
Tests for establishing security properties

Vincent Cheval1,2, Stéphanie Delaune3, and Mark Ryan1

1 LORIA, CNRS & Inria Nancy - Grand Est
2 School of Computer Science, University of Birmingham

3 LSV, CNRS & ENS Cachan

Abstract. Ensuring strong security properties in some cases requires
participants to carry out tests during the execution of a protocol. A clas-
sical example is electronic voting: participants are required to verify the
presence of their ballots on a bulletin board, and to verify the compu-
tation of the election outcome. The notion of certificate transparency is
another example, in which participants in the protocol are required to
perform tests to verify the integrity of a certificate log.
We present a framework for modelling systems with such ‘testable prop-
erties’, using the applied pi calculus. We model the tests that are made by
participants in order to obtain the security properties. Underlying our
work is an attacker model called “malicious but cautious”, which lies
in between the Dolev-Yao model and the “honest but curious” model.
The malicious-but-cautious model is appropriate for cloud computing
providers that are potentially malicious but are assumed to be cautious
about launching attacks that might cause user tests to fail.

1 Introduction

Security protocols are short distributed programs designed to achieve a security
goal, such as authentication or secure messaging. In an ideal situation, the se-
curity goal is guaranteed to participants provided they adhere to the protocol.
Sometimes, however, it is not possible to devise a protocol which is certain to
achieve the goal; instead, the protocol guarantees that, if the goal fails, then the
participants have a means to discover that fact.

Electronic voting protocols are such an example. In voting protocols, the
participants are voters, and it is assumed that the election authorities and the
network and other infrastructure is controlled by the attacker. Under those as-
sumptions, there is no protocol which guarantees that the authorities declare the
correct election outcome. Therefore, protocols aim for a weaker property, namely,
if the election authorities declare an incorrect outcome then the participants can
discover the fact. More precisely, the protocol outputs certain data, and the par-
ticipants have a set of tests they perform on the data, and if the tests return
a positive result then the declared outcome is guaranteed to be correct [11], or
correct with high probability [5]. One can apply this idea to the incoercibility
property of voting systems: in Caveat Coercitor, voters can perform a test to
determine if certain kinds of coercion have taken place [10]. Bitcoin [14] is also



2 Vincent Cheval, Stéphanie Delaune, and Mark Ryan

an example: a Bitcoin user being offered a bitcoin can be sure that it has not
already been spent only by performing tests on the public log of spent bitcoins.

In this paper, we propose a model and a framework to analyse protocols
where partipants run tests on output data in order to determine if the expected
properties hold. We call such properties testable properties. We elaborate two
case studies. The first one is about certificate transparency, which is a proto-
col designed to provide greater evidence about the trustworthiness of public-key
certificates [12]. Certificate transparency relies on certificate authorities main-
taining a public log, and on client browsers performing tests on the log. The
desired security property is expected to hold if the tests are positive. The sec-
ond case study is about the French electronic passport, which has been shown
not to satisfy expected privacy properties in some circumstances [3]. Although
the French passport user can’t guarantee that her privacy is preserved, she can
perform a test to detect if her privacy may have been violated. If the test is
negative, then the desired privacy property holds.

Instead of thinking that the protocols we consider provide testable properties
(that is, properties that hold conditionally on certain run-time tests), one may
consider that the original properties hold, but in the context of a weaker attacker
that is not willing to take actions that can be detected by the tests. This view
corresponds to situations in which the “attacker” is actually a service provider;
in voting, it is the election authority, and in certificate transparency, it is the
network provider. Such service providers have an incentive to give good service,
and therefore traditional Dolev-Yao attacker model is too strong for them. To
cope with this issue, an alternative model of an attacker has been considered in
the literature: honest-but-curious. Roughly, an honest-but-curious provider will
follow the protocol but he will also try to derive some information from the
messages he learned during the execution. However, this model is too weak for
our examples; there is simply no reason to suppose that the service provider
will not engage in active attacks if he can do so undetectably. We adopt the
term “malicious-but-cautious”; the service provider is assumed to be malicious
if he can get away with it, but cautious in not leaving any verifiable evidence
of its misbehaviour. This attacker model is related to the covert adversary [1]
and active security adversary [8] introduced in the setting of secure multiparty
computation. Malicious-but-cautious attackers are weaker than the all-powerful
Dolev-Yao attackers, but stronger than the honest-but-curious attackers that
confine themselves to passive attacks.

