Multi-Agent Programming J

Brian Logan

School of Computer Science
University of Nottingham

Midlands Graduate School
8th — 12th April 2013

Multi-Agent Programming R



Course Overview

Lecture 1: Programming agents
BDI model; PRS and other BDI languages

Lecture 2: Programming multi-agent systems
Coordination in MAS; agent communication languages &
protocols; programming with obligations and prohibitions

Lecture 3: Logics for MAS
LTL, CTL; Rao and Georgeff's BDI logics; Coalition Logic,
ATL

Lecture 4: Verification of MAS
A tractable APL and BDI logic: SimpleAPL and PDL-APL

Multi-Agent Programming NEEE B



Lecture 4: Verification of MAS

Brian Logan Multi-Agent Programming MGS 2013 2/ 47



Lecture 4: Verification of MAS

Outline of this lecture

model checking BDI logics

@ model checking based on interpreted systems

workarounds: computational grounding for classical BDI logics

doing it right: syntactic belief ascription
example: PDL-APL

Multi-Agent Programming Y



Lecture 4: Verification of MAS Model checking

Model checking

Multi-Agent Programming Y



ikl theehnie:
Model-checking

@ a model-checker is a tool for automatically checking whether a state
transition system (model) satisfies a formula ¢

@ basic idea:
e encode the system to be verified as an input to the model-checker

o this encoding uses some way of (compactly) describing the
corresponding state transition system M

e formulate the property ¢ (usually in a temporal logic)

o the model-checker checks whether the property ¢ holds for M (for all
states, or in the initial state)

e returns a counterexample if it doesn't hold

Multi-Agent Programming NESEE



ikl theehnie:
Model-checking for BDI logics

@ programs in BDI agent programming languages can be model-checked
just like any other program

@ however it would be good if the model-checker ‘understood’ beliefs,
desires, plans (so the property ¢ can talk about them)

@ the only model-checker which ‘understands’ epistemic operators
(knowledge) is MCMAS (Lomuscio, Qu and Raimondi, MCMAS: A
Model Checker for the Verification of Multi-Agent Systems, CAV'09)

e MCMAS implements checking properties along both temporal and
knowledge accessibility relations

Multi-Agent Programming NESEE B



Lecture 4: Verification of MAS Interpreted systems

Interpreted systems

Multi-Agent Programming NS 57



Lecture 4: Verification of MAS Interpreted systems

Interpreted systems

@ MCMAS model-checks properties of interpreted systems (Fagin,
Halpern, Moses, and Vardi. Reasoning about Knowledge, MIT Press,
1995)

@ in interpreted systems each state is an n-tuple of the agents’ local
states and the state of the environment

e indistinguishability relation for agent /i, s ~; s/, holds if the local state
of agent i is the same in states s and s’

@ the logic over interpreted systems has both temporal and epistemic
operators

formulas are interpreted over computational runs (sequences of states)

Multi-Agent Programming NESEE 600



Lecture 4: Verification of MAS Interpreted systems

Are interpreted systems computationally grounded?

@ some have argued that interpreted systems can be seen as a
computationally grounded semantics for intentional logics:

@ system description in terms of runs (involving local states, protocols,
etc.) immediately provides a logical model to evaluate formulae

@ epistemic properties are based on the equivalence of local states
(which is a concrete computational notion)

@ local states could be represented as, e.g., arrays of variables, allowing
a ‘fine grained’ description of agents

Multi-Agent Programming NESEE 700



Lecture 4: Verification of MAS Interpreted systems

Example: grounding and interpreted systems

@ e.g., a propositional variable paid; may mean that a variable v; in
agent /'s local state has the value Paid

@ since paid; holds in all global states where agent i's state contains v;
= Paid, K; paid; holds in these global states, which is what we want

@ while this “works”, it seems a very roundabout way of defining an
agent's knowledge:

e to determine the truth of such formulas we need to examine all global
states related by ~;

e however what the agent actually knows depends on the properties of
the agent’s local state, so why consider all global states?

