
Multi-Agent Programming

Brian Logan1

School of Computer Science
University of Nottingham

Midlands Graduate School
8th – 12th April 2013

1Slides on Normative Organisations are from an AAMAS 2012 tutorial on Logics and Multi-agent Programming
Languages given jointly with Natasha Alechina, Nils Bulling and Mehdi Dastani

Brian Logan Multi-Agent Programming MGS 2013 1 / 48



Course Overview

Lecture 1: Programming agents
BDI model; PRS and other BDI languages

Lecture 2: Programming multi-agent systems
Coordination in MAS; agent communication languages &
protocols; programming with obligations and prohibitions

Lecture 3: Logics for MAS
LTL, CTL; Rao and Georgeff’s BDI logics; Coalition Logic,
ATL

Lecture 4: Verification of MAS
A tractable APL and BDI logic: SimpleAPL and PDL-APL

Brian Logan Multi-Agent Programming MGS 2013 2 / 48



Lecture 2: Programming Multi-Agent Systems

Lecture 2: Programming
Multi-Agent Systems

Brian Logan Multi-Agent Programming MGS 2013 2 / 48



Lecture 2: Programming Multi-Agent Systems

Outline of this lecture

coordination in multi-agent systems

coordination in MAS composed of benevolent agents

agent communication languages and protocols

coordination in MAS composed of self-interested agents

normative organisations, obligations and prohibitions

Brian Logan Multi-Agent Programming MGS 2013 3 / 48



Lecture 2: Programming Multi-Agent Systems

Multi-agent systems

Multi-agent systems are a promising approach to constructing complex
software systems which are:

Open: agents dynamically enter and exit the system

Autonomous: agents pursue their own objectives

Encapsulated: internal state and operation of agents is not visible to
other agents (or the MAS)

Heterogeneous: agents can have different capabilities and be
implemented in different ways (e.g., different agent programming
languages)

Brian Logan Multi-Agent Programming MGS 2013 4 / 48



Lecture 2: Programming Multi-Agent Systems

Applications of multi-agent systems

distributed problem solving

each agent has only restricted capabilities or knowledge in relation
to the (shared) problem to be solved

e.g., scheduling meetings, design of industrial products

solving distributed problems

the agents have similar capabilities but the problem is distributed

e.g., controlling a communications or energy distribution network

Brian Logan Multi-Agent Programming MGS 2013 5 / 48



Lecture 2: Programming Multi-Agent Systems

What is a multi-agent system?

a multi-agent system is a system in which there are several agents
situated in the same environment which cooperate at least part of the
time

cooperation can either be implicit (e.g., emergent) or explicit

most forms of explicit cooperation require some kind of
communication between the agents

more complex forms of cooperation often require additional
components as part of the MAS to coordinate the behaviour of the
agents

Brian Logan Multi-Agent Programming MGS 2013 6 / 48



Lecture 2: Programming Multi-Agent Systems

Interactions in multi-agent systems

if the agents are not aware of or simply ignore each other, there isn’t
very much interesting to say

if they always compete with each other, it is more interesting, but the
agents don’t form a system in anything other than the ecological sense
(e.g., artificial life)

for a multiagent system to be possible the agents must cooperate
about some things

e.g., even if the agents compete for resources, they must cooperate
about how the resources are to be allocated

Brian Logan Multi-Agent Programming MGS 2013 7 / 48



Lecture 2: Programming Multi-Agent Systems

Competition and cooperation in MAS

the balance between competition and cooperation depends on the
degree to which the goals of the agents overlap

e.g., agents representing different organisations in an electronic market
will typically have competing goals (to maximise the profit of their
organisation)

however they must cooperate to ensure that the market (e.g., auction)
works effectively

mechanism design is concerned with designing interaction protocols in
which the agents have no incentive not to cooperate

Brian Logan Multi-Agent Programming MGS 2013 8 / 48



Lecture 2: Programming Multi-Agent Systems

Benevolent vs. self-interested agents

benevolent agents implicitly or explicitly share one or more common
(system or organisational) goals

e.g., when the agents are ‘owned’ by the same organisation or
individual

agents work to achieve the overall objectives of the system, even
when these conflict with the agent’s own goals

self-interested agents do not share a common goal
e.g., they are designed to represent the interests of different
organisations or individuals

agents co-operate because it helps them achieve their own goals

Brian Logan Multi-Agent Programming MGS 2013 9 / 48



Lecture 2: Programming Multi-Agent Systems

Benevolent agents

all the agents in the MAS cooperate to achieve one or more system or
organisational goals

the agents co-operate to perform some task that a single agent can’t
do on its own

because a single agent doesn’t have all the capabilities or knowledge
required to perform the task

because a single agent would be too slow

note that there may still be elements of competition, e.g., if the
agents compete for the organisation’s resources

mechanisms are still required to ensure that resources and tasks are
allocated appropriately