Our contributions. We develop a model and framework based on the applied pi
calculus to analyse security protocols that rely on participants carrying out tests.
Our model includes new primitives to allow participants to record information
which will later be inputs to the tests. We specify a language for formulating the
tests that are performed by participants. We illustrate our framework with two
case studies. One of the case studies, called certificate transparency, is a new
protocol which has not yet been studied by the academic community. We give a
model and formalisation for the first time.



Tests for establishing security properties 3

2 Model for security protocols

In this section, we introduce the cryptographic process calculus that we will
use for describing protocols. This calculus is close to the applied pi calculus
as defined in [2]. However, in order to model tests performed on logs after an
execution, we add a special construct (namely rec) to allow participants of a
protocol to record the information that will be used for that purpose.

2.1 Messages

A protocol consists of some agents communicating on a network. The messages
sent by the agents are modelled using an abstract term algebra. For this, we
assume an infinite set N of names which are used for representing keys, nonces,
channels, and also public data like agent names. We also consider an infinite set X
of variables, and a signature F consisting of a finite set of function symbols.

Terms are defined as names, variables, and function symbols applied to other
terms. Let N ⊆ N , X ⊆ X and F ⊆ F . The set of terms built from N and X
by applying function symbols from F is denoted T (F,X ∪ N). We write fv(u)
(resp. fn(u)) for the set of variables (resp. names) occurring in a term u. A term
is closed if it does not contain any variable.

To model algebraic properties of cryptographic primitives, we define an equa-

tional theory by a finite set E of equations u = v with u, v ∈ T (F ,X ), i.e., u
and v do not contain names. We define =E to be the smallest equivalence rela-
tion on terms, that contains E and that is closed under application of function
symbols and substitutions of terms for variables.

Example 1. A typical signature that can be used to model security protocols
that rely on signature, asymmetric encryption, and list is Fsign where:

Fsign = {sign, getmsg, vk, aenc, adec, pk, 〈 〉, proj1, proj2, h, ::, head, tail, ⊥}.

The function symbols sign, getmsg, and vk are used to represent signatures,
whereas aenc, adec, and pk are used to model asymmetric encryption. We con-
sider hashes (of arity 2), pairs and operators to manipulate lists. Then, we con-
sider the equational theory Esign, defined by the following equations (i ∈ {1, 2}):

getmsg(sign(x, y), vk(y)) = x proj1(〈x1, x2〉) = x1 head(x::y) = x
adec(aenc(x, pk(y)), y) = x proj2(〈x1, x2〉) = x2 tail(x::y) = y

Many interesting security properties, in particular privacy-type properties
(e.g. in [3,4,9]) are formalised relying on the notion of static equivalence that
compares frames. A frame is a sequence of the form ν E .[w1 ⊲ u1, . . . , wn ⊲ un]
where E is a finite set of restricted names (intuively the fresh ones), and the re-
maining part can be seen as a substitution with domain dom(ϕ) = {w1, . . . , wn}.
The variables wi enable us to refer to ground terms ui. We denote by =α the
relation between frames that corresponds to α-renaming of bound names. Two
frames are equivalent when the attacker cannot detect the difference between
the two situations they represent, that is, his ability to distinguish whether two
recipes M and N produce the same term does not depend on the frame.



4 Vincent Cheval, Stéphanie Delaune, and Mark Ryan

Definition 1. Let ϕ be a frame, and M,N ∈ T (F ,N ∪ X ). We say that M and

N are equal in the frame ϕ, and write (M = N)ϕ, if there exists E such that

ϕ =α new E .σ, (fn(M) ∪ fn(N)) ∩ E = ∅, and Mσ =E Nσ.
We say that two frames ϕ and ϕ′ are statically equivalent, and write ϕ ∼ ϕ′

when dom(ϕ) = dom(ϕ′); and for all M,N ∈ T (F ,N ∪ X ), we have that:

(M = N)ϕ ⇔ (M = N)ϕ′.

Example 2. Relying on the signature and equational theory introduced in Ex-
ample 1, let ϕv = new{sk}.[w1 ⊲ aenc(v, pk(sk))]. We have that ϕyes ∼ ϕno .
Intuitively, the equivalence holds since the attacker is not able to reconstruct
the ciphertext or to open it. However, we have that ϕ′

yes 6∼ ϕ′
no where:

ϕ′
v = new{sk}.[w1 ⊲ aenc(v, pk(sk)), w2 ⊲ pk(sk)].

