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Abstract. A novel approach to the formal description of service contracts is pre-
sented in terms of automata. We focus on the basic property of guaranteeing that
in the multi-party composition of principals each individual gets his requests sat-
isfied, so that the overall composition reaches its goal. Depending on whether
requests are satisfied synchronously or asynchronously, we construct an orches-
trator that at static time either yields composed services enjoying the required
properties or detects the individuals responsible for possible violations. To do
that in the asynchronous case we resort to techniques from Operational Research.

1 Introduction

Service composition is the fundamental part of the service-oriented approach. Often,
the computational capabilities offered by a coarse-grained service are implemented tak-
ing advantage of multiple, finer-grained and loosely-coupled services. APIs for service
composition (orchestration and choreography) are an integral part of service-based sys-
tems. Different languages have been proposed for orchestrating Web Services, the most
popular among which is BPEL [23]. However, several crucial issues naturally arise,
e.g. the usage of resources, the guarantees on the results provided, the correctness of
the whole business process in a variety of different operational environments.

Service orchestrations rely on the notion of service contract which specifies what
a service is going to offer and what in turn it requires. In order to serve its client, the
orchestrator defines the duties and responsibilities for each of the different services
he calls. This contract agreement is obviously based on the contracts of the involved
services, and ensures that all the duties are properly kept. The orchestrator can then pro-
ceed to organise the overall service composition and to propose the resulting contract to
its own clients. This process is called contract composition. Contract composition as-
sumes that none of the involved service violates its contract, i.e. that contract agreement
is fulfilled, in which case so does the orchestration. Furthermore, a failing service con-
tract can cause the orchestrator to breach the contract with its clients. Thus reaching the
agreement among the services is the essential ingredient in designing orchestrations.

The main question addressed by our research is twofold. First, we aim at develop-
ing techniques capable of determining a correct contract composition by considering
the individual service contracts and their overall satisfaction within an orchestration.
Second, we propose a rigorous formal technique, suitable to be automated, to compose
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contracts. Previous work have tackled similar issues. We only mention a few that use
the λ-calculus [4, 5, 8], process calculi [14, 15, 1], non-classical logics [7].

Here, we introduce an automata-based model for contracts called contract automata
(CA), that are a special kind of finite state automata endowed with two composition op-
erators, involving many parties and reflecting two different orchestration policies. One
operation joins a service to an existing orchestration with no reconfiguration; the second
requires a global adaptive re-orchestration of all the services involved. We also define
properties of CA that guarantee a group of contracts to agree under all circumstances.
The first one is called agreement and considers the case when all the requests made
are synchronously matched in pair by the offers, and thus satisfied; we also synthe-
sise a suitable orchestrator to enforce contract composition to adhere to this behaviour.
The second property, weak agreement, is more liberal, in that requests can be asyn-
chronously matched, and an offer can be delivered even before a corresponding request.

We also establish conditions ensuring that a group of contracts agree in some spe-
cific cases (they admit agreement or weak agreement). We develop static techniques to
detect which individual in a contract is liable, i.e. the responsibles for leading a con-
tract composition into a failing state; as a matter of fact, our notion slightly differs form
other versions of liability [6], mainly because we do not admit the possibility of redeem
from culpability. While finding the individuals liable for a violation of agreement is not
hard (inspecting the automaton plus a little calculation suffice), things become much
more intricate when we consider weak agreement, that has a clear interpretation as a
context-sensitive language. For the synchronous case, we offer a method for composing
contract and detecting liability, that is inspired by so-called controllers of the Control
Theory [12]. Instead, we check weak agreement and detect liability in an original man-
ner by resorting to optimization techniques borrowed from Operational Research. In
particular, we show that these notions are naturally handled in terms of optimization of
network flows. The intuitive idea is that the problem of service composition is rendered
as a flow itinerary in the networks, that is automatically constructed from the contract
automata resulting from service composition.

Because of space limitation, all the proofs of our results are omitted and can be
found in [9].

2 The Model

This section formally introduces the notion of contract automata. We start with some
notation and preliminary definitions. Let Σ = R∪O∪{�} be the alphabet of actions
partitioned in requests R = {a,b,c, . . .} and offers O = {a,b,c, . . .} where R∩O = /0,
and � 6∈ R∪O is a distinguished element representing the idle action. We define the
involution co(•) : Σ 7→ Σ such that co(R) =O, co(O) = R, co(�) = �.

Let~v = (v1, ...,vn) be a vector of rank n = rv ≥ 1, then~vi denotes the i-th element.
We write~v1~v2 . . .~vm for the concatenation of m vectors~vi. The alphabet of a CA consists
of vectors, each element of which records the activity of a single participant in the
contract. In a vector there is either a single offer or a single request, or there is a pair
of complementary request-offer that match; all the other elements of the vector contain
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the symbol �, meaning that the corresponding individuals stay idle. In the following let
�

m denote a vector of rank m, all components of which are �.

Definition 1 (Actions). Given a vector~a ∈ Σn, if

– ~a = �
n1α�

n2 ,n1,n2 ≥ 0, then~a is a request if α ∈ R, and is an offer if α ∈O
– ~a = �

n1α�
n2co(α)�

n3 ,n1,n2,n3 ≥ 0, then~a is a match, where α ∈ R∪O.

We define ~a ./~b iff ~a is an offer and~b is a request or vice versa with ~ai = co(~b j) 6= �

and ra = rb, for two indexes i, j ≤ ra (note that ./ is an equivalence relation).