Brian Logan Multi-Agent Programming MGS 2013 10 / 48



Lecture 2: Programming Multi-Agent Systems

Coordination in multiagent systems

the overall objective of a multiagent system can be achieved by
coordinating (regulating) the observable/external behaviour of the
agents

many agent-oriented programming languages and platforms (e.g.,
Jason, 2APL) support

instantiation of multiple agents

constructs to implement basic (‘cooperative’) coordination, e.g.,
communication, access to shared resources or environments, task
allocation etc.

implementing coordination mechanisms for more open, less
‘cooperative’ MAS requires additional languages or components

Brian Logan Multi-Agent Programming MGS 2013 11 / 48



Lecture 2: Programming Multi-Agent Systems

Programming coordination in MAS

several approaches in the literature:

languages and artefacts defined in terms of coordination concepts such
as synchronization, shared-space, channels, sensing, e.g., Linda,
CARTAGO, ReSpecT, EIS, etc.

organizational models, normative systems, and electronic institutions
defined in terms of social and organisational concepts, e.g.,
ISLANDER/AMELI, PowerJava, Moise+, 2OPL, etc.

in addition to programming individual agents, to implement a MAS,
we need to be able to program such coordination mechanism(s)

Brian Logan Multi-Agent Programming MGS 2013 12 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

Agent communication languages & protocols

Brian Logan Multi-Agent Programming MGS 2013 12 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

Communication in multiagent systems

an important strand of work in multi-agent programming (and logics
for MAS) is the design and analysis of agent communication languages

most agent communication languages are based on a very simplified
notion of speech acts

ACLs typically define a set of performatives (tell, ask etc.) and their
syntax

examples:

KQML (Knowledge Query and Manipulation Language) — DARPA,
1990s

FIPA (Foundation for Intelligent Physical Agents) ACL began in
1995, standardised in 1999

Brian Logan Multi-Agent Programming MGS 2013 13 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

KQML

defines format of messages

41 performatives or message types, e.g., ask-if and tell

other components of a message are for example ontology (for the
terminology used)

does not define content

has semantics (pre- and postconditions, in a language with belief,
knowledge, wanting and intending modalities) by Labrou and Finin,
IJCAI’97

KQML criticised by Cohen and Levesque for lacking message types to
express commitment

Brian Logan Multi-Agent Programming MGS 2013 14 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

FIPA ACL

similar to KQML

20 performatives: for example, agree, cancel, confirm,
disconfirm, inform, not-understood, query-if, refuse,
accept-proposal, reject-proposal, request. . .

also has formal semantics in multi-modal logic (based on Cohen and
Levesque, see Bretier and Sadek in LNAI 1193)

Brian Logan Multi-Agent Programming MGS 2013 15 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

Contract net protocol

The contract net protocol is a way of achieving efficient co-operation
through task sharing in networks of (possibly heterogeneous, autonomous)
agents

task announcement: an agent which generates (or receives) a task
broadcasts a description of the task to some or all of the agents

bid response: agents respond to the task announcement with a bid

task allocation: the agent which announced the task allocates it to
one or more of the bidding agents

expediting: the agent to which the task was allocated carries it out

Brian Logan Multi-Agent Programming MGS 2013 16 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

Task announcement

task manager sends a task announcement to some or all agents

task announcement contains information about the task to be
performed:

eligibility specification: the criteria an agent must meet in order to be
eligible to submit a bid

task abstraction: brief description of the task to allow potential bidders
to evaluate level of interest

bid specification: description of the expected form of a bid for the
announced task

Brian Logan Multi-Agent Programming MGS 2013 17 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

Bidding

on receipt of a task announcement, an agent determines if it is eligible
for the task based on:

the task’s eligibility specification

the agent’s hardware and software resources

its current commitments

eligible agents send a bid to the task manager containing the
information in the bid specification, e.g., when they will be able to
complete the task, how much it will cost, etc.

