
Finding a Forest in a Tree

Giorgio Bacci1, Marino Miculan2, and Romeo Rizzi3

1 Department of Computer Science, Aalborg University, Denmark
grbacci@cs.aau.dk

2 Dept. of Mathematics and Computer Science, University of Udine, Italy
marino.miculan@uniud.it

3 Dept. of Computer Science, University of Verona, Italy. romeo.rizzi@univr.it

Abstract. In many models for mobile and distributed computations,
agents and processes can be nested inside ambients, domains, networks,
etc. Thus, the global state is a tree-like structure, which evolves according
to some (sub)tree rewriting rules. In order to applying a subtree rewriting
rule, we have to find a matching of the rule redex within the global state.
In this paper we address this problem, namely: how to find a forest inside
an unordered tree, with no overlaps? We show that the problem is NP-
complete in general but, using the theory of Fixed Parameter Tractabil-
ity, we prove that the exponential explosion depends only on the width
of the forest to be found, and not on the size of the global tree (i.e., the
system state). In most practical cases, the forest width is constant and
small (e.g. ≤ 3), hence our results show that the problem is feasible in
many situations of interest.

1 Introduction

Hierarchical structures are always been used for representing computational as-
pects like scoping, containment, security, locations, mobility, semi-structured
data, etc. Specific languages have been developed to this end, the paradigmatic
examples being Mobile Ambients and its derivations [5]. In these calculi, systems
are composed by agents, possibly nested to form an unordered tree (possibly
with other links). System evolution is governed by rewriting rules of the form
L(X) ⇒ R(X), where L and R are unordered forests with “holes” in X. Ap-
plying such a rule to a system G means finding a context C() and parameters
D such that G = C(L(D)); then L (the redex) is replaced by R (the reactum),
transforming the system G into G′ = C(R(D)). A good example is given by the
following rule from CaSPiS [4], a session-centered calculus with nesting:

C(s.P, s̄.Q)⇒ C(s.P |r . P, r . Q) (r fresh) (ServiceSync)

where C(,) is a suitable context with two holes, and P,Q are two generic pro-
cesses. Actually, C,P,Q are not modified by the rule; hence the actual reduction
rule is 〈s. 1, s̄. 2〉 ⇒ 〈s. 1|r . 1, r . 2〉 whilst C is the context where the redex
〈s. 1, s̄. 2〉 is found and P,Q are the parameters the redex is instantiated to. In
fact, the redex and the reactum are two forests, composed by two trees each,
and the rule is rendered graphically as in Figure 1(a).

2 G. Bacci, M. Miculan, R. Rizzi

⇒

(a)

1

s

2

s̄

1

s

1

r.

2

r. ⇒

(b)

s s̄ s r. r.

P Q P P Q

C C

Fig. 1. A parametric rule (a), and its application as forest pattern matching (b).

Thus, in order to apply a parametric rule 〈L1, . . . , Ln〉 ⇒ 〈R1, . . . , Rn〉 to
a state G, we need to find in the tree of G, an occurrence of each tree Li,
possibly completed by some “grafted” subtrees of G, as in Figure 1(b). Notice
that these occurrences cannot overlap (i.e., Li cannot occur within any Lj nor
its parameters). Moreover the trees are unordered, hence some rearrangements
in G are possible to accomodate the redex forest.

In this paper, we address precisely this problem, i.e., the forest pattern match-
ing : given a forest (the pattern) and an unordered tree (the target), how to match
each of the trees of the pattern within the target (with no overlaps), singling out
the subtrees that form the parameters for the pattern? This problem, which we
will define formally in Section 2, arises whenever we rewrite unordered hierar-
chical structures; e.g., implementing an abstract machine for many calculi and
languages for distributed systems requires an algorithm for this problem. The
problem is at the core of the implementation of general graph-based metalan-
guages dealing explicitly with notions of containment, like Milner’s Bigraphical
Reactive Systems [14]. These graph-based formalisms are often used for modeling
service-oriented architectures, autonomic systems, and cloud computing (e.g., bi-
graphs have been recently used for the design and prototyping of multi-agent
systems [12]). Another application is semi-structured data transformation, á la
XSLT on XML; e.g., some XPath queries can be reduced to the forest matching
problem.

Our first result is that the forest pattern matching is NP-complete; we will
prove it in Section 3 by means of a reduction from 3-Sat. However, this reduction
points out the real source of time-complexity: the request that pattern trees
are not overlapping in the target. Luckily, this aspect can be approached using
Downey and Fellows’ parameterized complexity theory [7]: in Section 4 we show
that this combinatorial explosion does not depend on the size of the target tree,
but only on the pattern width (i.e., the number of trees). As a consequence, the
complexity of applying a set of parametric rules to a system is exponential in the
maximum width of the rules (which is fixed, usually) and not on the size of the
system (which varies during its evolution). Remarkably, in most real cases, rule
width is small: e.g., for Ambients, CaSPiS, etc, it is no more than 3. As a side
result, we introduce the new rainbow antichain problem, which is NP-complete
but fixed/parameter tractable; we think that this problem can be a useful tool
also for other complexity analysis and reductions of problems about trees.

Concluding remarks and some directions for future work are in Section 5.

Finding a Forest in a Tree 3

2 Labeled Trees, Forest Patterns, and Matches

In this section we define the forest pattern matching problem with no overlaps.
As a first step, we define edge-labeled unordered trees, adopting the syntax of
ambient calculus without actions [5], and extending it to (linear) context trees.