Definition 2 (Observable).
Let w= ~a1 . . . ~an be a sequence of vectors, and let ε be the empty one, then its observable
is given by the partial function Obs(w) ∈ R∪O∪{τ} where:

Obs(ε) = ε Obs(~aw′) =
{
~ai Obs(w′) if ∀ j 6= i.~a j = �,(~a is a offer/request)
τObs(w′) (~a is a match)

From now onwards we will only consider strings w such that Obs(w) is defined.

Definition 3 (Contract Automata). Assume as given a finite set of states Q= {q1,q2, . . .}.
Then a contract automaton (CA) A of rank n is a tuple 〈Q, ~q0,Ar,Ao,T,F〉, where

– Q = Q1× . . .×Qn ⊆Qn

– ~q0 ∈ Q is the initial state
– Ar ⊆ R,Ao ⊆O are finite sets of actions
– F ⊆ Q is the set of final states
– T ⊆ Q×A×Q is the set of transitions, where A⊆ (Ar ∪Ao∪{�})n and if

(~q,~a,~q′) ∈ T then:
{
~a is either a request or an offer or a match;
if~ai = � then it must be~qi = ~q′i

A principal is a contract automaton of rank 1 such that Ar ∩ co(Ao) = /0.
A step (w,~q)→ (w′,~q′) occurs iff w =~aw′,w′ ∈ A∗ and (~q,~a,~q′) ∈ T .
The language of A is L (A) = {w | (w, ~q0)→∗ (ε,~q),~q ∈ F} where→∗ is the reflexive,
transitive closure of→.

Example 1. Figure 1 shows three CAs. The automa A1 may be understood as producing
a certain number of resources through one or more offers res and it terminates with the
request sig. The contract A2 starts by sending the signal sig and then collects resources
produced by A1. The contract A3 represents the CA where A1 and A2 interact. We have
that A1,A2 are of rank 1 while A3 is of rank 2.

Contract automata can be composed, by making the cartesian product of their states
and of the labels of the joined transitions, with the additional possibility of labels record-
ing matching request-offer, as it happens for A3 in Figure 1.

We introduce two different operators for composing contract automata. Both prod-
ucts interleave all the transitions of their operands. We only force a synchronization to
happen when two contract automata are ready on their respective request/offer action.
These operators represent two different policies of orchestration. The first operator, ⊗,
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q01start q11
sig

res

q02start q12
sig

res

q01,q02start q11,q12
(sig,sig)

(res,�) (�,res)

Fig. 1: Three contract automata: from left A1,A2, and A3

considers the case when a service S joins a group of services already clustered as a single
orchestrated service S′. In this case S can only accept the still available offers (requests,
respectively) of S′ and vice versa. In other words, S cannot interact with the individual
components of the orchestration S′, but only with S′ as a whole. This is not the case
with the second operation of composition, �, that puts instead all the components of S
at the same level of those of S′. Any matching request-offer of either contract can be
split, and the offers and requests, that become available again, can be re-combined with
complementary actions. This second operation of composition turns out to satisfactorily
model business processes in dynamically changing environments.

Definition 4 (Product). Let Ai = 〈Qi, ~q0
i,Ar

i ,A
o
i ,Ti,Fi〉, i ∈ 1 . . .n be CA of rank ri. The

product
⊗

i∈1...n Ai is the CA 〈Q, ~q0,Ar,Ao,T,F〉 of rank m = ∑i∈1...n ri, where:

– Q = Q1× ...×Qn, where ~q0 =~q1
0 . . .~q

n
0

– Ar =
⋃

i∈1···n Ar
i , Ao =

⋃
i∈1···n Ao

i
– F = {~q1 . . .~qn |~q1 . . .~qn ∈ Q,~qi ∈ Fi, i ∈ 1 . . .n}
– T is the least subset of Q×A×Q s.t. (~q,~c,~q′) ∈ T iff, letting~q =~q1 . . .~qn ∈ Q,
• either there are 1 ≤ i < j ≤ n s.t. (~qi,~ai,~q′i) ∈ Ti, (~q j,~a j,~q′j) ∈ Tj, ~ai ./~a j and

~c = �
u~ai�

v~a j�
z with u = r1 + . . .+ ri−1, v = ri+1 + . . .+ r j−1, |~c|= m

and
~q′ =~q1 . . .~qi−1 ~q′i ~qi+1 . . . ~q j−1 ~q′j ~q j+1 . . .~qn

• or ~c = �
u~ai�

v with u = r1 + . . . + ri−1, v = ri+1 + . . . + rn, and
~q′ = ~q1 . . .~qi−1 ~q′i ~qi+1 . . .~qn when (~qi,~ai,~q′i) ∈ Ti and for all j 6= i and
(~q j,~a j,~q′j) ∈ Tj it does not hold that~ai ./~a j.

There is an obvious way of retrieving the principals involved in a composition.

Definition 5 (Projection). Let A = 〈Q, ~q0,Ar,Ao,T,F〉 be a contract automaton of
rank n, then ∏

i(A) = 〈∏i(Q),~qi0 ,∏
i(Ar),∏i(Ao),∏i(T ),∏i(F)〉 where:

i

∏(Q)= {~qi |~q∈Q}
i

∏(F)= {~qi |~q∈F}
i

∏(Ar)= {a | a∈Ar,(q,a,q′)∈
i

∏(T )}

i

∏(T )= {(~qi,~ai,~q′i) | (~q,~a,~q′)∈T ∧~ai 6= �}
i

∏(Ao)= {a | a∈Ao,(q,a,q′)∈
i

∏(T )}

Consider the CAs of Figure 1, we have A1 = ∏
1(A3) and A2 = ∏

2(A3).