2.2 Processes

Our processes are as in the applied pi calculus [2], except for the record message
rec(x, v).P construct discussed below. Moreover, the applied pi calculus relies
extensively on the renaming of bound variables and names. This is practical
in presence of replication (! construct) but becomes a problem when one needs
to refer to some particular variable and/or name after a protocol execution. In
order to have a reliable way to talk about variables and names, we decorate each
bang operator with an index, and we introduce the notion of pattern.

u := x[i1, . . . , ik] variable pattern
| n[i1, . . . , ik] name pattern
| f(u1, . . . , un) function symbol application

where each ij is either an index variable or an integer. The index variables will
be instantiated each time the bang operator carrying this index will be unfolded.
Using this notation, the set N of names (resp. X of variables) introduced in the
previous section is made up of element of the form n[i1, . . . , ik] (resp. x[i1, . . . , ik])
with i1, . . . , ik ∈ N. Note that a term is a pattern. We sometimes write n (resp. x)
instead of n[i1, . . . , ik] (resp. x[i1, . . . , ik]). We also write n instead of n[].

The grammar of our processes is as follows:

P,Q := 0 | (P | Q) | new n.P | !i≥j P | if u = v then P else Q

| in(u, x).P | out(u, v).P | rec(z, v).P

where i is an index variable, j an integer, u, v are patterns, and n (resp. x) is a
name (resp. variable) pattern. For sake of clarity, we simply write !i1 instead of
!i1≥1 , and we omit “ else Q” when Q = 0. We also use let x = u in P as syntactic
sugar for P{x 7→ u}, i.e., P in which occurrence of x has been replaced by u.

Example 3. The process !new n1.!new n2.out(c, 〈n1, n2〉) in applied pi calculus
becomes !i1 new n1[i1].!

i2 new n2[i1, i2].out(c[], 〈n1[i1], n2[i1, i2]〉).

The applied pi calculus is very convenient to model memoryless protocols.
However, in this calculus, it is very difficult to express protocols that rely on
logs. To address this issue, we add the construction rec(z, v) to represent the



Tests for establishing security properties 5

record of the term v in the log through the variable z. The record message
construct rec(z, v).P introduces the possibility to log special entries. Intuitively,
this construct will be used to allow a participant to record some information
which he may later use to perform some tests.

As usual, names and variables have scopes that are delimited by restrictions,
inputs, and rec contructs. We respectively write fv(P ), bv(P ), fn(P ) and bn(P )
for the sets of free variables pattern, bound variables pattern, free names pattern,
and bound names pattern of a process P . We assume that processes are name

pattern and variable pattern distinct, i.e.,

– bn(P ) ∩ fn(P ) = bv(P ) ∩ fv(P ) = ∅, and
– any name pattern and variable pattern is at most bound once.

Moreover, a variable that is bound by a rec construct can only occur once in the
process, and each bang operator is annotated with a distinct index variable.

Example 4. The process PCA := !i1≥1 in(c, x[i1]). rec(zlog[i1], x[i1]) models an
agent, e.g., a certificate authority, who logs all the messages that he receives on
channel c. We have fn(PCA) = {c}, bv(PCA) = {x[i1], zlog[i1]}, and fv(PCA) = ∅.

2.3 Semantics

The semantics is given by a relation defined over configurations.

Definition 2. A configuration is a tuple (E ;P;ΦA;Φlog) where:

– E is a set of names;

– P is a multiset of processes such that fv(P ) = ∅ for any P ∈ P; and

– ΦA and Φlog are sequences of the form [w1 ⊲ u1, . . . , wn ⊲ un] where

u1, . . . , un are ground terms and w1, . . . , wn are variables.

The set E represents the names that are unknown by the attacker; ΦA rep-
resents the messages that have been sent on some public channels, and that are
known by the attacker; whereas Φlog represents the messages that have been
stored (e.g., in a log file) by some participants during the execution of the pro-
tocol. Such a sequence Φ can be seen as a substitution and we denote dom(Φ)
its domain. Note that the two sequences of messages may have some messages in
common. To model a message that is stored in the log and given to the attacker,
we have to use both the rec and the out constructs in the process. Configurations
are denoted A, B, etc, and we write fn(A) (resp. bn(A)) the set of free (resp.
bound) names of a configuration A. Given a process P , sometimes we simply
write P instead of (∅; {P}; ∅; ∅).

We now define the relation
ℓ
−→ between configurations where ℓ is either an

input, an output or a silent action (see below). Note that the sent messages
are exclusively stored in the frame ΦA and not in the labels (the outputs are
made by “reference”), whereas the messages stored in the logs (through the rec

construct) are stored in Φlog and are not visible by the attacker (silent action).