Let m, n range over an enumerable set Λ of labels, and x, y, z over an
enumerable set Ξ of variables. Finite sets of variables are ranged over by X,Y, Z.
The set of terms is the set of labeled context trees, finitely branching and of finite
depth, where variables are interpreted as leafs where other trees can be grafted.
We denote by T (X), S(X) trees whose variables are in X. The syntax of these
trees is defined by the following grammar.

Syntax of context trees

T (X) ::= 0 empty tree

x leaf, x ∈ X
m[T (X)] labeled tree

T (Y) | T ′(Z) siblings, where X = Y] Z

We often abbreviate m[0] as m[], and T (X) as T . We assume that “|” associates
to the right, i.e. T | T ′ | T ′′ is read T | (T ′ | T ′′). Let lab(T) ⊂ Λ be the set
of node labels in T , and vars(T) ⊂ Ξ be the set of the variables occurring in T
(obviously, vars(T (X)) ⊆ X). If vars(T) = ∅ we say that T is ground, otherwise
it is not.

The intuitive interpretation of terms T as unordered trees induces an equiv-
alence T ≡ T ′ which is the minimal congruence that includes the commutative
monoidal laws for | and 0. This relation, similar to ambient calculus congruence,
can be axiomatized as follows.

Structural congruence on context trees

T ≡ T
(refl)

T ≡ T ′

T ′ ≡ T
(symm)

T ≡ T ′ T ′ ≡ T ′′

T ≡ T ′′
(trans)

T ≡ T ′

T | T ′′ ≡ T ′ | T ′′
(sibl)

T ≡ T ′

m[T] ≡ m[T ′]
(rooting)

T | T ′ ≡ T ′ | T
(comm)

T | (T ′ | T ′′) ≡ (T | T ′) | T ′′
(assoc)

T | 0 ≡ T
(nil)

The axiomatization of structural congruence is adequate with respect to the
semantic for unordered trees: T ≡ T ′ iff T and T ′ represent the same tree
structure (obviously, where siblings are not ordered). Moreover, if T ≡ T ′ then
lab(T) = lab(T ′) and vars(T) = vars(T ′).

Given two tree terms T (X), S(Y) with X,Y disjoint, we define term sub-
stitution, written T{S/x}, as usual: the occurrence x in T is replaced by the
term S. For x ∈ vars(T), vars(T{S/x}) = (vars(T) \ {x})∪ vars(S). Simultane-
ous substitution T{S1/x1, . . . , Sk/xk} is defined by the substitution composition

4 G. Bacci, M. Miculan, R. Rizzi

T{S1/x1} · · · {Sk/xk}, where x1, . . . , xn are supposed to be pairwise distinct; we
denote it by T{S/x}.

Lemma 1. If Si ≡ S′i for i ∈ {1, . . . , k}, then T{S/x} ≡ T{S′/x}.

Intuitively, given a tree list S = S1, . . . , Sn, called a “pattern”, searching for
a (sub-)match of S in a tree T means to find an occurrence of each S1, . . . , Sn
within T , without overlaps and possibly by instantiating variables in Si. This
means that we have to decompose T in a subtree C where all Si can be grafted,
and a list of subtrees to be grafted to the leaves of Si. More formally:

Definition 2. A forest matching instance, denoted by T � S, is given by a tree
T (Y) (target), and a list of trees S(X) = S1(X1), . . . , Sn(Xn) (pattern) where
Xi are all disjoint and X = ∪ni=1Xi. We say that S(X) matches in T (Y) if for
some context C(Z) and parameters D = D1, . . . , D|X|

T ≡
(
C{S/z′}

)
{D/x} where z′ ⊆ Z

A match for T � S is denoted by C,D |= T � S, and we write |= T � S if
C,D |= T � S for some C, D.

Proposition 3. If |= T � S and |= Si � Q, for some 1 ≤ i ≤ n and n = |S|,
then |= T � Q; and in particular |= T � S1, . . . , Si−1,Q, Si+1, . . . , Sn.

Proof. We have to prove that if |= T � S and |= Si � Q, for some 1 ≤ i ≤ n
and n = |S|, then |= T � S1, . . . , Si−1,Q, Si+1, . . . , Sn.

Since |= T � S and |= Si � Q there exist contexts C, C ′ and parameters D,
and D′ such that

T ≡ (C{S1/x1, . . . , Sn/xn}){D/Z} for some x1, . . . , xn ∈ vars(C)

Si ≡ (C ′{Q/X′}){D′/Z′} for some X ′ ⊆ vars(C ′)

Without loss of generality, suppose X ′ disjoint from {x1, . . . , xn}, otherwise a
variable renaming can be applied. Now, by an easy replacement of Si and some
rearrangements on the context and parameters, we obtain

T ≡ (C{S1/x1, . . . , Si/xi, . . . , Sn/xn}){D/Z}
≡ (C{S1/x1, . . . , (C

′{Q/X′}){D′/Z′}/xi, . . . , Sn/xn}){D/Z}
≡ ((C{C ′/xi}){S1/x1, . . . ,Q/X

′, . . . , Sn/xn}){D,D′/Z,Z′}

This states that (C{C ′/xi}, (D,D′)) is a match for S1, . . . , Si−1,Q, Si+1, . . . , Sn,
in T hence, |= T � S1, . . . , Si−1,Q, Si+1, . . . , Sn.