Property 1 (Product Decomposition). Let A1, . . . ,An be a set of principal contract au-
tomata, then ∏

i(
⊗

j∈1...n A j) = Ai.
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q01start q11
toy

q02start q12
toy

q03start q13
toy

q01,q02,q03start q11,q12,q03

q01,q02,q13 q11,q12,q13

(toy, toy,�)

(�,�, toy) (�,�, toy)

(toy, toy,�)

q01,q02,q03start q11,q02,q13

q01,q12,q03 q11,q12,q13

(toy,�, toy)

(�, toy,�) (toy,�, toy)

(�, toy,�)

q01,q02,q03start q11,q12,q03

q11,q02,q13 q11,q12,q13

(toy, toy,�)

(toy,�, toy) (�,�, toy)

(�, toy,�)

Fig. 2: From left to right and top-down: the contract automata of Alice, Bob and Eve, the contract
automata (Alice⊗Bob)⊗Eve, (Alice⊗Eve)⊗Bob and Alice�Bob�Eve.

Definition 6 (A-Product). Let A1,A2 be two contract automata of rank n and m, and
let I = {∏i(A1) | 0 < i ≤ n}∪{∏ j(A2) | 0 < j ≤ m}. The a-product of A1 and A2 is
A1 �A2 =

⊗
Ai∈I Ai

From now on we assume that every contract automaton A of rank rA > 1 is composed
by principal contract automata using the operations of product and a-product.

Note that if A ,A ′ are principal contract automata, then A ⊗A ′ = A �A ′. E.g. in
Figure 1, we have that A3 = A1⊗A2 = A1 �A2.

Both compositions are commutative, up to suitable rearrangement of the vectors of
actions, and � is associative, while ⊗ is not.

Proposition 1. The following properties hold:
– ∃A1,A2,A3.(A1⊗A2)⊗A3 6= A1⊗ (A2⊗A3)
– ∀A1,A2,A3.(A1 �A2)�A3 = A1 � (A2 �A3)

Example 2. In Figure 2 Alice offers a toy while Bob and Eve perform the same request
for the toy of Alice. In the product (Alice⊗Bob)⊗Eve the toy is assigned to Bob who
first enters in the composition with Alice, no matter if Eve performs the same move.
Equally, in the product (Alice⊗Eve)⊗Bob the toy is assigned to Eve. In the last row
we have the a-product A1 � (A2 �A3) = (A1 �A2)�A3 which represents a dynamic
orchestration: no matter if Eve or Bob enters first the composition with Alice, the toy
will be assigned to the first participant who makes the move.

3 Enforcing Agreement

An agreement between different contracts exists only when the final states of the prod-
uct are reachable from the initial state by strings only made of match and offer actions.
Our agreement resembles the notion of compliance of [14, 15]. Since we use vectors
of actions as labels, it is easy to track every action performed by each participant, and
to find who is liable in a bad interaction. Our goal is to enforce the behaviour of partic-
ipants so that they only follow the traces of the automaton which lead to agreement.

We now introduce the notion of agreement as a property of the language recognised
by a CA; an auxiliary definition helps.
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Definition 7 (Agreement). A word accepted by a CA is in agreement if it belongs to
the set

A= {w ∈ (Σn)∗ | Obs(w) ∈ (O∪{τ})∗,n > 1}

Example 3. The automa A3 in Figure 1 has a word in agreement: Obs((res,�)(sig,sig))=
resτ ∈ A, and one not: Obs((sig,sig)(�,res)) = τres 6∈ A.

Note that the set A can be seen as a safety property, where the set of bad prefixes of A
contains those strings ending with a trailing request, i.e. {w~a | w ∈ A,Obs(~a) ∈ R} .

Definition 8 (Safety). A contract automaton A is safe if L (A) ⊆ A, otherwise it is
unsafe. Additionally, if L (A)∩A 6= /0 then A admits agreement.

Example 4. The contract automaton A3 of Figure 1 is unsafe, but it admits agreement
since L (A3)∩A= (res,�)∗(sig,sig). The contract automaton Alice⊗Bob of Figure 2
is safe since L (Alice⊗Bob) = (toy, toy)⊂ A.

We now introduce a technique for driving a safe composition of contracts, in the
style of the Supervisory Control for Discrete Event Systems [12]. These are automata,
where accepting states represent successful termination of a task, while forbidden states
are those that should not be traversed in “good” computations. Generally, the purpose
is then to synthesize a controller that enforces this property. Here, we devise a way of
synthesising an orchestration that leads to safely composed contracts. Also we assume
that all the actions are controllable and observable, so the theory guarantees that a most
permissive controller exists that never blocks a good computation. Furthermore we as-
sume that a request leads to a forbidden state. Finally, the behaviours that we want to
enforce upon A are exactly those words belonging to A∩L (A). In order to effectively
build such a controller, we introduce below the notion of hanged state, i.e. a state from
which no final state can be reached.

Definition 9 (Controller). Let A and K be contract automata, we call K controller of
A iff L (K )⊆ A∩L (A).
K is a most permissive controller (mpc) iff ∀K ′ controller of A it is L (K ′)⊆L (K ).

Proposition 2. Let K be a mpc of the CA A , then L (K ) = A∩L (A).