6 Vincent Cheval, Stéphanie Delaune, and Mark Ryan

Then

(E ; {if u = v then P else Q} ⊎ P;ΦA;Φlog)
τ

−−→ (E ; {P} ⊎ P;ΦA;Φlog) if u =E v

Else

(E ; {if u = v then P else Q} ⊎ P;ΦA;Φlog)
τ

−−→ (E ; {Q} ⊎ P;ΦA;Φlog) if u 6=E v

Comm

(E ; {in(u, x).P ; out(v, u′).Q} ⊎ P;ΦA;Φlog)
τ

−−→ (E ; {P{u
′

/x};Q} ⊎ P;ΦA;Φlog)
if u =E v

Out

(E ; {out(u, v).P} ⊎ P;ΦA;Φlog)
νw.out(M,w)
−−−−−−−−→ (E ; {P} ⊎ P;ΦA ⊎ [w ⊲ v];Φlog)

if MΦA =E u, fn(M) ∩ E = ∅,
fv(M) ⊆ dom(ΦA) and w is a fresh variable

Input

(E ; {in(u, x).P} ⊎ P;ΦA;Φlog)
in(M,N)

−−−−−−−→ (E ; {P{v/x}} ⊎ P;ΦA;Φlog)
if MΦA =E u, fn(M) ∩ E = ∅, fv(M) ⊆ dom(ΦA)
if NΦA =E v, fn(N) ∩ E = ∅, fv(N) ⊆ dom(ΦA)

Record

(E ; {rec(z, u).P} ⊎ P;ΦA;Φlog)
τ

−−−→ (E ; {P} ⊎ P;ΦA;Φlog ⊎ [z ⊲ u])

Repl (E ; {!i≥j P} ⊎ P;ΦA;Φlog)
τ

−−→ (E ; {!i≥j+1 P ;P{j/i}} ⊎ P;ΦA;Φlog)

New (E ; {new n[i1, ..., ik].P} ⊎ P;ΦA;Φlog)
τ

−−→ (E ∪ {n[i1, ..., ik]}; {P} ⊎ P;ΦA;Φlog)

Par (E ; {P | Q} ⊎ P;ΦA;Φlog)
τ

−−→ (E ; {P ;Q} ⊎ P;ΦA;Φlog)

Then, the relation
ℓ1...ℓn−−−−→ between configurations is defined in the usual way.

Given a sequence tr of observable actions tr, we write A
tr
⇒ B when there exists

a sequence ℓ1, . . . , ℓn such that A
ℓ1...ℓn−−−−→ B and tr is obtained from ℓ1 . . . ℓn by

erasing all occurrences of τ .

2.4 Tests performed by users

As previously mentioned, we consider that participants may store some messages
in their own private log during the execution of the protocol, and can then verify
some properties on their log. For sake of simplicity, we model one global log
using Φlog, and we assume that participants only access to the part of the log
that is public, and to the values stored in their private log.

We consider formulas built upon elementary formulas, mainly equations and
disequations between terms, of the form M =? N and M 6=? N , and that use
classical connectives (e.g., ∧, ∨,⇒, ∃, . . . ). In particular, we consider that indices
can be existentially and universally quantified over N. Given a log Φlog, we write:

– Φlog � M =? N when fv(M,N) ⊆ dom(Φlog) and MΦlog =E NΦlog.

– Φlog � M 6=? N when fv(M,N) ⊆ dom(Φlog) and MΦlog 6=E NΦlog.

We consider that this grammar of logical formulas on the log Φlog is powerful
enough to express most of the properties that could be desired to be verified by
participants of a protocol. One might still want to extend this grammar given
the needs of specific protocols, but so far, we do not have examples of protocols
that could not be expressed in our model.



Tests for establishing security properties 7

Example 5. Consider φ = ∀i ∈ N.∀j ∈ N.
(

zstart[i, j] =
? true ⇒ zend[i, j] 6=

? error
)

.
This formula expresses that for every pair of integers (i, j) that corresponds to a
session that has been launched, i.e., zstart[i, j] is in the domain of the log and is
equal to the constant true, then the session has ended without any error, i.e., the
variable zend[i, j] is in the domain too and is different from the constant error.

Given a configuration A and a formula φ, we define the set of traces of A
that satisfy φ as follows:

trace(A, φ) = {(tr, new E .ΦA) | A
tr
⇒ (E ;P;ΦA;Φlog) and Φlog |= φ}

This is in line with the definition of trace proposed in e.g., [7] when φ = true.