Similarly, we can prove that (C{Si/x1, . . . , C
′/xi, . . . , Sn/xn},D′) is a match

for Q in T , hence |= T � Q holds too. ut

However, not all possible trees are interesting in patterns. First, the empty
tree 0 matches all possible targets, since T ≡ (T | x){0/x}. Also, a tree composed
by a sole variable trivially matches all subtrees; in fact, x has as many matches

Finding a Forest in a Tree 5

in T as nodes in T . A subtler situation happens to patterns with “unguarded”
variables, e.g. of the form x | R. Intuitively, this pattern matches an occurrence
of R “beside anything, possibly nothing”. Thus, the unguarded variable allows
to “move” subtrees between context and parameters in a match, yielding many
redundant variants of the same. As an example, let T = m[0] | n[k[0]] be the
target and S = x | m[0] the pattern; then, we have three different matches
((y, n[k[0]]), (n[y], k[0]), (n[k[0]],0)), despite m[0] occurs only once in T .
Finally, sibling variables x|y in patterns can be replaced by a single one z, because
(x | y){D1/x,D2/y} = (z){D1 | D2/z}.

In all the cases above, a single occurrence of a pattern in a target yields many
matches which are all redundant variants of the same. In order to avoid this
plethora of redundant matches, we restrict our attention to a class of patterns,
which we call solid after [11].

Definition 4. A pattern S(X) = S1(X1), . . . , Sn(Xn) is solid if for 1 ≤ i ≤ n:
Si 6≡ 0, for no x ∈ X and S′ it is Si ≡ x|S′, and no two variables x, y ∈ Xi are
siblings, that is, x | y cannot occur in Si (up to ≡).

We can prove that any matching instance can be reduced to a matching
instance whose pattern is solid. Let us define a function solid over forest patterns
(i.e., tree lists), which drops empty trees and unguarded variables, and collapses
sibling variables in one:

Transformation into solid patterns

solid(ε) = ε solid(T,S) =

solid(S) if T ≡ 0

solid(Q,S) if T ≡ x | Q
solid(sld(T),S) otherwise

sld(0) = 0

sld(x | T) = x | del(T)

sld(m[T] | S) = m[sld(T)] | sld(S)

del(0) = 0

del(x | T) = del(T)

del(m[T] | S) = m[sld(T)] | del(S)

Solid patterns enjoy the following properties.

Proposition 5. The following statements hold:

(a) no empty trees: |= T � 0,S ⇐⇒ |= T � S;

(b) no sibling variables: |= T � x | y ⇐⇒ |= T � x;

(c) no unguarded variables: |= T � x | S ⇐⇒ |= T � S.

Due to the above, solid patterns suffice for checking match existence.

Lemma 6. |= T � solid(T) if and only if |= solid(T) � T .

Proof. It is an easy application of proposition 5 and proposition 3. In fact, propo-
sition 3 ensures that it suffices to check |= T � T ′ ⇐⇒ |= T ′ � T for each
equation T = T ′ defining solid. This is just a straightforward application of (a),
(b), (c) of Proposition 5. ut

6 G. Bacci, M. Miculan, R. Rizzi

Theorem 7. |= T � solid(S) if and only if |= T � S.

Proof. It follows directly from lemma 6 and proposition 3. ut

Actually, all matches against a pattern S can be obtained from matches
against solid(S).

3 NP-completeness of Forest Pattern Matching

The main result in this section is that the problem of finding a sub-pattern
matching of a tree list pattern S = S1, . . . , Sn for a tree T is NP-complete.
We show it by a reduction from 3-Sat [6]. Although the reduction can be done
directly, we do it in two steps, introducing an intermediate problem which points
out the actual source of time-complexity hardness.

Let us define the intermediate problem first, called RainbowAntichain.
An instance of RainbowAntichain is a tree T (V, E) with nodes V and edges
E , and a finite set P of colors, said palette. Some of the nodes in T have been
colored with colors taken from the palette P. Note that the same color can be
associated with different nodes, and each node can be associated with more than
one color. RainbowAntichain asks whether there exists a rainbow antichain
R ⊆ V in T , i.e., a subset of nodes such that for no pair u, v ∈ R of distinct
nodes u is an ancestor of v (hence, it is an antichain) and where each color c ∈ P
has exactly one representative in R (hence, it is colorful w.r.t. P).

Theorem 8. RainbowAntichain is NP-complete.

Proof. RainbowAntichain is in NP, since, given a set of nodes R, checking
whether R is a rainbow antichain for T can be done in polynomial time by a
breadth-first visit of T , and for each v ∈ R found, first increase the node counter
nc, then the color counter p[i] (1 ≤ i ≤ |P|) if v has color ci ∈ P. The check fails
whether nc > |P| or p[j] = 0 for some 1 ≤ j ≤ |P|, otherwise R is a rainbow
antichain for T .

Let C = {c1, . . . , cm} be an instance of 3-Sat on variables {x1, . . . , xn}.
From C we define a colored tree T as follows. Let r be the root node which
is left uncolored. For each variable xi let xi and xi be child nodes of r, and
color them with a fresh color cxi , distinct for each variable. For each clause
cj ∈ C, let c1j , c

2
j , c

3
j be children nodes of li in T if cj contains li as negated, and

assign to each of them a fresh color ccj , distinct for each clause. An example of
construction for c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x2 ∨ x3) is shown below.

r

x1

c11

x1

c12

x2 x2

c21 c22

x3

c31

x3

c32

Let ϕ be a truth assignment satisfying
the formula C. By construction, select-
ing only literal nodes li which are satis-
fied by ϕ, we obtain a rainbow antichain
R′ in T for the palette {cxi

: 1 ≤ i ≤ n}.
Now, we extend R′ to R adding all
clause nodes which are not children of a
element in R′. Such R is clearly an an-
tichain for T , but we must ensure that

Finding a Forest in a Tree 7

is colorful and no more than one representative per color is taken. To do this, it
suffices to prove that R is colorful, indeed if a color occurs more than once in R
we remove the others. By hypothesis, each clause cj is satisfied by ϕ, hence cj
has at least one literal li such that ϕ(li) = T. By construction of T , there exist
a node ckj (1 ≤ k ≤ 3) child of li, hence already in R. This holds for all clauses
cj , hence R is colorful.