Definition 10 (Hanged state). Let A = 〈Q, ~q0,Ar,Ao,T,F〉 be a CA, then ~q ∈ Q is
hanged, and belongs to the set Hanged(A), if given~q f ∈ F,@w.(w,~q)→∗ (ε, ~q f ).

Definition 11 (Building the mpc).
Let A = 〈Q, ~q0,Ar,Ao,T,F〉 be a CA, K1 = 〈Q, ~q0,Ar,Ao,T \ ({t ∈ T | t is a request
transition },F〉 and define

KA = 〈Q\Hanged(K1), ~q0,Ar,Ao,TK1 \{(~q,a,~q′) | {~q,~q′}∩Hanged(K1) 6= /0},F〉

Proposition 3 (MPC). The controller KA of Definition 11 is the mpc of the CA A .
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q01,q02start q11,q12 q21,q22

q41,q42 q51,q52

q21,q32
(sell,sell) (bike,bike)

(toy, toy)

(�, pay)

(cancel,cancel)

(pay, pay)

q01,q02start q11,q12

q41,q42 q51,q52

(sell,sell)

(toy, toy)
(cancel,cancel)

(pay, pay)

Fig. 3: In the left part the CA A ; in the right one its most permissive controller KA

Example 5. In Figure 3 we have a simple selling scenario involving two parties Alice
and Bob, who is willing to pay the toy, only. We first compute the auxiliary set K1 that
does not contain the transition ((q21,q22),(�, pay),(q21,q32)) because it represents a
request of the second participant which is not fulfilled. As a consequence, some states
become hanged: Hanged(K1) = {(q21,q22),(q21,q32)}. By removing them, we even-
tually obtain the mpc controller of A . Indeed this transition represents a request of the
second participant which is not fulfilled. Once the request is removed, some hanged
states are generated, in particular we have Hanged(K1) = {(q21,q22),(q21,q32)}. By
removing the hanged states and corresponding transition the mpc KA of is obtained.

Property 2. Let A be a contract automaton and let KA be its mpc. If L (KA) = L (A)
then A is safe, otherwise if L (KA)⊂L (A) then A is unsafe.
Additionally, if L (KA) 6= /0, then A admits agreement.

We introduce now a novel notion of liability, that characterises those participants
potentially responsible of the divergence from the expected behaviour. The liable par-
ticipants are those who perform the first transition in a run, that is not possible in the
most permissive controller. As noticed above, after this step is done, a successful state
cannot be reached any longer, and so the participants who performed it will be blamed.
(Note in passing that hanged states play a crucial role here: just removing the request
transitions from A would result in a CA language equivalent to the mpc, but detecting
liable participants would be much more intricate).

Definition 12 (Liability). Let A be a CA and KA be the mpc of Definition 11; let→A
and→KA be steps performed by A and KA , resp.; let (v~aw, ~q0)→∗KA

(~aw,~q) be a run

such that (~aw,~q)→A (w,~q′) and (~aw,~q) 6→KA (w,~q′). The participants Πi(A) such that
~ai 6= �, i ∈ 1 . . .rA are liable for v~a and belong to Liable(A ,v~a).

The set of liable participants in A is Liable(A) = {i | ∃w.i ∈ Liable(A ,w)}.

Example 6. In Figure 3 we have Liable(A) = {1,2}, hence both Alice and Bob are
possibly liable, because the match transition with label (bike,bike) can be performed,
that leads to a violation of the agreement.

Proposition 4. A CA A is safe iff Liable(A) = /0.

Note that the set Liable(A) is easily computable as follows.

Lemma 1. Let A be a CA and KA be its mpc as in Definition 11, then

Liable(A) = {i | (~q,~a,~q′) ∈ TA ,~ai 6= �,~q ∈ QKA ,
~q′ 6∈ QKA }
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Some properties of⊗ and � follow, that enable us to predict under which conditions
a composition is safe without actually computing it.

We first introduce the notions of collaborative and competitive contracts. Intuitively,
two contracts are collaborative if some requests of one meet the offers of the other, and
are competitive if both can satisfy the same request.

Definition 13 (Competitive, Collaborative).
The pair of CA A1 = 〈Q1,q01,A

r
1,A

o
1,T1,F1〉 and A2 = 〈Q2,q02,A

r
2,A

o
2,T2,F2〉 are

– competitive if Ao
1∩Ao

2∩ co(Ar
1∪Ar

2) 6= /0

– collaborative if (Ao
1∩ co(Ar

2))∪ (co(Ar
1)∩Ao

2) 6= /0.

The offers shared by A1 and A2 are Ao
1∩Ao

2, while all their requests are Ar
1∪Ar

2. If
there is an offer provided by both participants that is matched by a request of one of
the two CAs, that is Ao

1∩Ao
2∩ co(Ar

1∪Ar
2) 6= /0, then the CAs are competitive. Note that

competitive and collaborative are not mutually exclusive, as formally proved below.
Moreover if two contract automata are non-competitive then all their match actions are
preserved in the composition, indeed we have A1 �A2 = A1⊗A2.

Example 7. The CAs Alice,Bob⊗Eve in Figure 2 are collaborative and not competi-
tive, indeed there is a match on the toy action but no participant interferes in this match.
In Example 8 the pair A1,A2 is competitive since A2 interferes with A1 on the toy offer.