3 Certificate transparency protocol

To ensure the authenticity of the public keys used in cryptographic protocols,
the X.509 public key infrastructure (X.509-PKI) introduced the notion of certifi-
cate authorities. A public key is considered as authentic if a certificate authority
is able to provide a valid certificate for such public key. However, recent at-
tacks [15,16] showed the weakness of this public key infrastructure.

Indeed, by blindly trusting certificate authorities, one allows a malicious cer-
tificate authority to provide fake certificates to any client.

The Certificate Transparency (CT) protocol, proposed by Laurie, Kasper and
Langley [12], aims to remove the requirement to trust the certificate authorities
by making certificate management transparent. The main idea behind the proto-
col is not to prevent a certificate authority to misbehave but to be able to detect
when a certificate authority did misbehave. In this section, we first describe the
protocol and the tests that are supposed to be satisfied by the logs in order to
ensure the security properties that the protocol is supposed to achieve.

3.1 Description of the protocol

The protocol relies on public append-only logs in which certificate authorities
are compelled to write information that will allow a user or a monitor to verify
that they behave properly. In particular, certificate authorities will be required
to provide proofs to anyone who desires to verify the content of the log. For
this extent, the CT protocol relies on Merkle trees [13] as structure for providing
proofs. Intuitively, a Merkle tree is a binary tree whose nodes are labeled by the
hash of the labels of his children, and where the leaves are labeled with the data
of the logs, i.e., certificates in this case. Merkle trees enable one to efficiently
prove presence of data in the log, and to prove that the log is maintained append
only. These proofs can also be done with a simpler data structure, namely, hash
chains, although the proofs are less efficient in that case. Since Merkle trees and
hash chains are equivalent from the point of view of the proofs (differing only in
terms of efficiency), we choose, for sake of simplicity, to model hash chains.

Example 6. Consider certificates c1, c2, and c3. A log file composed of c1, then c2,
followed by c3 will be accompanied with the hash chain h(c3, h(c2, h(c1,⊥))).



8 Vincent Cheval, Stéphanie Delaune, and Mark Ryan

Typically, this hash whose purpose is to represent the current state of a log
will be displayed and given to any participant accessing the log. This will allow
him to verify that a certificate is indeed in a log (called proof of presence), or
that the current log is an extension of a previous one (called proof of extension).

Proof of presence and proof of extension. The proof of presence of a certificate c
inside a hash chain hlog can be done by giving the hash hinter representing the
state of the log before the certificate c was added together with the list [c1, . . . , cn]
of certificates corresponding to those that have been added in the log after the
certificate c. With these elements, it is now easy to reconstruct hlog from hinter.
This ensures the presence of c (and also of each ci) in the hash hlog. More formally,
we consider a function symbol checklog that satisfies the following equations:

checklog(z, z,⊥) = true checklog(z, z′, x::y) = checklog(z, h(x, z′), y)

Intuitively, checklog(hlog, hinter, [c, c1, . . . , cn]) is true when hlog can be derived
from hinter by adding c, c1, . . . , cn in this order.

In this setting, a proof of extension is similar to a proof of presence. Indeed,
proving that hlog is an extension of hinter can be done by giving the certificates
that allow one to reconstruct hlog from hinter.

The request protocol described below is used when Alice wants to obtain (through
a certificate authority) the public key of Bob.

Alice

vk(skCA), cache

Certificate Authority

skCA, vk(skCA)

〈req, bob〉request for

Bob’s certificate sign(〈bob, pk(skbob)〉, skCA)
signed certificate

sign(〈hlog, hinter, ℓ〉, skCA) signed proof

of presence
Verify signatures with vk(skCA)
ℓ′ ← 〈bob, pk(skbob)〉 :: ℓ
Check whether checklog(hlog, hinter, ℓ

′) = true

cacherequest for

proof of extension sign(ℓext, skCA) signed proof

of extension

Verify signature with vk(skCA)
Check whether checklog(hlog, cache, ℓext) = true

cache := hlog



Tests for establishing security properties 9

We assume that Alice has a cell denoted cache that allows her to store some
information. In particular, this cell will be used to store the previous hash value
she received from the certificate authority. Note that even though cells are not
part of our calculus, it is possible to model them using private channels. However,
for sake of clarity, we will keep the notation of cells.