Multi-Agent Programming NESEE 000



Other problems with interpreted systems

@ K; holds not only for the formulas which correspond to some properties
of the agent’s state but also for many other formulas including:

o all tautologies, all logical consequences of the (real) knowledge of the
agent, all consequences by introspection and formulas talking about
the global properties of the system

o e.g., if there is just one global state s° where agent i’s local state is s?,

and s° has a single successor s, then i ‘knows’ precisely what the next
global state looks like

@ this is not grounded knowledge ascription — even if the system is
entirely deterministic, agent i does not necessarily know this

Multi-Agent Programming NESEE 00



Lecture 4: Verification of MAS Computational grounding for classical BDI logics

Computational grounding for classical BDI logics

Multi-Agent Programming TR



Lecture 4: Verification of MAS Computational grounding for classical BDI logics

Verifying agent programming languages

An alternative approach is to model check an agent programming
language, e.g.:

e verifying agent programs written in AgentSpeak(F) using the Spin
model checker (Bordini, Fisher, Pardavila and Wooldridge Model
checking AgentSpeak, Proc. AAMAS 2004 (2004))

e verifying agent programs directly using Agent Infrastructure
Layer/Java Pathfinder (Bordini, Dennis, Farwer, Fisher, Automated
Verification of Multi-Agent Programs, ASE 2008)

Multi-Agent Programming EBTE D)



Lecture 4: Verification of MAS Computational grounding for classical BDI logics
AgentSpeak(F)

o AgentSpeak(L) (Rao 1996) is a descendent of PRS

L
o AgentSpeak(F) (Bordini et al, 2004) is a finite state version of
AgentSpeak(L)

@ to ensure that the states of the system are finite, the sizes of types,
data structures and communication channels must be specified as part
of the system description, e.g.:

e the maximum number of beliefs in the agent's belief base
e maximum number of intentions

e maximum number of pending events, actions and messages

@ no function terms and other minor restrictions on syntax

Multi-Agent Programming R



Computational grounding for classical BDI logics
Verifying AgentSpeak(F)

@ AgentSpeak(F) programs are translated into the Promela modelling
language of the Spin model checker

@ properties are expressed in a simplified BDI logic translated into the
LTL based property specification language used by Spin

@ used to verify, e.g., properties of a simulated auction system
implemented in AgentSpeak(F)

@ beliefs, goals and intentions are essentially interpreted syntactically as
a finite list of formulas rather than using an accessibility relation

Multi-Agent Programming R



Computational grounding for classical BDI logics
Specifying properties of AgentSpeak(F) agents

o belief, desire and intention are defined in terms of the operational
semantics of AgentSpeak(F)

e agent i believes ¢, (Bel i ¢), if ¢ is present in its belief base (CWA is
assumed)

e an agent desires ¢, and (Des i ¢), if ¢ is an achievement goal in the
agent's set of events or ¢ is one of the agent's current intentions

o agent i intends ¢, (Int i ¢), if ¢ is an achievement goal that appears in
the agent's set of intentions—i.e., in the agent's currently executing or
suspended plans

@ before verification, Bel, Des and Int expressions are translated into
expressions that access the AgentSpeak(L) data structures modelled in
Promela

Multi-Agent Programming Y



Lecture 4: Verification of MAS Syntactic Belief Ascription

Syntactic Belief Ascription

Multi-Agent Programming TR



Lecture 4: Verification of MAS Syntactic Belief Ascription
Doing it right

@ it is non-trivial to relate ‘possible worlds’ semantics of classical BDI
logics to the knowledge or beliefs of implemented BDI agents

@ need to somehow extract the belief etc. accessibility relations from the
program, but:

e interpreted systems approach is rather cumbersome and in many cases
does not ground ascription of the agent’s beliefs

e workarounds involving grounding agent'’s beliefs, goals and intentions in
the model checker encoding of the agent’s data structures are rather ad
hoc

@ what we need is a systematic approach to computationally grounded
belief ascription

Multi-Agent Programming Y



Lecture 4: Verification of MAS Syntactic Belief Ascription

Syntactic belief ascription

o distinguishes between beliefs and reasoning abilities that we ascribe to
the agent (‘the agent's logic') and the logic we use to reason about
the agent

@ agent's beliefs and goals are interpreted syntactically as formulas
‘translating’ some particular configuration of variables in the agent's
internal state, rather than as propositions corresponding to sets of
possible worlds or runs of the agent’s program

@ allows explicit modelling of the computational delay involved in
updating the agent’s state

@ avoids modelling the agent as logically omniscient

Multi-Agent Programming EBeE B



Lecture 4: Verification of MAS Syntactic Belief Ascription

Grounded belief ascription

@ states are n + 1-tuples of local states of n agents and the state of the
environment s = (s1,...,Sp, €)

@ properties of the system are specified in a language built from a set of
propositional variables P

@ the set of beliefs ascribable to an agent /, L;, is a finite set of literals
over P