The next theorem says that the composition of safe non-competitive contracts prevents
all participants from harmful interactions, unlike the case of safe competitive contracts.
In other words, when A1 and A2 are safe, no participants will be found liable in A1⊗A2
(i.e. Liable(A1⊗A2) = /0), and the same happens for A1 �A2 if the two are also non-
competitive (i.e. Liable(A1 �A2) = /0).

Theorem 1. If two CA A1 and A2 are

1. competitive then they are collaborative,
2. safe then A1⊗A2 is safe,A1 �A2 admits agreement,
3. non-collaborative, and one or both unsafe, then A1⊗A2,A1 �A2 are unsafe,
4. safe and non-competitive, then A1 �A2 is safe.

Example 8. We feel free to present contract automata through a sort of extended regular
expressions. So, let A1 = toy+bike⊗ toy+bike and A2 = toy. Both contracts are safe,
but competitive, and A1 �A2 is unsafe because (�, toy, toy)(bike,�,�) ∈L (A).

4 Weak Agreement

The literature considers many different types of agreement, including one where actions
are taken on credit if in the future the obligations will be honoured. This last notion is
introduced for accepting as good those compositions of contracts where all the requests
are matched by offers, but an agreement is not reached due to lack of synchronous match
actions. This is a common scenario in contract composition, where each participant
requires its requests to be satisfied before providing the corresponding offers. This kind
of agreement has been faced using a variety of formal techniques as Process Algebras,
Petri Nets, non classical Logics, Event Structures [7, 3, 2, 6]. A simple example follows.
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q1start q2

a/b

sig
q′1start q′2

sig

a/b

q1,q′1start q2,q′2
(sig,sig)

(a,�)/(b,�) (�,a)/(�,b)

Fig. 4: From left to right: A4,A5, and A4⊗A5

Example 9. Suppose Alice and Bob want to share a bike and a toy, but neither trusts
the other. Before providing their offer they first ask for the complementary request. As
regular expressions: Alice = toy.bike and Bob = bike.toy. Their composition is: Alice⊗
Bob = (toy,�)(bike,bike)(�, toy)+(�,bike)(toy, toy)(bike,�). In both possible runs the
contracts fail on exchanging the bike or the toy, hence L (Alice⊗Bob)∩A= /0 and the
composition does not admit agreement.

The circularity in the requests/offers is solved by weakening the notion of agreement,
allowing a request to be performed on credit if in the future a complementary offer will
occur. We will say that a contract automaton admits weak agreement if there exists a
run in which every request can be paired with the corresponding offer, allowing asyn-
chronous matches between requests and offers. Of course, agreement is a proper subset
of weak agreement. As for agreement, we have an auxiliary definition.

Definition 14 (Weak Agreement). A word accepted by a CA of rank n > 1 is in weak
agreement if it belongs to W = {w ∈ (Σn)∗ | |w| = m,∃ a function f : [1..m]→ [1..m]
total and injective on the requests of w, and such that f (i) = j only if~ai ./~a j}.

Example 10. Consider A3 in Figure 1, whose run (res,�)(sig,sig)(�,res) is in W but
not in A, while (res,�)(sig,sig)(�,res)(�,res) 6∈W.

Definition 15 (Weak Safety). A contract automaton A is weakly safe if L (A) ⊆W,
otherwise is weakly unsafe. If L (A)∩W 6= /0 then A admits weak agreement.

Example 11. In Example 9 we have L (Alice⊗Bob) ⊂W, hence the composition of
Alice and Bob is weakly safe.

The following is an analogous of Theorem 1.

Theorem 2. Let A1,A2 be two CA, then if A1,A2 are

1. weakly safe then A1⊗A2 is weakly safe, A1 �A2 admits weak agreement
2. non-collaborative and one or both unsafe, then A1⊗A2,A1�A2 are weakly unsafe
3. safe and non-competitive, then A1 �A2 is weakly safe.

The example below shows that weak agreement is not a context-free notion, in lan-
guage theoretical sense; rather it is context-sensitive. Therefore, we cannot define a
controller for weak agreement in terms of CA.

Example 12. Let A4, A5 and A4⊗A5 be the automata in Figure 4, then we have that
L =W∩L (A4⊗A5) 6= /0 is not context-free. Consider the following regular language
L′ = {(a,�)∗(b,�)∗(sig,sig)(�,a)∗(�,b)∗}. We have that L∩L′ is not context-free (by
pumping lemma), and since L′ is regular L is not context-free.
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~q0start ~q1 ~q2 ~q3

~q4 ~q5

(b,b)

(a,a)
(b,b)
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(c,�)

(b,b)

(�,a)

~q0start

~q1

~q2 ~q3 ~q4

~q5 ~q6

~q7

~q9

~q8

~q10

(r,r)
(�,b)

(t,�)

(t, t)

(�,c)

(b,�) (e,e)

(t,�) (b,�)

(b,b)

(�,c)

(�, t)

(e,e)

~q0start ~q1 ~q2
a b

c

d

Fig. 5: Top left: a product of two CA; top right a booking service; bottom: a principal CA.

Theorem 3. W is a context-sensitive language, but not context-free.

The language W is mildly context-sensitive, and checking membership can be done
through two way deterministic pushdown automata (2DPDA) in O(n2log(n)) time and
O(n) space [18]. A 2DPDA is a push-down automaton with a read-only input tape
readable backward and forward. To check whether w∈W we scroll the input tape twice
for each action: the first time all the requests of the selected action are pushed and then,
the second time we scroll the tape, when an offer of the same action is encountered we
pop a request from the stack. At the end if the stack is empty the string w is in W.