Alice first sends a request to the certificate authority to ask for the public key
of Bob. The certificate authority answers with the certificate of Bob, composed
in fact with Bob’s name and public key, signed with his own private signing key,
i.e., sign(〈bob, pk(skbob)〉, skCA). Moreover, the certificate authority sends several
elements, signed with its private key, that will allow the participant to be sure
that the certificate for Bob’s public key is indeed in the hash chain hlog (proof of
presence). After performing the checks, Alice will ask the certificate authority the
elements to be sure that the current hash chain, i.e., hlog, is indeed an extension
of the previous hash that Alice has stored in cache (proof of extension). If so,
she stores the updated value of the hash chain in her cell cache.

The registering protocol is used when Bob wants to register his public key to
the certificate authority. Actually, this protocol is very similar to the previous
protocol between Alice and the certificate authority. Bob will send first a request
to register his public key by sending the message 〈reg, bob, pk(skbob)〉, and then
he will perform the tests as in the request protocol (messages 3, 4, and 5).

The verification process. The purpose of the public logs is to allow anyone to
check the log and so to detect any possible misbehaviour of the certificate author-
ity. In addition to the checks done by the users when requesting and registering
a public key, some further checks have to be performed.

Check 1. To prevent a certificate authority of binding false public keys to a
participant, each participant has to ensure that all the keys associated to him
in the log are indeed public keys for which he asked a registration.

Check 2. It is important for the security of the protocol to consider that the
users can obtain the current hash value of the log from a different source than
the certificate authority itself. Otherwise, the authority could provide different
values of the log to different users without them being able to detect anything.
The goal here is to ensure that all users have the same (up to some extension)
hash value of the public log. Google is exploring the possibility of implementing
a gossip protocol to allow users to directly share information. One could also
imagine the existence of servers mirroring the public logs as alternative sources
for the hash value. In this paper, we abstract ourselves from the implementation
and we simply propose an abstract test to ensure that users have the same hash
value for the public log (up to some extension).

3.2 The protocol in our calculus

The modelling of the protocol follows the informal description given in Sec-
tion 3.1. We only present some elements in this section. Note that, in our model,
the certificate authority is not assumed to be trustworthy, and thus we do not



10 Vincent Cheval, Stéphanie Delaune, and Mark Ryan

really need to model it. We simply have to model the fact that the authority has
to write information on a public log. Thus, the process modelling the protocol
CT is made of three components:

PCT = !r in(c, x).rec(zlog[r], x) | !i (!j new skagent[i, j].PReg[i, j] | !i
′

!k PReq[i, i
′, k])

The process in(c, x).rec(zlog[r], x) corresponds to the authority writing on a
public log represented by the variables zlog[r]. The process PReg[i, j], partially
described below, models a session during which the agent agent[i] registers a
new public key pk(skagent[i, j]). Note that a given agent agent[i] may register
several public keys. A variable pattern, denoted zlogregagent, is used to store the
hash chains of the public log that are sent by the certificate authority.

PReg[i, j] =















out(c, 〈reg, agent[i], pk(skagent[i, j])〉). (* register and log

his own public key *)rec(pkagent[i, j], pk(skagent[i, j])).

. . .
rec(zlogregagent[i, j], hlog).

The process PReq[i, i
′, k] models a session during which the agent agent[i] re-

quests the public key of another agent agent[i′]. Such a request may happen
several times. This is modeled using the parameter k. A variable pattern, de-
noted zlogreqagent, is used to store the hash chains of the public log that is sent by
the certificate authority. The last line is used to model that a fresh secret is sent
on the public channel c using the Bob’s public key (the one obtained through
the certificate authority).

PReq[i, i
′, k] =



















out(c, 〈req, agent[i′]〉). (* request agent[i′]’s certificate *)

. . .
rec(zlogreqagent[i, i

′, k], hlog).

new s[i, i′, k]. out(c, aenc(s[i, i′, k], pkb))

We now detail the tests performed by users. First, each participant agent[i]
has to check that any public keys bound to his name are indeed public keys for
which he asked a registration. Intuitively, φkeys(i) holds if each key pertaining
to agent[i] in the CT log is indeed one of agent[i]’s keys.

φkeys(i) = ∀r ∈ N.

{

proj1(zlog[r]) =
? agent[i]

⇒ (∃j ∈ N. proj2(zlog[r]) =
? pk(skagent[i, j]))

Next, participants must perform a test to ensure that they are tracking the
same version of the public log as each other. We encode this test by specifying
that the agent checks that each hash value it received during the registration
and request protocols is indeed the value of some edition of the log (up to some
extension). Thus, we define φtrack as follows:

φtrack (i) = ∀j ∈ N. ∃r ∈ N.
(

zlogregagent[i, j] =
? h(zlog[r], h(. . . , h(zlog[1],⊥)))

∧ ∀i′, k ∈ N. ∃r ∈ N.
(

zlogreqagent[i, i
′, k] =? h(zlog[r], h(. . . , h(zlog[1],⊥)))

For example, if both formulas φtrack(1) and φtrack(2) are true, then it means
that the agents agent[1] and agent[2] share the same hash values for the public
log (up to some extension).