@ each agent’s state consists of finitely many ‘memory locations’
l,...,lm, and that each location /; can contain (exactly) one of
finitely many values, vj1,. .., vj

@ each literal in L; corresponds to a set of memory locations having a
particular set of values, but ‘translates’ this into a statement about
the world

Multi-Agent Programming EBETE B



SyEGHE PRl A
Grounded belief ascription 2

@ we assume a mapping A; which assigns to each state s a set of literals
that form the beliefs of agent / in state s

@ this ‘translation’ is fixed and does not depend on the truth or falsity of
the formulas in the real world

@ in general, there is no requirement that A; be consistent — if a
propositional variable and its negation are associated with two
different memory locations then the agent may simultaneously believe
that p and —p

@ nor does A; have to map a single value to a single belief

@ conversely, we don't assume that for every p € P either p or —p
belongs to A;

Multi-Agent Programming R



Lecture 4: Verification of MAS Syntactic Belief Ascription

Semantics

@ the transitions of the agent-environment system are modelled as a
kind of Kripke structure

o beliefs of agents are modelled as a local property of each agent’s state
using the syntactic assignment A; corresponding to agent i's beliefs

@ state of the environment e corresponds to a classical possible world
(complete truth assignment to propositional variables in P)

@ agent i believes that p in state s, M,s |= Bjp, if p € Ai(s)

@ technically equivalent to the syntactic model of belief in interpreted
systems, but we show how to ground A; in the values of variables in
the agent's state

Multi-Agent Programming Y



Lecture 4: Verification of MAS Syntactic Belief Ascription

Closure assumptions

e for an agent which choses actions based on its beliefs, assuming
deductive closure of its beliefs is only safe if:

e closure is with respect to the agent's ‘internal logic' implemented by
the agent program (i.e., the postulated consequences are actually
derivable)

e it is reasonable to assume that the agent's deductive algorithm
completes within the timestep implied by the modelling requirements
(i.e., we are not concerned with the precise timing of the agent'’s
response to a query)

@ otherwise we need to model each inference step in the agent's internal
logic as an explicit transition of the system — dynamic syntactic logics

Multi-Agent Programming Y



Lecture 4: Verification of MAS Example: PDL-APL

Example: PDL-APL

Multi-Agent Programming Y



Verification of SimpleAPL programs

o PDL-APL is a logic based on syntactic belief ascription which can be
used to verify SimpleAPL agents

@ SimpleAPL is a simple BDI agent programming language allows the
implementation of agents with beliefs, goals, actions, plans, and
planning rules

@ ‘translate’ a SimpleAPL agent program A into a PDL program
expression &(A)

@ state properties of the program in PDL-APL, e.g., Gp — ({(N\))Bp

@ show that the property can be derived from the axioms (using a PDL
theorem prover)

Multi-Agent Programming T



SimpleAPL beliefs & goals

o the beliefs of a SimpleAPL agent represent its information about its
environment and itself

o beliefs are represented by a set of positive literals

o the agent's goals represent situations the agent wants to realise (not
necessarily all at once)

o goals are represented by a set of arbitrary literals

@ the beliefs and goals of an agent are related to each other:

e if an agent believes p, then it will not pursue p as a goal
e if an agent does not believe that p, it will not have —p as a goal

@ the initial beliefs and goals of an agent are specified by its program

Multi-Agent Programming R



SimpleAPL basic actions

@ a belief test action ¢? tests whether a boolean belief expression ¢ is
entailed (CWA) by the agent’s beliefs

@ a goal test action 1)! tests whether a disjunction of goals v is
entailed (classically) by the agent's goals

e belief update actions (“external actions) change the beliefs (and

goals) of the agent

o a belief update action is specified in terms of its pre- and
postconditions (sets of literals)

@ an action can be executed if one of its pre-conditions is entailed by the
agent's current beliefs

e executing the action updates the agent’s beliefs to make the
corresponding postcondition entailed by the agent’s beliefs

Multi-Agent Programming T



(Eeniplr PRIAPL
SimpleAPL plans

@ plans are sequences of basic actions composed by plan composition
operators:

o sequence: "7y ;7" (do my then m3)
o conditional choice: “if ¢ then {m;} else {m}"

o conditional iteration: “while ¢ do {m}"

Multi-Agent Programming Y



SimpleAPL rules

@ planning goal rules are used for plan selection based on the agent's
current goals and beliefs