In general, it is undecidable deciding whether a regular language L is included in
a context-sensitive one, as well as checking emptiness of the intersection of a regular
language with a context-sensitive one. In our case, however, these problems are decid-
able and so we can check whether a contract automaton A is weakly safe, or whether it
admits weak agreement.

The technique we propose amounts to find optimal solutions of network flow prob-
lems [19]. We first fix some useful notation. Assume as given a CA A , with a single
final state ~q f 6= ~q0 (this condition can easily be met, by slightly manipulating a CA with
many final states); assume the requests and the transitions of A be enumerated, i.e. Ar =
{ai | i∈ Il = {1,2, . . . , l}} and T = {t1, . . . , tn}; let FS(~q) = {(~q,~a,~q′) | (~q,~a,~q′)∈ T} be
the forward star of a node~q, and let BS(~q) = {(~q′,~a,~q) | (~q′,~a,~q)∈ T} be its backward
star. For each transition ti we introduce the flow variables xti ∈ N, and z~qti ∈ R where
~q ∈ Q,~q 6=~q0. Now we define the following set F~s,~d of flow constraints, an element of

which ~x = (xt1 , . . . ,xtn) ∈ F~s,~d defines runs from the source state ~s to the target state ~d;
as an abbreviation, we will write Fx for F~q0,~q f . The intuition is that each variable xti rep-
resents how many times the transition ti is traversed in the runs defined by~x. A simple
example follows; hereafter we identify a transition by its source and target states.

Example 13. Figure 5 (right) shows a simple service of booking. The contract of the
client requires to book a room (r), including breakfast (b) and a transport service, by
car (c) or taxi (t); finally it sends a signal of termination (e); briefly C = r.b.(c+t).e. The
hotel offers a room, breakfast and taxi: H = r.t.b.e. The composition C⊗H has four
complete traces: w1 = (r,r)(�,b)(t, t)(b,�)(e,e), w2 = (r,r)(�,b)(�,c)(t,�)(b,�)(e,e),
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w3 = (r,r)(t,�)(b,b)(�, t)(e,e), w4 = (r,r)(t,�) (b,b)(�,c)(e,e). We now detail the
flows associated with each trace giving the set of variables with value 1, all the others
having value 0, because there are no loops. For w1: {x~q0,~q1 ,x~q1,~q2 ,x~q2,~q3 , x~q3,~q4 ,x~q4,~q10 ,};
for w2: {x~q0,~q1 ,x~q1,~q2 ,x~q2,~q5 , x~q5,~q6 ,x~q6,~q9 ,x~q9,~q10}; for w3: {x~q0,~q1 ,x~q1,~q7 , x~q7,~q8 ,x~q8,~q4 ,
x~q4,~q10}; and for w4: {x~q0,~q1 ,x~q1,~q7 ,x~q7,~q8 ,x~q8,~q9 ,x~q9,~q10}.

As a matter of fact, a flow~x may represent many runs that have the same balance of
requests/offers for each action occurring therein. As an example, consider the CA at the
bottom of Figure 5 and the flow x~q0,~q1 = 3,x~q1,~q2 = 2,x~q2,~q0 = x~q1,~q0 = 1 that represents
both w1 = acabdab and w2 = abdacab.

The definition of F~s,~d follows. The auxiliary variables z~qti occurring there represent
|Q|− 1 auxiliary flows and make sure that ~x represent valid runs, i.e. there are no dis-
connected cycles with positive flow; a more detailed discussion on them is in Example
14 below. Note also that the values of z~qti are not integers, and so we are defining Mixed
Integer Linear Programming problems that have efficient solutions [19].

F~s,~d = {(xt1 , . . . ,xtn) | ∀~q : ( ∑
ti∈BS(~q)

xti − ∑
ti∈FS(~q)

xti) =


−1 if~q =~s
0 if~q 6=~s, ~d
1 if~q = ~d

∀~q 6=~s, ti. 0≤ z~qti ≤ xti ,

∀~q 6=~s, ∀~q′ : ( ∑
ti∈BS(~q′)

z~qti − ∑
ti∈FS(~q′)

z~qti ) =


−p~q if ~q′ =~s
0 if ~q′ 6=~s,~q
p~q if ~q′ =~q

where

p~q =
{

1 if ∑ti∈FS(~q) xti > 0
0 otherwise

}

We eventually define a set of variables ai
t j

for each action and each transition, that
take the value -1 for requests, 1 for offers, and 0 otherwise; they help counting the
difference between offers and requests of an action in a flow.

∀t j = (~q,~a,~q′) ∈ T,∀i ∈ Il : ai
t j
=

1 if Obs(~a) = ai

−1 if Obs(~a) = ai

0 otherwise

Example 14. Figure 5 (left) depicts the contract A⊗B, where A= a.c∗.b+b.(b.c∗.b+a)
and B = a.b.a+b.(b.b.a+a.c). To check whether there exists a run recognizing a trace
w with less or equal requests than the offers (for each action) we solve ∑t j ai

t j
xt j ≥ 0,

for~x ∈ Fx.
We now discuss the role of the auxiliary variables z~qti . As said, they are used to

ensure that the solutions considered represent valid runs. Consider the following as-
signment to~x: x~q0,~q1 = x~q1,~q2 = x~q2,~q3 = 1,x~q4,~q4 ≥ 1, and null everywhere else. It does
not represent valid runs, because the transition (~q4,(c,�),~q4) cannot be fired in a run
that only takes transitions with non-null value in ~x. Note that the constraints on ~x are