Conversely, let R be a rainbow antichain for T . Let ϕ : {x1, . . . , xn} → Bool
be defined by ϕ(xi) = T if xi is a node in R, and ϕ(xi) = F if xi is a node not
in R. Since R has exactly one representative per color, no opposite literals are
in R, hence ϕ is a truth assignment for C. By colorfulness of R, for all colors
ccj (1 ≤ j ≤ m) there exists a node ckj ∈ R (1 ≤ k ≤ 3) such that ckj has color

ccj . By construction of T , each ckj ∈ R is a children of a literal node li /∈ R, and

moreover the clause cj contains li. Since li /∈ R, by definition ϕ(li) = T, hence
ϕ(cj) = T. This holds for all 1 ≤ j ≤ m, hence ϕ satisfies C. ut

It is easy to see that an instance T , P = {c1, . . . , cn} of RainbowAntichain
can be reduced to a forest pattern matching problem, namely, the one that solves
|= T � (c1[x1], . . . , cn[xn]), for a suitable tree term T defined upon T . This
states that the forest pattern matching problem is NP-complete. Formally,

Theorem 9. The forest pattern matching problem is NP-complete.

Proof. Given a match (C,D) for T � S, checking that T ≡ (C{S/X}){D/Z}
corresponds to a tree isomorphism test, which is in P from [9, 10].

Let a colored tree T and a palette P = {c1, . . . , cn} be and instance of
RainbowAntichain. Let us transform T into a tree term T as follows. If T
is a single node v (a leaf) T is m[0], where m = c if v has color c, otherwise
m = ∗, a fresh name not in P denoting an uncolored node. If T has root r and
T1, . . . , Tk are the (children) subtrees of r, T is m[T1 | · · · | Tk], where m is as
above for r, and T1, . . . , Tk are transformed trees of T1, . . . , Tk.

Suppose (C,D) be a match for T � (c1[x1], . . . , ck[xn]). In C, each ci[xi]
is grafted into a variable zi ∈ vars(C). Since variables can appear in terms only
as leaves, in the transformation T of T , we have found a rainbow antichain for
P, since the matching pattern has all the colors in P exacty once.

Assume that T has a rainbow antichain R. In order to recover context C
and parameters D, which are a match for T � (c1[x1], . . . , ck[xn]), it suffices
to apply the construction explained above with some adjustments: we obtain C
applying the transformation from the root of T , but if a node in R is reached
it is transformed by a fresh variable zi (1 ≤ i ≤ n) one for each element in
R; Dj ’s are recovered applying the original transformation starting from the
subtrees rooted at the children of nodes in R. It is straightforward to prove that
T ≡ (C{c1[x1]/z1, . . . , ck[xn]/zn}){D/X}, for X = {x1, . . . , xn}. ut

The previous NP-reduction proves that the complexity hardness is merely
due to finding a rainbow antichain in the given target, which corresponds to
locate the list of trees of the pattern so that they are not in overlap in the target
tree.

8 G. Bacci, M. Miculan, R. Rizzi

4 Tractability for Bounded Width

Despite the NP-completeness result from Theorem 9, in this section we give a
tractability result for the forest pattern matching problem, when the number of
trees in the matching pattern is bounded by a (relatively small) constant h and
their roots have at most k children, for some (relatively small) constant k. We

propose a parameterized algorithm whose running time is f(h, k) +O(ns · n3/2
t),

for nt and ns the number of nodes in the target and pattern, respectively. This
proves that the forest pattern matching is a fixed-parameter tractable problem
(FPT) (we refer to [7] for the formal definition of this complexity class).

In presenting the algorithm we switch from edge-labelled tree terms to a more
convenient node-labelled tree representations of them. This translation eases the
description of the proposed algorithm and provides a closer connection between
the concept of (labelled) subtree isomorphism and tree pattern matching. For-
mally, a (rooted) node-labelled tree T (V, E , label) is a triple, where V is the node
set, E ⊆ V×V the set of (oriented) edges, and label : V → Λ+×{op, cl} is a func-
tion associating to each node a label m ∈ Λ+ = Λ] {∗}, and a flag op or cl. In
the following we often abbreviate T (V, E , label) with T and if label(v) = (m, t)
we say that v is m-labelled and open (resp. closed) if t = op (resp. t = cl);
root(T) denotes the root node; Ch(v) denotes the set of children of v; and T �v
denotes the subtree of T rooted at a node v ∈ V.