@ a planning goal rule k <+ 8|7 consists of three parts:
p g8 p

o k: an (optional) goal query which specifies which goal(s) the plan
achieves

o [3: a belief query which characterises the situation(s) in which it could
be a good idea to execute the plan

e 7: a plan

@ a rule can be applied if k is entailed by the agent's goals and (3 is
entailed by the agent's beliefs

@ applying the rule adds 7 to the agent's plans

Multi-Agent Programming R



Lecture 4: Verification of MAS Example: PDL-APL

SimpleAPL operational semantics

o we define the operational semantics of SimpleAPL in terms of a
transition system

@ states are agent configurations (o, v, 1) where o, 7 are sets of
literals representing the agent's beliefs and goals, and I is a set of
plan entries representing the agent’s current active plans

@ each transition corresponds to a single step in the execution of the
agent

o different execution strategies give rise to different semantics

o for simplicity we focus on non-interleaved execution — i.e., the agent
executes a single plan to completion before choosing another plan

Multi-Agent Programming T



Lecture 4: Verification of MAS Example: PDL-APL

Formal entailment definitions

® [=cwa (belief entailment for closed world assumption):

cEwm piffpec
0w —piffpdo
0 Fews ¢ a0d ¥ iff 0 Fewa & and 0 Fua ¥
0 Fewa @ or Y iff 0 f=cwa @ 0r 0 Fcwa ¥
0 Eewa{¢1,.. .} iffVI<i<n 0w ¢
@ =, (goal entailment):
YEgpiffpery
vV e —piff —pey
Vg porift vy g d orv g9
I i MGS 2013 26 / 47



Belief update function

o let a be a belief update action and o a belief base such that
0 Fcwa precj(a)

e intuitively, o =cwa prec;(a) if it contains all positive literals in
precj(a) and does not contain the negative ones

@ the result of executing belief update action a with respect to o is
defined as:

Ti(2.0) = (0 U{p: p € post; (a)})\ {p: —p € post;(a)}

@ intuitively, the result of the update satisfies (entails under =cy,) the
corresponding postcondition post;(a)

Multi-Agent Programming T



Lecture 4: Verification of MAS Example: PDL-APL

Transitions: basic actions

@ belief and goal test actions

g ’:cwa 5
(0,7, {67 7}) — (0,7, {7})

Y Eg K
(0,7, {sli7}) — (0,7, {7})

@ belief update actions

0 Fcwa Prec;(a) Ti(a,0) =0’
(o7, {aim}) — (0,7 {7})

where v =y \({p:ped’}U{—p:pgo'})

Multi-Agent Programming Y



Lecture 4: Verification of MAS Example: PDL-APL

Transitions: plans

@ conditional choice

g cha ¢
(0,7,{(if ¢ then m else m);7}) — (0,7, {m;7})

g %CWa ¢
(0,7, {(if ¢ then m else m);7}) — (0,7, {m2; 7})

@ conditional iteration

g ):cwa ¢
(0,7,{(while ¢ do m1);7}) — (0,7, {m1; (while ¢ do m1);7})

o F&cwa ¢
<Ja s {(While ¢ do 71—1); 7T}> - <U7’Y7 {ﬂ}>

Multi-Agent Programming Y



Lecture 4: Verification of MAS Example: PDL-APL

Transitions: rules

e planning goal rules k < G| 7

v ):g K Ocwa |: 5
(0,7 {}) — (7. {7})

Multi-Agent Programming TR



Lecture 4: Verification of MAS Example: PDL-APL
Logic

@ logic allows us to specify properties of:

e a particular SimpleAPL program A, e.g., “for every execution of A, ¢
holds”

o the SimpleAPL architecture, e.g., blind commitment: “the agent either
keeps its goal or believes that it's been achieved”

@ the language is PDL plus syntactic belief and goal operators

@ the models capture all possible basic transitions between the belief and
goal states of an agent (regardless of the agent's plans)

Multi-Agent Programming EBTE  E



(Eeniplr PRIAPL
Syntax of PDL-APL

The syntax of PDL-APL is defined relative to a SimpleAPL program A

@ Prop: the set of positive literals in A
@ Ac: the set of basic actions in A
@ Progi ac Ac | ¢?7 | aq; 0 | a1 Uz | o

e formulas (p € Prop):

Bp| Gp| G—p|—¢|¢1A¢2|la]d

Multi-Agent Programming TR



Semantics of PDL-APL

Models are also defined relative to A (namely pre- and post-conditions of
actions C(a), for each a € Ac)