12 Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari

satisfied (e.g. we have ∑t j∈FS(~q4) xt j = ∑t j∈BS(~q4) xt j ). Indeed, the constraints on the aux-

iliary z~qti are introduced for checking if a node is reachable from the initial state on
a run defined by the flow ~x; note that their value being not integer is immaterial for
checking that. The assignment above is not valid since for z~q4 we have 0 ≤ z~q4

(~q0,~q4)
≤

x(~q0,~q4) = 0,0≤ z~q4
(~q1,~q4)

≤ x(~q1,~q4) = 0,0≤ z~q4
(~q4,~q5)

≤ x(~q4,~q5) = 0, hence ∑t j∈BS(~q4) z~q4
t j =

z~q4
(~q4,~q4)

,∑t j∈FS(~q4) z~q4
t j = z~q4

(~q4,~q4)
and we have ∑t j∈BS(~q4) z~q4

t j −∑t j∈FS(~q4) z~q4
t j = 0 6= 1.

Finally, note in passing that there are no valid flows~x ∈ Fx for this problem.

Our main results follow.

Theorem 4. Let~v be a binary vector. Then a CA A is weakly safe iff min γ≥ 0 where:

∑
i∈Il

vi ∑
t j∈T

ai
t j

xt j ≤ γ ∑
i∈Il

vi = 1 ∀i ∈ Il .vi ∈ {0,1} (xt1 . . .xtn) ∈ Fx γ ∈R

The minimum value of γ selects the trace and the action a for which the difference
between the number of offers and requests is the minimal achievable from A . If this
difference is non negative, there will always be enough offers matching the requests,
and so A will never generate a trace not in W: A is weakly safe, otherwise it is not.

Example 15. Consider again Example 13 and let a1 = r, a2 = b, a3 = t, a4 = c, a5 = e.
If v1 = 1, for each flow ~x ∈ Fx, we have that ∑t j a1

t j
xt j = 0 (for i 6= 1, we have vi = 0).

This means that the request of a room is always satisfied. Similarly for breakfast and
the termination signal e. If v3 = 1, for the flow representing the traces w1,w3 we have
∑t j a3

t j
xt j = 0, while for the flow representing the traces w2,w4 the result is 1. Also in

this case the requests are satisfied. Instead, when v4 = 1, for the flow representing the
traces w1,w4 we have ∑t j a4

t j
xt j = 0, but for the flow representing w2,w3, the result is

−1. Hence min γ=−1, and the CA H⊗C is not weak safe, indeed we have w2,w3 6∈W.

Theorem 5. The CA A admits weak agreement iff :

max γ≥ 0 and ∀i ∈ Il . ∑
t j∈T

ai
t j

xt j ≥ γ (xt1 . . .xtn) ∈ Fx γ ∈R

The maximum value of γ in Theorem 5 selects the trace w that maximizes the least
difference between offers and requests of an action in w. If this value is non negative,
then there exists a trace w such that for all the actions in it, the offers are more or as
many the requests. In this case, A admits weak agreement; otherwise it does not.

Example 16. In Example 13, max γ = −1 for the flows representing the traces w2,w3
and max γ = 0 for those of the traces w1,w4, that will be part of the solution and are
indeed in weak agreement. Consequently, H⊗C admits weak agreement.

We define now the weakly liable participants: those who perform the first transition
t of a run such that after t it is not possible any more to obtain a trace in W, i.e. leading
to traces w ∈L (A)\W that can not be extended to ww′ ∈L (A)∩W.
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Definition 16. Let A be a CA and let w = w1~aw2 such that w ∈L (A)\W,∀w′.ww′ 6∈
L (A)∩W,∀w3.w1~aw3 6∈L (A)∩W and ∃w4.w1w4 ∈L (A)∩W. The participants
Πi(A) such that~ai 6= � are weakly liable and are denoted with i ∈WLiable(A ,w1~a).

Let WLiable(A) = {i | ∃w such that i ∈WLiable(A ,w)} be the set of all potentially
weakly liable participants in A .

For computing the set WLiable(A) we optimize a network flow problem for a transi-
tion t to check if there exists a trace w in which t reveals some weakly liable participants.
By solving this problem for all transitions we obtain the set WLiable(A).

Theorem 6. The participant Πi(A) of a CA A is weakly liable if and only if there exists
a transition t = (~qs,~a,~qt),~ai 6= �, and γt < 0, where

γt = min { f (~x) |~x ∈ F~q0,~qs , ~y ∈ F~qs,~q f , ∀i ∈ Il . ∑
t j∈T

ai
t j
(xt j + yt j)≥ 0}

f (~x) = max {γ |~u ∈ F~qt ,~q f , ∀i ∈ Il . ∑
t j∈T

ai
t j
(xt j +ut j)+ai

t ≥ γ,γ ∈R}

Intuitively, the flow defined above is split into three parts: the flow ~x goes from ~q0
to~qs, the flow~y goes from ~qs to ~q f , and the flow~u goes from ~qt to ~q f .

The function f takes in input the flow ~x and selects a flow ~u such that by concate-
nating~x and ~u through t we obtain a trace w, where the least difference between offers
and requests is maximized for an action in w. Using the same argument of Theorem 5,
if the value computed is negative, then there not exists a flow ~u that composed with ~x
selects traces in weak agreement.