Brian Logan Multi-Agent Programming MGS 2013 18 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

Task allocation

bids are stored by the task manager until a deadline is reached

if no (acceptable) bids are received by the deadline, task is
re-announced

otherwise the manager then awards the task to one or more bidders

bidders who have be awarded the task confirm that they are still able
to undertake it (situation may have changed between bid and award)

otherwise part or all of the task is re-announced

Brian Logan Multi-Agent Programming MGS 2013 19 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

Task processing

award messages contain a complete specification of the task to be
executed

successful bidder(s) (contractors) must attempt to expedite the task

this may result in the generation of new sub-tasks which the bidder
then manages . . .

when the task is complete, contractors send their manager a report
message containing the result of the task

Brian Logan Multi-Agent Programming MGS 2013 20 / 48



Lecture 2: Programming Multi-Agent Systems Agent communication languages & protocols

Applications

contract net has become one of the most popular frameworks for task
sharing in multi-agent systems (e.g., FIPA-OS)

originally used to allocate tasks over a distribute network of sensors
(benevolent agents)

later extended to self-interested agents in electronic markets

many variants — e.g., agents respond with offers of tasks to swap for
the announced task

Brian Logan Multi-Agent Programming MGS 2013 21 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Normative organisations

Brian Logan Multi-Agent Programming MGS 2013 21 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Counts-as & sanctioning rules

counts-as rulessanctioning rules

coordination

cycle

institutional factsbrute facts

brute facts model the domain
specific state

agents modify brute facts by
performing actions

brute state is normatively assessed
by counts-as rules

counts-as rules link brute state to
institutional facts

normative judgments and role
enactments constitute institutional
facts

judgment might lead to sanctions
(punishments and rewards)

coordination cycle determines order
in which constructs are applied

Brian Logan Multi-Agent Programming MGS 2013 22 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Normative multi-agent organisation example

to program a normative organisation we must specify: the roles that
can be played by agents in the organisation, the initial brute state and
the effects of actions on the brute facts

e.g. a program for a simplified implementation of a conference
management system could be:

Roles: chair, reviewer, author

Brute Facts: phase(closed)

Effect Rules:
{rea(C,chair), phase(closed)}

open(C)
{not phase(closed), phase(abstracts)}
...

{rea(R,reviewer), phase(review), assigned(R,P)}
uploadReview(R,P)

{review(R,P)}
Brian Logan Multi-Agent Programming MGS 2013 23 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Normative multi-agent organisation example (2)

we also need to specify how the brute state gives rise to institutional
facts, and the effects of normative judgements

counts-as rules normatively judge the brute state, i.e., they produce
normative or institutional facts, e.g.:

{paper(A,PId), pages(PId) > 15}
=>

{viol(PId,pagelimit)}

sanctioning rules specify the consequences for the brute state of a
particular normative assessment, e.g.:

{viol(PId,pagelimit)}
=>

{rejected(PId)}

Brian Logan Multi-Agent Programming MGS 2013 24 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Normative multi-agent organisation example (3)

Roles: chair, reviewer, author
Brute Facts: phase(closed)
Effect Rules:

{rea(C,chair), phase(closed)}
open(C)

{not phase(closed), phase(abstracts)}
...

{rea(R,reviewer), phase(review), assigned(R,P)}
uploadReview(R,P)
{review(R,P)}

Counts-As Rules:
{paper(A,PId), pages(PId) > 15}
=>

{viol(PId,pagelimit)}
Sanctioning Rules:

{viol(PId,pagelimit)}
=>

{rejected(PId)}

Brian Logan Multi-Agent Programming MGS 2013 25 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Problems with counts-as rules

despite (or perhaps because of) their simplicity counts-as rules have
some limitations when it comes to expressing norms:

difficult to handle conditional and temporal aspects, e.g., when you
validate your ticket, you have 55 minutes to complete your journey

obligations and prohibitions are not explicitly specified:

obfuscates the meaning of program code

obligations and prohibitions cannot be communicated to (norm-aware)
agents

an alternative approach is to use conditional norms:

obligations and prohibitions are explicit

we can express conditions and deadlines

Brian Logan Multi-Agent Programming MGS 2013 26 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Counts-as rules vs. conditional norms

the normative component of an organisation is typically about
specifying obligations, prohibitions and permissions

counts-as rules can only express obligations, prohibitions and
permissions implicitly

Op a state in which p does not hold necessarily counts as a violation
Fp a state in which p holds necessarily counts as a violation
Pp a state in which p holds not necessarily counts as a violation

which obligations, prohibitions an permissions w.r.t. q can we “derive
from” the counts-as rule {not q} => {viol}?