M = (S,{R,:a€ Ac}, L), where
@ S is a non-empty set of states

o L = (Lp,Lg) is the labelling function consisting of belief and goal
labelling functions L and Lg:

o Lp: S — 2Prop
o Lg: S — 2PrepUPror™ \where Prop~ = {—q: q € Prop}

@ R, for each a € Ac conforms to a's pre and postconditions in A;
namely Ru(s,s’) iff for some (prec;, post;) € C(a),

o Tj(a,Ls(s)) = Ls(s")
o Lg(s") =Le(s)\({p: p € Lo(s)} U{p:p & L(s)}

Multi-Agent Programming Y



(Eeniplr PRIAPL
Truth definition

e M;s = Bpiff p € Ly(s)

o M,s = Gpiff pe Lg(s)

o M,sl=G—piff—p € Lg(s)

o M,s=—¢iff M,s [~ ¢

o Mi;sEoANYiff M;s|=¢ and M;s =4

e M,s = [a]¢ iff for all s € S such that R,(s,s’) we have that
M,s" E ¢.

Conditions on beliefs and goals (beliefs and goals are disjoint)

=(p € Lp(s) A p € Lg(s)), =(p & Lp(s) A—p € Lg(s))

Multi-Agent Programming TR



Lecture 4: Verification of MAS Example: PDL-APL

Translation of belief and goal queries

To express pre- and postconditions or actions and belief and goal queries in
the language of PDL-APL, we introduce translation functions f, and f,:

fo(p) = Bp

fo(—p) = —Bp

fo(¢ and ¢) = fp(¢) A fp(¥)

fo(¢ or 1) = fu(®) V fp(¢)

fo(b1, -, 0k) = Nieqa,... iy T6(90)
(
-
(

,,,,,

)

p) = Gp
fg P)
fe(¢ or ) = (¢) V fg(¥)

Multi-Agent Programming Y



(Eeniplr PRIAPL
Complete and sound axiomatisation of PDL-APL(C)

Axioms are parameterised by a set of pre- and postconditions C

CL classical propositional logic
PDL axioms of PDL

Al Bp — —Gp

A2 G—p— Bp

A3 fp(prec;) A ® — [a](fp(post;) A P)
where (prec;, post;) € C(a) and ® does not contain propositional
variables occurring in post;

A4 —fp(precy) A ... A ~fy(prec,) — —(a)true
where C(a) = {(prec,, post,),..., (prec,,post,)}

A5 fp(prec;) — (a)true  where (prec;, post;) € C(a)

Multi-Agent Programming TR



Lecture 4: Verification of MAS Verification

Verification

Multi-Agent Programming TR



Lecture 4: Verification of MAS Verification

Translation of plan expressions

We also need a translation function £, to translate SimpleAPL plans into
the language of PDL-APL

fr(a) =a
fo(¢7) = fo(9)7
fp(ﬂ)!) = fg(T/J)?

fo(m1im2) = fp(m1); fo(mr2)
fo(if ¢ then mp else m2) = (fo(¢)7; fo(m1)) U (—fp(@)7; fp(m2))
fo(while ¢ do ) = (fp(@)7; fo(m))*; —fp(0)?

Multi-Agent Programming TR



Lecture 4: Verification of MAS Verification

Translation of the agent’s program

suppose the agent's program A has a set of PG rules
PG = {ri|ri = ki < Bilmi}
the translation of the agent’s program

EN) = | (elwi) Ao(8))? 5 Fo(mi) )
rePG

where T is the strict transitive closure operator: o™ = o; o*

this states that each planning goal rule is be applied zero or more
times (but at least one planning goal rule will be applied)

the idea is that this expression describes exactly the paths in the
operational semantics

Multi-Agent Programming e siile

38 / 47



Lecture 4: Verification of MAS Verification

Correspondence

We can show that this translation is faithful: the PDL program expression
which is the translation of the agent’s program corresponds to the set of

paths in the transition system generated by the operational semantics for
that agent program

@ a model generated by a state sy consists of all possible states which
can be recursively reached from sy by following the basic relations

@ a state s and a configuration ¢ = (o, , 1) are matching, s ~ ¢, if
they have the same belief and goal bases, i.e., Ly(s) = o and
Lg(s) =~

@ let transition system TS and model M correspond to an agent
program A with a set of pre- and postconditions for actions C. TS and
M are matching if they are generated by ¢y and sp such that sp ~ ¢

Multi-Agent Programming Y



Lecture 4: Verification of MAS Verification

Correspondence theorem

Theorem (Correspondence of TS and M)