Finally γt yields the minimal result of f (~x), provided that there exists a flow~y, that
combined with~x represents only traces in weak agreement. If γt < 0 then the transition t
identifies some weakly liable participants. Indeed the flow~x represents the traces w such
that (1) ∃w1, represented by ~y, with ww1 ∈L (A)∩W and (2) ∀w2, represented by ~u,
with w~aw2 ∈L (A)\W. Note that if a flow~x reveals some weakly liable participants,
the minimization carried on by γt guarantees that the relevant transition t is found.

Example 17. In Figure 5 (right), the transitions (~q2,(�,c), ~q5),(~q8,(�,c),~q9) reveal the
participant 2 weakly liable. Indeed from ~q2 the trace (r,r)(�,b) can be extended to one
in weak agreement, while (r,r)(�,b)(�,c) cannot. Also the trace (r,r)(t,�)(b,b) can
be extended to one in weak agreement while (r,r)(t,�)(b,b)(�,c) cannot.

For the transition (~q2,(�,c), ~q5) we have the trace (r,r)(�,b) for the flow ~x and
(t, t)(b,�)(e,e) for the flow~y, and we have ∀i ∈ Il .∑t∈T ai

t(xt + yt)≥ 0. Note that if we
select as flow~y the trace (�,c)(t,�)(b,�)(e,e) then the constraints ∀i∈ Il .∑t j∈T ai

t j
(xt j +

yt j) ≥ 0 are not satisfied for the action a4 = c. For the flow ~u the only possible trace is
(t,�)(b,�)(e,e), and max γ =−1 = γ(~q2,(�,c),~q5) since ∑t j∈T a4

t j
(xt j +ut j)+(−1) =−1.

For the transition (~q8,(�,c),~q9) the flow~x selects the trace (r,r)(t,�)(b,b), the flow
~y selects the trace (�, t)(e,e), since the other possible trace, that is (�,c)(e,e), does not
respect the constraints for the action a4. Finally, for the flow ~u we have the trace (e,e),
and as the previous case max γ =−1 = γ(~q8,(�,c),~q9).
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5 Conclusions and related work

We have introduced an original approach to contract composition for services. In our
proposal contract composition is handled formally by taking advantage of the novel
class of Contract Automata and of their compositional operators. The algebra of Con-
tract Automata allows one to compose services according to two different notions of
orchestrations: one when a participant joins an existing orchestration without a global
reconfiguration, and the other when a global adaptive re-orchestration is required. We
have defined notions that illustrate when a composition of contracts enjoys interesting
properties, namely agreement and safety, both in the case when requests are satisfied by
offers synchronously and asynchronously. Furthermore, a notion of liability has been
put forward. A liable participant is the service leading the contract composition into
a failing state. Key results of the paper prove the correctness of our approach by tak-
ing advantage of optimization techniques borrowed from Operational Research. Using
them, we efficiently find the optimal solutions of the flow in the network automatically
derived from contract automata. An interesting topic to investigate concerns whether
and how our results and techniques can be used to define choreographies of services
and their properties, in particular liability.

A main advantage of our framework is that it supports development of automatic
verification tools for checking and verifying properties of contract composition. The
formal treatment of contract composition in terms of optimal solutions of network flows
paves the way of exploiting efficient optimization algorithms. We plan to develop such
verification tools.

Related work The problem of formalizing contracts for service oriented computing,
specifying and verifying the properties of a good composition received a lot of atten-
tion. In [14, 1] behavioural contracts are expressed via suitable process algebras, where
the interactions between services are modelled via I/O actions. Two different choice op-
erators, namely internal and external, describe how two services interact. The internal
choice requires the other party to be able to synchronize with all the possible branches.
This approach is extended to a multi party version by exploiting the π-calculus in [15].
The above papers focus on formalising the notion of progress of interactions. In our
model, the internal choice is represented as a branching of requests. Also, we consider
stronger properties than theirs: with agreement/weak agreement we require that all the
requests of the contracts are satisfied, while for the property of progress it suffices that
a subset of contracts meets their requests.

An extension of Intuitionistic Logic called Propositional Contract Logic (PCL) [7]
has been proposed for modelling contracts with circular offers/requests. A new operator
called contractual implication is introduced for dealing with actions taken on credit, if
in the future the obligations will be honoured. Our notion of weak agreement is quite
similar, and we also have a decision procedure to check if a contract automaton admits
weak agreement.

Processes and contracts are two separate entities in [6], unlike ours. A process can
fulfil its duty by obeying its contract or it behaves dishonestly and becomes culpable
— and become honest again by performing later on the prescribed actions. We also do
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not assume participants to be honest, and our notion of liability is slightly different. It
is inspired by Control Theory [12] and expressed in language-theoretic terms.

Session types are studied, among others, in [13, 20] where global types represent
a formal specification of a choreography of services in terms of their interactions. The
projection of a safe global type to its components yields a safe local type, which is a
term of a process algebra similar to [14]. From given safe local types, a choreography
is synthesized, as a safe global type in [22]. In [16] local types are proved to correspond
to communicating machines (CM) [11], that are finite state automata similar to ours.
The main difference between the two is that CM interact through FIFO buffers, hence
a participant can receive an input only if it was previously enqueued, while CA can
offer/request on credit. However, under mild conditions, CA and CM can be proved
equivalent [10], so establishing a first bridge between orchestration and choreography.

Acknowledgements We are indebted with Giancarlo Bigi and Emilio Tuosto for many
enlightening discussions.
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