Tests for establishing security properties 11

3.3 Security properties: secrecy

The CT protocol was developed to improve the management of public keys. The
main security property that this protocol is supposed to ensure is the secrecy of
any message that a user could encrypt with the requested public key. This can
be expressed as usual as the non-deducibility of the given term for any scenario.
However, the usual secrecy property that one can find in the literature is in fact
not satisfied by the protocol.

Consider for example that Alice wants to talk to Bob. When Alice asks the
certificate for Bob’s public key, the attacker can always adds a fake public key in
the log associated to Bob and sends this public key to Alice. From the point of
view of Alice, the protocol will succeed flawlessly. Hence, Alice will encrypt her
secret message with the fake public key created by the certificate authority. The
secrecy of the message will be broken. As previously mentioned, the CT protocol
does not prevent such man-in-the-middle attack but it will leave some traces
that this attack occurred. Thus, we have to adapt the definition of secrecy to
include additional tests that the participants will apply afterwards.

Definition 3 (φ-testable secrecy). The CT protocol satisfies φ-testable se-

crecy of s if for all i0, i
′
0, j0 ∈ N, for all (tr, new E .Φ) ∈ trace(PCT, φ(i0, i

′
0, j0)),

there is no M such that fn(M)∩E = ∅, fv(M) ⊆ dom(Φ) and MΦ =E s[i0, j0, i
′
0].

Intuitively, a protocol satisfies φ-testable secrecy as soon as the traces of
the protocol under study that satisfy the formula φ do not reveal the secret s.
All traces that do not satisfy φ are discarded. Note that when considering the
formula φ0 = true, the φ0-testable secrecy is in fact the usual secrecy property
of the literature (no trace is discarded). We have seen that the PCT protocol
does not satisfy the secrecy property in this case. We may consider a formula φ1

which represents the fact that everyone apply their own tests:

φ1( , , ) = ∀i ∈ N.
(

φkeys(i) ∧ φtrack (i)
)

Note that the trace corresponding to the previous attack does not satisfy this
test since Bob will see that the certificate authority added a fake certificate to
his name. Thus, this trace is discarded when checking the φ1-testable secrecy on
the CT protocol. We can actually state a more general security property that
requires only some checks by the participants who exchanged the secret. This is
the purpose of the following formula φ2:

φ2(i0, i
′
0, ) = φtrack (i0) ∧ φtrack (i

′
0) ∧ φkeys(i

′
0).

φtrack (i0)∧φtrack (i
′
0) models the fact that the participants agent[i0] and agent[i′0]

have to be synchronised, and φkeys(i
′
0) models the fact that agent[i′0] has to check

that only his keys are bound to his name in the public log. Thus the φ2-testable
secrecy ensures the secrecy of the secret sent by agent[i0] to agent[i′0] if the two
participants have done their tests. It also means that even if others participants
did not check their tests or even if the certificate authority misbehaved towards
other participants, the secret between agent[i0] and agent[i′0] is still secure.

These examples show the usefulness of different kinds of test. It still remains
to be formally demonstrated that the properties hold when the tests are true,
but that requires some tool support.



12 Vincent Cheval, Stéphanie Delaune, and Mark Ryan

4 The e-passport application

To illustrate the usefulness of our approach on the analysis of privacy-type prop-
erties, we consider the e-passport application, and we review the existing linkabil-
ity attack that exists on the French version of the BAC protocol [3]. In particular,
we will explain how the holder of such an e-passport who has some concerns with
his privacy, can at least detect if he has been attacked.

4.1 Protocol description

To describe and model this protocol, we consider the function symbols senc,
sdec, 〈 〉, proj1, proj2, mac, f1, f2, and the equations sdec(senc(x, y), y) = x,
proj1(〈x1, x2〉) = x1, and proj2(〈x1, x2〉) = x2 to take into account the algebraic
properties of these operators.