Definition 10. Given an edge-labelled tree term T ≡ m1[T1] | · · · | mn[Tn] |
x1 | · · · | xk, for n, k ≥ 0, a node-labelled tree T (V, E , label) is said a graphical
representation of T if the following conditions hold:

1. if n = 0 then T is the empty tree (i.e. V = ∅);
2. if n > 0, then V = {r, v1, . . . , vn} ∪ V ′, E =

⋃
i({(r, vi)} ∪ {(vi, w) | w ∈

Ch(root(Ti))}) ∪ E ′, and for v ∈ V

label(v) =

(∗, op) if v = r and k = 0

(∗, cl) if v = r and k > 0

(mi, t) if v = vi and label(root(Ti)) = (m, t)

labeli(v) if v ∈ Vi

where Ti(Vi, Ei, labeli) be graphical tree representation of Ti (1 ≤ i ≤ m)
with pairwise disjoint node sets not containing r and vi for 1 ≤ i ≤ n,
V ′ =

⋃
i(Vi \ {root(Ti)}, and E ′ = (

⋃
i Ei) ∩ (V ′ × V ′).

The graphical representation of a tree term is always rooted on a ∗-labelled node
and converts m-labelled edges into m-labelled nodes, discarding variables. Note,
however, that nodes in T are open iff they have a variable as a child in its tree
term representation. In Figure 2 it is shown an example of translation into the
graphical representation.

The following proposition relate the sub-isomorphism on trees with the notion
of tree pattern matching on terms, when the pattern is supposed to be solid.

Finding a Forest in a Tree 9

∗

n m

n

k

n

m

∗

m n

∗

m

T = n[0] | m[y1 | n[0]] | k[n[y2]] | m[0] | y3 S1 = m[x] | n[0] S2 = m[0]

Fig. 2. The forest pattern S = S1, S2 has a match in T : for C = z1 | k[n[y2]] | z2 | y3
and D = y1 | n[0], T ≡ (C{S1/z1, S2/z2}){D/x}. Bold-circled nodes are closed.

Proposition 11. For a term T and a solid one T ′, where T (V, E , label) and
T ′(V ′, E ′, label′) are their tree representations, respectively, then |= T � T ′ if
and only if there exists V ′′ ⊆ V, where |V ′| = |V ′′|, and ρ : V ′ → V ′′ a one-to-one
function such that

1. (u, v) ∈ E ′ iff (ρ(u), ρ(v)) ∈ E;
2. if v is m-labelled then ρ(v) is m-labelled, for m ∈ Λ;
3. if v ∈ V ′ \ {root(T ′)} is closed then ρ(v) is closed and |Ch(v)| = |Ch(ρ(v))|.

Apart (3), the conditions listed in Proposition 11 correspond exactly to require
that there exists a subtree isomorphism between T and T ′ on Λ+-labelled trees
(when ∗ acts as a wildcard label). The last condition is required in situations
like the following one: choose T = m[n[0]] and T ′ = m[0]; T ′ has no match
in T even though, considering their graphical tree representations, there exists
a function ρ satisfying conditions (1) and (2).

Proposition 11 induces the definition of the following relation: ρ |= T � T ′
iff there exists ρ satisfying conditions (1–3). Obviously |= T � T ′ iff ρ |= T � T ′
and T , T ′ are graphical representations for T , T ′, respectively.

Now, let us consider the forest pattern matching problem, that is, when the
pattern is a list of arbitrary length h ≥ 0.

Proposition 12. Given a term T and a solid (forest) pattern S = S1, . . . , Sh,
where T and S = S1, . . . ,Sh are their tree representations (with disjoint node
sets), then |= T � S if and only if

1. ρi |= T � Si, for 1 ≤ i ≤ h;
2. R = {ρi(v) | v ∈ Ch(root(Si)), 1 ≤ i ≤ h} is an antichain in T .

Condition (1) is obvious, and it is due to Proposition 11. Condition (2) states
that the children of each Si-root must be mapped by ρi to form an antichain in
T ; this ensures that the mapping of trees in the pattern are not overlapping in
T . Note that, different roots of the pattern can be mapped to the same target
node, and that the antichain condition must be satisfied by the roots children
nodes only (see Figure 2 for an example).

10 G. Bacci, M. Miculan, R. Rizzi

4.1 A Parameterized Algorithm for Forest Pattern Matching

Proposition 12 offers an alternative characterization for the forest pattern match-
ing problem through which it is easier to provide a parameterized algorithm that
solves it, when h = |S| and k = maxi |Ch(root(Si))| are the chosen parameters.
The key idea is to find all possible matches of each Si separately, identifying
them by coloring nodes in T , and finally search for a rainbow antichain. The
proposed algorithm uses the reduction to kernel size technique. Formally, the
parameterized algorithm solving |= T � S acts in three steps:

1. for each Si in the pattern, we identify all possible mappings ρi satisfying
ρi |= T � Si. These mappings corresponds to tree matches and we identify
them by means of colors: each Si is associated with a color f ∈ F , and nodes
in Ch(root(Si)) with colors from the palette Pi (a color for each node).
Palettes are supposed to be disjoint.

2. we bound the size of the returned colored target tree, yielding a kernel of
size which depends only on the parameters h and k.

3. we perform an exhaustive search for a rainbow antichain on palette
⋃
i Pi.

Coloring the target tree: By Proposition 11 we know that this corresponds to
solving the subtree isomorphism problem for each Si in the pattern and ensuring
that the closedness property holds (that is, condition (3) in Proposition 11). It
is not hard to see that the Matula’s algorithm [13] for the subtree isomorphism
can be adapted to our aims. Let M be a Boolean matrix of size ns × nt, where
nt and ns are respectively the number of nodes of the target tree and of the
pattern (the summation of each node set of the whole tree list). By dynamic
programming on T and S we can fill M as follows: for each node u in S and
node v in T , M [u, v] = T if there exists an embedding (respecting node labeling
and the closedness property) of S�u in T rooted at v, otherwise M [u, v] = F
(see Matula [13] for details on how the matrix M is obtained).

