
Lectures on Dependent Type Theory

Nicola Gambino

March 15th, 2009

Abstract

We give a short overview of the material that will be presented
during the lectures on Dependent Type Theory to be given at the
Midlands Graduate School in the Foundations of Computing 2009.

1 Dependent type theories

The first lecture will be devoted to introducing dependent type theories.
We consider dependent type theories with the following four kinds of judge-
ments:

A ∈ Type , A = B ∈ Type , a ∈ A , a = b ∈ A .

These judgements express that A is a type, that A and B are definitionally
equal types, that the term a is an element of the type A, and that the
terms a and b are definitionally equal elements of the type A, respectively.
Of course, we allow such judgements to be made relative to a context Γ of
variable declarations of the form

Γ = (x0 : A0, x1 : A1, . . . , xn : An) .

For each form of type we give four kinds of rules:

• formation rules,

• introduction rules,

• elimination rules,

• computation rules.

1



The rules for the most of the forms of types that we consider during the
lectures are given in Appendix A. The lecture will explain the general
scheme that motivates the formulation of these rules and the different roles
that are played by the four kinds of rules. To illustrate in practice how
the rules for dependent type theories interact between each other, we will
consider some derived rules.

2 Propositions-as-types

The second lecture will be devoted to studying the propositions-as-types
idea in the context of dependent type theories. To make this idea precise,
we will consider extensions of the dependent type theories considered earlier
with the following forms of judgement

φ ∈ Prop , φ1, . . . φn ` φ .

These jdugements express that φ is a proposition and that a proposition φ
follows logically from the assumptions φ1, . . . φn. We refer to such dependent
type theories as logic-enriched dependent type theories. The rules for a logic-
enriched dependent type theory can be seen as those of a many-sorted logic
in which the sorts are given by the types of the underlying dependent type
theory. The propositions-as-types idea can then be formulated as a syntactic
translation from certain logic-enriched type theories into their underlying
dependent type theories, defined as follows:

J⊥K = 0 ,
J>K = 1 ,

Jφ ∧ ψK = JφK× JψK ,
Jφ ∨ ψK = JφK + JψK ,
Jφ ⊃ ψK = JφK → JψK ,

J(∀x : A)φK = (Πx : A)JφK ,
J(∃x : A)φK = (Σx : A)JφK .

We will show that the propositions-as-types translation validates not only
the standard rules for intuitionistic first-order logic, but also induction rules
for all the inductive types of the underlying dependent type theory, and the
so-called type-theoretic axiom of choice. This will lead to a characterisation
of the propositions that are valid under the proposition-as-types translation.

2



3 Semantics in locally cartesian closed categories

The third and fourth lecture will be devoted to the semantics of dependent
type theories. To begin with, we consider semantics in locally cartesian
closed categories. One of the distinguishing features of locally cartesian
categories is that, for every map f : B → A in a locally cartesian closed
category C, the pullback functor ∆f : C/A → C/B has both a left ad-
joint Σf : C/B → C/A and a right adjoint Πf : C/B → C/A. We will
describe the analogy between these adjoints and Σ-types and Π-types. We
then discuss how the idea of interpreting dependent type theories in locally
cartesian closed suffers from two distinct problems. The first problem is an
issue of completeness: the semantics in locally cartesian closed categories
validates more rules than the ones we assumed as part of the dependent
type theories. The second problem concerns coherence issues: while substi-
tution satisfies strictly both an associative law and commutation law with
type-constructors, its semantic counterpart does not. To address the first
problem, we discuss the effect of extending our dependent type theories with
rules that are valid in any locally cartesian closed categories, thus arriving
at the formulation of extensional dependent type theories. To address the
second problem, we revisit the semantics of dependent type theories in the
general context of the theory of fibrations, where a ‘strictification result’
allows to solve coherence issues for the semantics of extensional dependent
type theories.

4 Homotopical aspects of dependent type theories

The fourth lecture will be devoted to illustrate some recent research aimed
at developing a satisfactory semantics for dependent type theories which
are not extensional. This research involves surprising new connections with
homotopical algebra and higher-dimensional category theory. First, we will
show how categories equipped with a weak factorisation system satisfying
appropriate coherence conditions provide a semantics for identity types. Sec-
ondly, we will show how the very syntax of dependent type theories with
rules for identity types gives rise to a category equipped with a weak fac-
torisation system.