Brian Logan Multi-Agent Programming MGS 2013 27 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Conditional norms

norm schemes

norm instances
sanctioning rules

coordination

cycle

institutional factsbrute facts

brute facts model the domain
specific state

agents modify brute facts by
performing actions

ideal brute state described by norm
schemes (conditional obligations and
prohibitions)

norm schemes instantiate norm
instances (detached obligations and
prohibitions);

violations and role enactment
represented by institutional facts

norm violation may lead to
sanctions;

coordination cycle determines order
in which constructs are applied

Brian Logan Multi-Agent Programming MGS 2013 28 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Example norm schemes

Norms:
reviewdue(R): % label
< phase(review) and assigned(R,P), % condition

O(review(R,P)), % obligation
phase(collect)> % deadline

minreviews(P):
< phase(submission) and paper(P),

O(nrReviews(P) >= 3),
phase(collect)>

pagelimit(PId):
< phase(submission) and abstract(A,PId),

F(pages(PId) > 15),
phase(review)>

Brian Logan Multi-Agent Programming MGS 2013 29 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Obligations 1

Recall norm scheme:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1

brute facts : { phase(review), paper(5) }

inst. facts : { rea(jj,chair) }

instances : { }

Brian Logan Multi-Agent Programming MGS 2013 30 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Obligations 2

Recall norm scheme:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2

assign(jj,n,5)

brute facts : { phase(review), paper(5), assigned(n,5) }

inst. facts : { rea(jj,chair) }

instances : { (reviewdue(n),O(review(n,5),phase(collect)) }

Brian Logan Multi-Agent Programming MGS 2013 31 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Obligations 3

Recall norm scheme:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2 sk

assign(jj,n,5)

brute facts : { phase(review), paper(5), assigned(n,5) }

inst. facts : { rea(jj,chair) }

instances : { (reviewdue(n),O(review(n,5),phase(collect)) }

Brian Logan Multi-Agent Programming MGS 2013 32 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Obligations 4

Recall norm scheme:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2 sk sk+1

assign(jj,n,5) uploadReview(n,5)

brute facts : { phase(review), paper(5), assigned(n,5), review(n,5) }

inst. facts : { rea(jj,chair), obey(reviewdue(n)) }

instances : { }

Brian Logan Multi-Agent Programming MGS 2013 33 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Obligations 3 (alternative history)

Recall norm scheme:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2 sk

assign(jj,n,5)

brute facts : { phase(review), paper(5), assigned(n,5) }

inst. facts : { rea(jj,chair) }

instances : { (reviewdue(n),O(review(n,5),phase(collect)) }

Brian Logan Multi-Agent Programming MGS 2013 34 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Obligations 4a

Recall norm scheme:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2 sk sk+1

assign(jj,n,5) start(jj,collect)

brute facts : { phase(collect), paper(5), assigned(n,5) }

inst. facts : { rea(jj,chair), viol(reviewdue(n)) }

instances : { }

Brian Logan Multi-Agent Programming MGS 2013 35 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Behavior of an Obligation Summarized

¬ϕx ,¬ϕd

(φl ,Oϕx , ϕd )

¬ϕx ,¬ϕd

(φl ,Oϕx , ϕd )

ϕx ,¬ϕd

obey(φl )

¬ϕx , ϕd

viol(φl )

ϕx , ϕd

obey(φl )

Brian Logan Multi-Agent Programming MGS 2013 36 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Prohibitions 1

Recall norm scheme:
pagelimit(P):

< phase(submission) and abstract(A,PId), F(pages(PId) > 15), phase(review)>

s1

brute facts : { phase(abstract), abstract(n,5) }

inst. facts : { rea(jj,chair) }

instances : { }

Brian Logan Multi-Agent Programming MGS 2013 37 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Prohibitions 2

Recall norm scheme:
pagelimit(P):

< phase(submission) and abstract(A,PId), F(pages(PId) > 15), phase(review)>

s1 s2

start(jj,submission)

brute facts : { phase(submission), abstract(n,5) }

inst. facts : { rea(jj,chair) }

instances : { (pagelimit(5), F(pages(5) > 15, phase(review)) }

Brian Logan Multi-Agent Programming MGS 2013 38 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Prohibitions 3

Recall norm scheme:
pagelimit(P):