From the matrix M we can define the coloring functions for T . Let F and Pi,
for 1 ≤ i ≤ h, be disjoint palettes such that |F| = h and |Pi| = |Ch(root(Si))| ≤
k, and α :

⋃
i{Si} → F and βi : Ch(root(Si)) → Pi be bijections associating

a color f ∈ F with each Si in the pattern, and a color p ∈ Pi with each
children of root(Si). We define V-indexed family color sets colorR(v) ⊆ F and
colori(v) ⊆ Pi, for 1 ≤ i ≤ h as follows:

α(Si) ∈ colorR(v) ⇐⇒ M [root(Si), v] βi(u) ∈ colori(v) ⇐⇒ M [u, v]

Note that nodes may take color from different palettes, indeed a subtree of the
target may have a match with more than one tree in the pattern. The family of
color sets colorR and colori enjoy the following property:

Proposition 13. If α(Si) ∈ colorR(v) then
⋃
u∈Ch(v) colori(u) = Pi.

The above proposition says that if a node v in the target has color α(Si), then
Si has a match in T rooted at v, hence there must exists C ⊆ Ch(v) such that
|C| = |Ch(root(Si))| and for each u ∈ Ch(root(Si)), Si�u has a match rooted at
a node in C.

Finding a Forest in a Tree 11

Reduction to kernel size: The reduction of T to kernel size consists in a decoloring
procedure that aims at leaving as much nodes as possible completely uncolored
in order to remove them from T . Indeed, uncolored nodes have no influence in
the detection of a possible rainbow antichain in T .

Before starting with the description of the reduction, we need some technical
definitions and notations. We say that a node is c-decolored if we remove c from
all its color sets (note that colorR and colori are disjoint, hence the set deletion
of c influences only the right color set). By T \ v we denote the tree obtained
from T removing the node v and such that the children of u are adopted by its
parent (if u is the root node we just decolor it).

Definition 14. Let T be a tree and u a node. We denote by fout(u) the fan-out
of u, defined as fout(u) =

∑
v∈an(u) |Ch(v)| − 1, where an(v) is the set of all

ancestors of v; and by fout(T) = maxv∈V fout(v) the maximal fan-out in T .

Intuitively, fout(u) is the out-degree of the whole path from u to the root of T .

Lemma 15. If v is uncolored and T admits a P-rainbow antichain, then also
T \ v has P-rainbow antichain.

Lemma 16. If T has a P-rainbow antichain, then it has one also when u is
c-decolored, for color c ∈ P, if one of the following conditions hold:

(a) u is an ancestor of v, and both u, v are c-colored;
(b) T has only c-colored leaves and u is a leaf such that fout(u) ≥ |P|.

Proof. (a) Let T be a colored tree on palette P, where there exist two nodes u
and v, such that u is an ancestor of v and c ∈ P is assigned both to u and v. We
want to prove that if T has a rainbow antichain, it continues to have one also if
we c-decolor node u. Let R be a rainbow antichain for T such that u ∈ R. Since
u belongs to R, for some color cR ∈ P assigned to u, R must be rainbow on
the palette P. If we decolor u by c, there are two cases. If c 6= cR, R continues
to be a rainbow antichain for T , conversely, if c = cR, R is no more colorful
on P, since one of the representative of P lacks (i.e. c). By hypothesis, u has
a c-colored descendant v. It is easy to see that R′ = (R \ {u}) ∪ {v} is still an
antichain and moreover it is colorful for P.

(b) Let T be a colored tree on palette P such that, all its leaves are colored
by c ∈ P, and v is a leaf in T for which fout(v) ≥ |P|. We want to prove that
if T has a rainbow antichain, it continues to have one also if we c-decolor v.
Let P be the path from the leaf v to the root of T . To each outer-neighbour
ni (1 ≤ i ≤ fout(v)) of P corresponds a subtree T �ni with all leaves colored
by c, since T has only c-colored leaves. It is worth noting that all T �ni are not
overlapping with each other, since

⋃
i{ni} is an antichain for T .

Suppose R be a rainbow antichain for T such that v ∈ R. Since v ∈ R,
for some color cR ∈ P assigned to v, R must be rainbow on the palette P. If
we c-decolor v, there are two cases. If c 6= cR, R continues to be a rainbow
antichain for T , conversely, if c = cR, R is no more rainbow on P, since one
of the representative of P lacks. Note that R, apart v, must reside in

⋃
i T �ni.

12 G. Bacci, M. Miculan, R. Rizzi

Since fout(v) ≥ |P|, there are more than |P| subtrees T �ni (1 ≤ i ≤ fout(v)),
hence there is no way to choose |P| distinct nodes from

⋃
i T �ni such that each

T �ni as at lest one of these nodes. Therefore, since each T �ni contains at least
one node colored by c (all leaves are c-colored!), we can substitute the node
v ∈ R with one of the leaf node in the “untouched” T �ni, thus obtaining a new
antichain where v is not choosen (hence v can be safely decolored). ut

Applying (a) we c-decolor all nodes that have a c-colored descendant, and
by Lemma 15 we remove all the nodes left uncolored. Note that this procedure
can be applied both on palette F and on palette Pi, for 1 ≤ i ≤ h. This re-
duction returns a tree where all paths do not have color repetitions, hence, by
Proposition 13 its height is at most 2h. Condition (b) induces another decoloring
procedure. In fact, once the previous reduction is applied, node colored the same
must form an antichain and, in particular for each f ∈ F we can apply (b) just
ignoring paths from a leaf up to a f -colored node. Note that this time we do not
apply the reduction on palettes Pi’s.
Proposition 17. If fout(T) ≤ m, then T has at most 2m leaves.

