is complete. ($\mathcal{T} \vdash_{\text{CA}} q \Rightarrow \mathcal{T} \vdash_{\text{SLO}} q$.)
3. \mathcal{T} is BAO-conservative. ($\mathcal{T} \vdash_{\text{BAO}} q \Rightarrow \mathcal{T} \vdash_{\text{SLO}} q$.)

So, if we find an appropriate embedding, we get completeness.
Constructing embeddings

We construct an embedding via two steps:

1. Embed any SLO validating \mathcal{T} into a DLO validating \mathcal{T}: This is equivalent to prove DLO-conservativity, that is,

 $$\mathcal{T} \vdash_{\text{DLO}} q \Rightarrow \mathcal{T} \vdash_{\text{SLO}} q.$$

2. Embed any DLO validating \mathcal{T} into a BAO validating \mathcal{T}: This is equivalent to prove DLO-BAO-conservativity, that is,

 $$\mathcal{T} \vdash_{\text{BAO}} q \Rightarrow \mathcal{T} \vdash_{\text{DLO}} q.$$
Embedding SLO into DLO

As concerns for embedding from SLOs into DLOs, we have the following result:

Theorem
Every \(\mathcal{EL} \)-theory containing only equations where each variable occurs at most once in the left-hand side is DLO-conservative.

Example: An \(\mathcal{EL} \)-theory \(\mathcal{T}_{S5} \) satisfies the condition of the theorem, but \(\mathcal{T}_{S4.3} \) does not, where

\[
\mathcal{T}_{S5} = \{ x \leq fx, \ ff x \leq fx, \ x \land fy \leq f(fx \land y) \}
\]

\[
\mathcal{T}_{S4.3} = \{ x \leq fx, \ ff x \leq fx, \ f(x \land y) \land f(x \land z) \leq f(x \land fy \land fz) \}.
\]

As we will see later, \(\mathcal{T}_{S4.3} \) is not DLO-conservative.
Embedding DLO into BAO

Embedding from a DLO \mathcal{D} to a BAO is given by defining appropriate binary relation R on the set $\mathcal{F}(\mathcal{D})$ of prime filters of \mathcal{D}.

Let \mathcal{B} be the complex BA defined on the set $\wp(\mathcal{F}(\mathcal{D}))$. Let $f_\mathcal{D}$ be the operator on \mathcal{D} and $f_\mathcal{B}$ an operator on \mathcal{B} defined by $f_\mathcal{B}(U) = \{ F \mid \exists G \in U \ (F, G) \in R \}$.

Example:

- If $f_\mathcal{D}$ is functional and $(F, G) \in R \iff G = f_\mathcal{D}^{-1}(F)$, then $f_\mathcal{B}$ is functional.
- If $f_\mathcal{D}$ is symmetry and $(F, G) \in R \iff f_\mathcal{D}(G) \subseteq F$ and $f_\mathcal{D}(F) \subseteq G$, then $f_\mathcal{B}$ is symmetry.

Unfortunately, we don’t know any general way to define R.
Complete theories

As a consequence, we have following completeness results:

Theorem
The following $\mathcal{E}\mathcal{L}$-theories are complete:

- **Symmetry:**
 \[\{ x \land f y \leq f (f x \land y) \} \]

- **Functionality:**
 \[\{ f x \land f y \leq f (x \land y) \} \]

- **Reflexivity, transitivity and symmetry:**
 \[T_{S5} = \{ x \leq f x, f f x \leq f x, x \land f y \leq f (f x \land y) \} \]
Fusion of \mathcal{EL} theories

Let \mathcal{T}_1 and \mathcal{T}_2 be \mathcal{EL}-theories. We call $\mathcal{T}_1 \cup \mathcal{T}_2$ a fusion of \mathcal{T}_1 and \mathcal{T}_2 if the set of f-operators occurring in \mathcal{T}_1 and \mathcal{T}_2 are disjoint.