If TS and M match, then a configuration ¢ with an empty plan base is
reachable from the initial configuration cy in TS iff a matching state s is
reachable from the initial state sy along a path described by £(N), i.e.,

(50, S) S Rf(/\)

If we want to know whether a configuration is reachable in the operational
semantics, we can check whether a PDL-APL formula (the translation of
the SimpleAPL program) is derivable from the axioms describing the
corresponding models

Multi-Agent Programming TR



Lecture 4: Verification of MAS Verification

Example: robot vacuum cleaner

based on a simple agent described in Russell & Norvig (2003)
agent has to clean two rooms: rooml and room2

agent has sensors that tell it if a room is clean and whether its battery
is charged

vacuuming a room results in the room being clean and discharges the
agent's battery

agent can recharge its battery at a recharging station in room2

room 1 room 2

@&

charging station

Multi-Agent Programming R



Lecture 4: Verification of MAS Verification

Example: vacuum cleaner

@ suppose the agent has the belief update actions:

{room1} moveR {-rooml, room2}
{rooml, battery} suck {cleanl, -battery}
{room2, battery} suck {clean2, -battery}
{room2} movel. {-room2, rooml}
{room2, -battery} charge {battery}

e and PG rules:

c1 <- b | if r; then {s} else {/; s}
¢ <- b | if r, then {s} else {r; s}
<- —b | if r» then {c} else {r; c}

@ we abbreviate beliefs and goals as r1, 2, ¢1, ¢2, b and actions as r, s, [, ¢

Multi-Agent Programming WEBIE BT



Lecture 4: Verification of MAS Verification

Example: vacuum cleaner

@ corresponding PDL-APL program expression:

vac =4r ((Gc1 A Bb)?;(Bn?;s)U(=Bn?;l;s))U
((Gea A Bb)?; (Bra?;s) U (=Bn?;r;s)) U
(=Bb?; (Br?; c) U (—=Bn?;r;c))

Multi-Agent Programming TR



Lecture 4: Verification of MAS Verification

Sample axiom instances

A3r Bri A Bey A—=Bb A Gey — [r](Bra A Ber A —Bb A Gep)
A3sl Bri A Bb A Gei A Gep — [s](Ber A Gea A Bri A —Bb)
A3s2 Bry A Bb A Gey A Gep — [s](Bea A =Bb A Bra A Gey)
A3c Bry A Bey AN—=Bb A Gep — [c](Bra A Bb A Bey A Gep)
Adr =By — —(r)T

A5s Bry A Bb — (s)T.

Multi-Agent Programming TR



Lecture 4: Verification of MAS Verification

Properties
We can use a PDL theorem prover to verify properties such as:

e if the agent has goals to clean rooms 1 and 2, and starts in the state
where its battery is charged and it is in room 1, it can reach a state
where both rooms are clean:

Gei A G ANBbA By — <VaC3>(BC1 A BC2)

@ the agent is guaranteed to achieve its goal (after 3 iterations of the
program)

Gei A Geo AN BbA Bry — [vac3](Bc1 A Bey)
where vac? stands for vac repeated three times
@ the agent is blindly committed to its intentions:
Gey — [vac™](Be V Gap)

Multi-Agent Programming EBTE B



Lecture 4: Verification of MAS Verification

Summary

e “standard” BDI logics allow properties of beliefs, desires and
intentions, committment strategies, communication semantics etc. to
be formalised

@ the resulting specifications can be model checked using model
checkers such as MCMAS

@ however it is not clear how to implement agents based on these
specifications

@ in particular, what corresponds to belief and goal accessibility relations
in the agent programming language / implemented agent?

Multi-Agent Programming EBTE BT



Lecture 4: Verification of MAS Verification

Summary 2

@ “syntactic” BDI logics allow more accurate modelling of feasible agents

@ we can verify properties of real agent programs at the belief and goal

level (as opposed to simply verifying the agent program as just a
computer program)

@ many challenges remain:

o formalising the agent's deliberation cycle (e.g., to allow verification of
commitment strategies)

o formalising beliefs, goals and intentions and interaction between agents
in multi-agent systems (e.g., to allow verification of teamwork)

e practical issues (e.g., scalability)

Multi-Agent Programming EBIE DT



	Lecture 4: Verification of MAS
	Model checking
	Interpreted systems
	Computational grounding for classical BDI logics
	Syntactic Belief Ascription
	Example: PDL-APL
	Verification