Proof. The proof is by induction on m ≥ 0. If m = 0, then fout(T) = 0, hence T
must be a single path, hence it has exactly one leaf. Let m > 0, and T be a tree
with t > 0 children under its root (the case when t = 0 is trivial). By inductive
hypothesis, each subtree rooted at a child of the root have at most 2k−t+1 leaves,
since their fan-out is at most k− (t− 1). Since there are t of those subtrees, the
number of the leaves in T is at most t·2k−t+1. We have t·2k−t+1 = 2· t2t ·2k ≤ 2k,
since, for all t > 0, t

2t ≤ 1
2 . ut

By Proposition 17, the reduced target tree have at most 2|F| (hence, 2h) f -
colored nodes, for each f ∈ F . Note, however, that we do not have a bound on the
total number of nodes in the reduced tree, indeed the reduction (b) is not applied
on c-colored nodes, for c ∈

⋃
i Pi. This problem is overcome just checking that

for each color f ∈ F , all f -colored nodes have no more than |
⋃
i Pi| c-colored

children, for c ∈
⋃
i Pi. Since |

⋃
i Pi| ≤ h · k, we obtain a reduced tree Tred with

at most h (k + 1) · 2h nodes.

Look for rainbow antichains: What we actually need is the following for each
node v in the reduced target tree: for each X ⊆ F , determine whether the
pattern trees corresponding to color in X can be mapped simultaneously in
the subtree Tred�v. To calculate this, we determine all the possible tuples t =
(c1, . . . , c|Ch(v)|) of colors associated to each child of v, then we check that for
each α(Si) ∈ X, the tuple t contains Pi. Since both Ch(v) and

⋃
i Pi have at

most h · k elements, for each node v and subset X we need to check at most
(h·k)2 tuples at a cost of h·k per tuple. We denote this by the predicate N(v,X).

In order to determine whether there exists a rainbow antichain in the re-
duced target tree T, we need to check that A(Tred,F) hold, where the predicate
A(T , X), for T , subtree of Tred, and X ⊆ F , is defined as follows:

A(T , X) = N(v,X) ∨
∨
Y⊆X

(
A(T ′, Y) ∧A(T ′′, Y \X)

)
,

Finding a Forest in a Tree 13

where, v = root(T), T ′ = T �u1 and T ′′ is the tree obtained by collecting all
T �uj under a fresh copy of the node v, for Ch(v) = {u1, . . . , um} and 2 ≤ j ≤ m.

Saying that the predicate A(T , X) holds means that T admits a rainbow
antichain R for the palette

⋃
α(Si)∈X Pi. Indeed, the antichain is either a subset

of the immediate children of root (in this case N(root(T), X) holds), or it is split
in the subtrees of T (in this case the right part of the formula holds). A formal
argument for this intuition can be provided by a straightforward induction on
the height of T .

In order to calculate A(T , X) we must solve a subset convolution problem for
each node in the reduced target tree. Each subset convolution can be calculated
in time O(h2 ·2h), by means of the fast subset convolution algorithm of [2], hence
we can check A(Tred,F) in time O(h · k)3 +O(h3(k + 1) · 22h) using a dynamic
programming algorithm working bottom-up on the structure of Tred.

Complexity analysis of the algorithm: The coloring phase costs O(ns ·n3/2
t) where

nt and ns are the number of nodes in the target and pattern, respectively, [13].
Note that while coloring the nodes from leaves up to the root, it can be easily
performed the first decoloring step, just do not coloring nodes by colors already
assigned to some descendant.

The second decoloring phase must be performed after the previous decoloring.
This is both necessary for the correctness of the reduction, and useful to increase
the node fan-outs. The decoloring, for each f ∈ F , first calculates the fan-out of
each f -colored node just performing a simple depth-first visit of the tree, then
it decolors the nodes by other h depth-first visits, one for each color in F . The
overall cost of the reduction is linear in nt.

The cost for checking the existence of rainbow antichains in Tred has been
already shown to be in O(h · k)3 +O(h3(k + 1) · 22h).

Concluding, the overall cost of the algorithm is O(h3(k+1)·22h)+O(ns ·n3/2
t).

Notice that the proposed algorithm proves also that the forest pattern match-
ing problem is fixed-parameter tractable also if we choose as parameter simply
K = |

⋃
i Ch(Si)|; indeed, in this case the upper bound would be O(K3 · 22K) +

O(ns ·n3/2
t). We have preferred to consider the two parameters h, k, instead of the

single K, because our approach leads to a lower and more precise upper-bound
for the problem.

5 Conclusions

In this paper we have considered the problem of finding a forest within an un-
ordered tree, with no overlaps. This problem arises often with languages using
unordered hierarchical structures, e.g. to represent scoping, containment, etc.
Although the problem is NP-complete in general, we have shown that the com-
binatorial explosion depends only on the forest width. This parameter is usually
fixed (i.e., reduction rules do not change, for a given calculus) and often it is
small (i.e. ≤ 3), thus the problem is feasible. We have given an algorithm for
computing the solutions for this problem, respecting these complexity bounds.

14 G. Bacci, M. Miculan, R. Rizzi

As a side result of our proof techniques, we have singled out the new rainbow an-
tichain problem, which is NP-complete but fixed-parameter tractable; we think
that this problem can be a useful tool also for other complexity analysis and
reductions of problems about trees.