< phase(submission) and abstract(A,PId), F(pages(PId) > 15), phase(review)>

s1 s2 sk

start(jj,submission)

brute facts : { phase(submission), abstract(n,5) }

inst. facts : { rea(jj,chair) }

instances : { (pagelimit(5), F(pages(5) > 15, phase(review)) }

Brian Logan Multi-Agent Programming MGS 2013 39 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Prohibitions 4

Recall norm scheme:
pagelimit(P):

< phase(submission) and abstract(A,PId), F(pages(PId) > 15), phase(review)>

s1 s2 sk sk+1

start(jj,submission) upload(n,5)

brute facts : { phase(submission), abstract(n,5), paper(5), pages(5) = 17 }

inst. facts : { rea(jj,chair), viol(pagelimit(5)) }

instances : { (pagelimit(5), F(pages(5) > 15, phase(review)) }

Brian Logan Multi-Agent Programming MGS 2013 40 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Prohibitions 5

Recall norm scheme:
pagelimit(P):

< phase(submission) and abstract(A,PId), F(pages(PId) > 15), phase(review)>

s1 s2 sk sk+1 sk+2

start(jj,submission) upload(n,5) start(jj,review)

brute facts : { phase(review), abstract(n,5), paper(5), pages(5) = 17 }

inst. facts : { rea(jj,chair) }

instances : { }

Brian Logan Multi-Agent Programming MGS 2013 41 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Prohibitions 3 (alternative history)

Recall norm scheme:
pagelimit(P):

< phase(submission) and abstract(A,PId), F(pages(PId) > 15), phase(review)>

s1 s2 sk

start(jj,submission)

brute facts : { phase(submission), abstract(n,5) }

inst. facts : { rea(jj,chair) }

instances : { (pagelimit(5), F(pages(5) > 15, phase(review)) }

Brian Logan Multi-Agent Programming MGS 2013 42 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Prohibitions 4a

Recall norm scheme:
pagelimit(P):

< phase(submission) and abstract(A,PId), F(pages(PId) > 15), phase(review)>

s1 s2 sk sk+1

start(jj,submission) upload(n,5)

brute facts : { phase(submission), abstract(n,5), paper(5), pages(5) = 15 }

inst. facts : { rea(jj,chair), viol(pagelimit(5)) }

instances : { (pagelimit(5), F(pages(5) > 15, phase(review)) }

Brian Logan Multi-Agent Programming MGS 2013 43 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Evolution of Prohibitions 5a

Recall norm scheme:
pagelimit(P):

< phase(submission) and abstract(A,PId), F(pages(PId) > 15), phase(review)>

s1 s2 sk sk+1 sk+2

start(jj,submission) upload(n,5) start(jj,review)

brute facts : { phase(review), abstract(n,5), paper(5), pages(5) = 15 }

inst. facts : { rea(jj,chair), obey(pagelimit(5)) }

instances : { }

Brian Logan Multi-Agent Programming MGS 2013 44 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Behavior of a Prohibition Summarized

¬ϕx ,¬ϕd

(φl ,Fϕx , ϕd )

¬ϕx ,¬ψ

(φl ,Fϕx , ϕd )

ϕx ,¬ϕd

(φl ,Fϕx , ϕd )

viol(φl )

¬ϕx , ϕd

obey(φl )

ϕx , ϕd

viol(φl )

Brian Logan Multi-Agent Programming MGS 2013 45 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Norm-aware agents

explicit representation of obligations and prohibitions makes it easier
to develop norm-aware agents

an agent is norm-aware if it can deliberate on its goals, norms and
sanctions before deciding which plan to select and execute

a norm-aware agent is able to (deliberately) violate norms (accepting
the resulting sanctions) if it is in the agent’s overall interests to do so

e.g., if meeting an obligation would result in an important goal of the
agent becoming unachievable

Brian Logan Multi-Agent Programming MGS 2013 46 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

Summary

coordination between benevolent agents can be programmed using
ACLs and protocols defined in terms of speech acts

only works if all agents (are programmed to) follow the protocol

simple coordination for self-interested agents can be programmed
using counts-as rules

difficult to specify conditional obligations and prohibitions with
deadlines using counts-as rules

conditional norms are more complex, but allow conditional obligations
and prohibitions with deadlines to be explicitly expressed

Brian Logan Multi-Agent Programming MGS 2013 47 / 48



Lecture 2: Programming Multi-Agent Systems Normative organisations

The next lecture

Logics for MAS

Brian Logan Multi-Agent Programming MGS 2013 48 / 48


	Lecture 2: Programming Multi-Agent Systems
	Agent communication languages & protocols
	Normative organisations