3



A Deduction rules for dependent type theories

0 ∈ Type

e ∈ 0 (x ∈ 0) C(x) ∈ Type

rec(e) ∈ C(e)

Table 1: Rules for the empty type

1 ∈ Type

∗ ∈ 1

e ∈ 1 (x ∈ 1) C(x) ∈ Type c ∈ C(∗)

rec(e, c) ∈ C(e)

(x ∈ 1) C(x) ∈ Type c ∈ C(∗)

rec(∗, c) = c ∈ C(∗)

Table 2: Rules for the one-element type

4



A ∈ Type B ∈ Type

A + B ∈ Type

a ∈ A

ιA(a) ∈ A + B

b ∈ B

ιB(b) ∈ A + B

e ∈ A + B (z ∈ A + B) C(z) ∈ Type (x ∈ A) c(x) ∈ C(ιA(x)) (y ∈ B) d(y) ∈ C(ιB(y))

rec(e, c, d) ∈ C(e)

a ∈ A (z ∈ A + B) C(z) ∈ Type (x ∈ A) c(x) ∈ C(ιA(x)) (y ∈ B) d(y) ∈ C(ιB(y))

rec(ιA(a), c, d) = c(a) ∈ C(ιA(a))

b ∈ B (z ∈ A + B) C(z) ∈ Type (x ∈ A) c(x) ∈ C(ιA(x)) (y ∈ B) d(y) ∈ C(ιB(y))

rec(ιB(b), c, d) = d(b) ∈ C(ιB(b))

Table 3: Deduction rules for disjoint union of types

5



Nat ∈ Type

0 ∈ Nat

n ∈ Nat

succ(n) ∈ Nat

n ∈ Nat (x ∈ Nat) C(x) ∈ Type c ∈ C(0) (x ∈ Nat, y ∈ C(x)) d(x, y) ∈ C(succ(x))

natrec(n, c, d) ∈ C(n)

(x ∈ Nat) C(x) ∈ Type c ∈ C(0) (x ∈ Nat, y ∈ C(x)) d(x, y) ∈ C(succ(x))

natrec(0, c, d) = c ∈ C(0)

n ∈ Nat (x ∈ Nat) C(x) ∈ Type c ∈ C(0) (x ∈ Nat, y ∈ C(x)) d(x, y) ∈ C(succ(x))

natrec(succ(n), c, d) = d(n, natrec(n, c, d)) ∈ C(succ(n))

Table 4: Deduction rules for the type of natural numbers

(x ∈ A) B(x) ∈ Type

(Πx ∈ A)B(x) ∈ Type

(x ∈ A) f(x) ∈ B(x)

(λx ∈ A)f(x) ∈ (Πx ∈ A)B(x)

f ∈ (Πx ∈ A)B(x) a ∈ A

app(f, a) ∈ B(a)

(x ∈ A) f(x) ∈ B(x) a ∈ A

app((λx ∈ A)f(x), a) = f(a) ∈ B(a)

Table 5: Deduction rules for Π-types

6



(x ∈ A) B(x) ∈ Type

(Σx ∈ A)B(x) ∈ Type

a ∈ A b ∈ B(a)

pair(a, b) ∈ (Σx ∈ A)B(x)

c ∈ (Σx ∈ A)B(x) (z ∈ (Σx ∈ A)B(x)) C(z) ∈ Type (x ∈ A, y ∈ B(x)) d(x, y) ∈ C(pair(x, y))

split(c, d) ∈ C(c)

a ∈ A b ∈ B(a) (z ∈ (Σx ∈ A)B(x)) C(z) ∈ Type (x ∈ A, y ∈ B(x)) d(x, y) ∈ C(pair(x, y))

split(pair(a, b), d) = d(a, b) ∈ C(pair(a, b))

Table 6: Deduction rules for Σ-types

A ∈ Type a ∈ A b ∈ A

IdA(a, b) ∈ Type

a ∈ A

r(a) ∈ IdA(a, a)

p ∈ IdA(a, b) (x ∈ A, y ∈ A, z ∈ IdA(x, y)) C(x, y, z) ∈ Type (x ∈ A) d(x) ∈ C(x, x, r(x))

J(a, b, p, d) ∈ C(a, b, p)

a ∈ A (x ∈ A, y ∈ A, z ∈ IdA(x, y)) C(x, y, z) ∈ Type (x ∈ A) d(x) ∈ C(x, x, r(x))

J(a, a, r(a), d) = d(a) ∈ C(a, a, r(a))

Table 7: Deduction rules for identity types

7