Future work. First, we plan to apply the results and algorithm presented in this
paper to real calculi and frameworks. The cases of Bigraphical Reactive Sys-
tems [14], BioBigraphs [1] and Synchronized Hyperedge Replacement [8] are of
particular interest. In these cases, we have to integrate forest pattern matching
with sub(hyper)graph isomorphisms (needed to match e.g. the link part of bi-
graphs). Subgraph isomorphism is a notoriously hard problem; we hope that the
tractability results given in this paper will help to tame its hardness.

An important question is whether there are other possible reductions to be
applied in the target tree in order to yield a smaller kernel instance. A positive
result in this direction would provide a significant improvement of both time
and space complexity upper bounds. At the moment, we know only that our
problem does not fulfill the criteria in [3] that would imply the nonexistence of
a polynomial-bounded kernel, so there is still hope.

Another interesting situation is when we consider rules with reaction rates.
These cases are of great interest in quantitative models of networks, biological
systems, etc. Here, we are interested to pick out a single match among many
possible matches of many different rules, but still respecting rates and stochastic
distributions. We plan to adapt our results accordingly, with a suitable counting
algorithm from the one presented in this paper.

References

1. G. Bacci, D. Grohmann, and M. Miculan. Bigraphical models for protein and mem-
brane interactions. In G. Ciobanu, editor, Proc. MeCBIC, volume 11 of Electronic
Proceedings in Theoretical Computer Science, pages 3–18, 2009.

2. A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets möbius: fast
subset convolution. In STOC ’07: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 67–74, New York, NY, USA, 2007.
ACM.

3. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On prob-
lems without polynomial kernels (extended abstract). In L. Aceto, I. Damg̊ard,
L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors,
Proc. ICALP, volume 5125 of Lecture Notes in Computer Science, pages 563–574.
Springer, 2008.

4. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines
for structured service programming. In G. Barthe and F. S. de Boer, editors,
Proc. FMOODS, volume 5051 of Lecture Notes in Computer Science, pages 19–38.
Springer, 2008.

5. L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software Science
and Computation Structures: First International Conference, FOSSACS ’98, pages
140–155. Springer-Verlag, Berlin Germany, 1998.

Finding a Forest in a Tree 15

6. S. A. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proceed-
ings of the third annual ACM symposium on Theory of computing, pages 151–158,
New York, NY, USA, 1971. ACM.

7. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness
i: Basic results. SIAM J. Comput., 24(4):873–921, 1995.

8. G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised
hyperedge replacement as a model for service oriented computing. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W. P. de Roever, editors, Proc. FMCO, volume
4111 of Lecture Notes in Computer Science, pages 22–43. Springer, 2005.

9. J. E. Hopcroft and R. E. Tarjan. A v2 algorithm for determining isomorphism of
planar graphs. Inf. Process. Lett., 1(1):32–34, 1971.

10. J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs (preliminary report). In Proceedings of Conference Record of 6th Annual
ACM Symposium on Theory of Computing, (STOC ’74), pages 172–184, 1974.

11. J. Krivine, R. Milner, and A. Troina. Stochastic bigraphs. In Proc. MFPS, volume
218 of Electronic Notes in Theoretical Computer Science, pages 73–96, 2008.

12. A. Mansutti, M. Miculan, and M. Peressotti. Multi-agent system desing and pro-
totyping with bigraphical reactive systems. In E. Kalyvianaki, K. Magoutis, and
P. Pietzuch, editors, Distributed Applications and Interoperable Systems, Lecture
Notes in Computer Science. Springer, 2014. To appear.

13. D. W. Matula. Substree isomorphism in O(n5/2). Annals of Discrete Mathematics,
2:91–106, 1978.

14. R. Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 2009.

A Proofs of technical lemmata

Proof (of Proposition 5). We prove each point separately.
(a, =⇒) Since |= T � 0,S, there exist a context C and parameters D such

that T ≡ (C{0/z,S/Z}){D/X} for some {z}] Z ⊆ vars(C). It is simple to
prove that C{0/z,S/Z} ≡ C{0/z}{S/Z}, hence, by associativity of substitu-
tion composition, T ≡ ((C{0/z}){S/Z}){D/X}, that is, |= T � S.

(a,⇐=) Since |= T � S, there exist a context C and parameters D such that
T ≡ (C{S/Z}){D/X} for some Z ⊆ vars(C). Now, observing that C ≡ C |
0 ≡ (C | z){0/z} for some z /∈ Z, we obtain T ≡ ((C | z){z/0,S/Z}){D/X},
that is, |= T � 0,S.

(b, =⇒) Since |= T � x | y, there exist a context C and parameters D
such that T ≡ (C{x | y/z}){D/X} for some z ∈ vars(C). Observing that
C{x | y/z} ≡ C{y | w/z}{w/x} (for w fresh), by associativity of substitution
composition, we obtain T ≡ ((C{y | w/z}){x/w}){D/X}, that is, |= T � x.

(b, ⇐=) Since |= T � x, there exist a context C and parameters D such
that T ≡ (C{x/z}){D/X} for some z ∈ vars(C). It is easy to prove that
C{x/z} ≡ C{x | 0/z} ≡ C{x | y/z}{0/y} for y fresh. Now by associativity
and from the freshness of y, we obtain T ≡ (C{x | y/z}){0/y,D/X}, that is,
|= T � x | y.

(c) has the same proof of (b), just replace x in (b) with S. ut