Theorem

The fusions of complete \mathcal{EL}-theories are also complete.

Union of complete theories is not complete in general, as we will see later.
Incompleteness

There are \mathcal{EL} theories \mathcal{T} which are incomplete. That is, there exists quasi-equation q such that

$$\mathcal{T} \vDash_{CA} q, \; \mathcal{T} \nvDash_{SLO} q.$$

Some incomplete \mathcal{EL} theories are DLO-nonconservative. That is, there exists quasi-equation q such that

$$\mathcal{T} \vDash_{DLO} q, \; \mathcal{T} \nvDash_{SLO} q.$$
Example: Both $\{x \leq fx\}$ and $\{fx \land fy \leq f(x \land y)\}$ are complete, but their union is not. Let $\mathcal{G} = \{0, a, 1\}$, $f0 = 0$ and $fa = f1 = 1$. Then, $fa \notin a$. However, in BAO

$$\{x \leq fx, \; fx \land fy \leq f(x \land y)\} \models_{\text{BAO}} fx \leq x$$

Figure: $fa \notin a$

On the other hand, the above theory is DLO-conservative.

Union of complete theories is not complete, in general.
DLO-nonconservative incomplete $\mathcal{E}\mathcal{L}$ theory

Example: $\mathcal{T}_{S4.3}$ is DLO-nonconservative and hence incomplete. Let \mathcal{G} be the following SLO, where $fa = d$, $fc = e$ and $fx = x$ for the remaining x. Then, $a \land fc = fa \land c$ and $fa \land fc \not\leq f(a \land c)$. However, in DLO

$$\mathcal{T}_{S4.3} \vdash_{DLO} x \land fy = fx \land y \Rightarrow fx \land fy \not\leq f(x \land y).$$

![Diagram](image)

Figure: $a \land fc = fa \land c$, $fa \land fc \not\leq f(a \land c)$

Is there any SLO equation e such that

$$\mathcal{T}_{S4.3} \vdash_{DLO} e \text{ and } \mathcal{T}_{S4.3} \not\vdash_{SLO} e?$$
Subvarieties of S_5

It is known that the lattice of subvarieties of $V(T_{S_5})$ is the following (Jackson 04), where

$$T_{S_5} = \{ x \leq fx, \quad ffx \leq fx, \quad x \land fy \leq f(fx \land y) \}. $$

![Lattice of subvarieties of $V(T_{S_5})$](image)

Figure: Lattice of subvarieties of $V(T_{S_5})$
Subvarieties of S_5

The only incomplete one is \mathcal{E}, which is defined by

$$\mathcal{T}_{S_5} \cup \{fx \land fy \leq f(x \land y)\}.$$
Completeness problem for \mathcal{EL}-theories

- We have observed that some theories of \mathcal{EL} are complete and some are not.
- So, it is a natural question that whether we can decide a given \mathcal{EL}-theory is complete or not.
- The last topic of this presentation is undecidability of this completeness problem for \mathcal{EL}-theories.
Undecidability of completeness

By reducing the halting problem for Turing machines, we can show the following:

Theorem

No algorithm can decide, given a finite set \mathcal{T} of \mathcal{EL}-equations, whether $\mathcal{T} \models_{\text{SLO}} 0 = 1$.

We also have the following:

Theorem

For every \mathcal{EL}-theory \mathcal{T}, the following two conditions are equivalent:

- the fusion of \mathcal{T} and $\{f(x) \leq x\}$ is complete;
- $\mathcal{T} \models_{\text{SLO}} 0 = 1$.
Hence, we have undecidability of completeness:

Theorem

It is undecidable whether a finite set \(T \) of \(\mathcal{EL} \)-equations is complete.
Further research

- General sufficient syntactic criteria for completeness.
- Discuss conservativity for equations, instead of quasi-equations.
- Relation between quasi-varieties of SLOs and varieties of SLOs defined by \mathcal{EL} theories.
Thank you for your attention.