Passport Tag

ke, km

Reader

ke, km
challenge

new nP nP

new nR, kR
xenc← senc(〈nR, nP , kR〉, ke)
xmac← mac(xenc, km)

〈xenc, xmac〉

Verify mac, Verify nP , new kP
yenc← senc(〈nP , nR, kP 〉, ke)
ymac← mac(yenc, km)

〈yenc, ymac〉

Verify mac, Verify nR

ksenc ← f1(kP , kR)
ksmac ← f2(kP , kR)

ksenc ← f1(kP , kR)
ksmac ← f2(kP , kR)

The reader first asks for a challenge, and the passport answers to this request
by sending a fresh nonce nP . The reader will then encrypt nP together with a
fresh nonce of his own (nR) using the shared key ke, and mac everything with
the key km. The keys ke and km are derived from some information printed on
the passport, which has, in theory, been scanned before the wireless communi-
cation begins. At this point, the passport checks the mac, and then decrypts the
ciphertext to verify whether his own nonce nP is indeed inside. The keys ksenc
and ksmac are then derived from the keys kR and kP that have been exchanged.

So far, this description holds for the English and the French version of this
protocol. However, the ICAO does not specify what kind of error messages the
passport should return when an operation fails. Actually, a French passport
responds to an incorrect MAC with the error code 6300, which means no in-
formation given. If the MAC is correct, and the passport went on to find that



Tests for establishing security properties 13

the nonce did not match then it responds with an error code 6A80, meaning
incorrect parameters. This actually leads to a real life attack on anyone carrying
a French e-passport [3].

Description of the attack. After listening to one session of the BAC protocol
between the targeted passport and an honest reader, the attacker in presence of
an unidentified passport, will be able to replay the message:

〈xenc,mac(xenc, km)〉 where xenc = senc(〈nR, nP , kR〉, ke).

The unidentified passport will answer with an error message. This message
will be either the error code 6300 or the error code 6A80. This code allows the
attacker to know whether the passport in presence is the targeted passport.

4.2 Security properties: unlinkability

The purpose of the BAC protocol is to establish a fresh session that will be used
to protect the personnal data before sending those information to the reader. A
typical scenario can be modeled using the process:

PBAC =!i new ke[i].new km[i].!j (PPass[i, j] | PReader[i, j])

The two replications model several passports lauching possibly several in-
stances of the protocol. Moreover, the process PReader[i, j] is used to model the
operations done by readers already sharing the private keys ke[i], km[i] of the
passport (e.g. through optical reading).

To formalize unlinkability, we annotate processes as it was done in [3]. In
particular, we label the actions of our processes to know e.g., whether two ac-
tions have been performed by the same passport, or in the same session. In our
framework, this can be done by annotating each visible action with a distinct
label parametrized with the index variables occurring in the replication above
this action.

Example 7. For a process !i out(c, ok).!j in(c, x[i, j]), the augmented process is

!i outℓ[i](c, u).!j inℓ
′[i,j](c, x[i, j]) where ℓ and ℓ′ are two different labels, i.e., con-

stants, parametrized with i and i, j respectively.

The semantics of our processes would also display these annotations. Now,
given such a sequence of annotated actions we can associate a sequence of actions
and a sequence of annotations. Given an annotated trace tr, we denote by act(tr)
the sequence of actions, and by ann(tr) the sequence of annotations. We will
denote P̃ the augmented process obtained from P .

Relying on these annotations, we can now define the notion of φ-testable
unlinkability.

Definition 4 (φ-testable unlinkability). We say that PBAC satisfies φ-testable
unlinkability if for all i0, j0, j

′
0 ∈ N, for all (tr, ϕ) ∈ trace(P̃BAC, φ(i0, j0, j

′
0)) with

ann(tr) = ℓ1[i1, j1]. . . . .ℓn[in, jn], for all k, r ∈ {1, . . . , n}, if ik = ir = i0, j0 = jk,
j′0 = jr and jk 6= jr then there exists (tr′, ϕ′) ∈ trace(P̃BAC, φ(i0, j0, j

′
0)) such that

ann(tr′) = ℓ′1[i
′
1, j

′
1]. . . . .ℓ

′
n[i

′
n, j

′
n] with act(tr) = act(tr′), i′k 6= i′r, and ϕ ∼ ϕ′.



14 Vincent Cheval, Stéphanie Delaune, and Mark Ryan

Assuming φ = true, this definition is in line with the original definition pro-
posed in [3], and not satisfied by the French version of the passport. Intuitively,
the previous definition indicates that for any trace of the protocol where pass-
ports can execute several sessions, if two actions are executed by the same pass-
port during two different sessions then there exists an other equivalent trace
where these two actions are executed by two different passports.

The main advantage of this definition is that it also allows us to state a
weaker form of unlinkability. We can express the unlinkability of a set of French
e-passports that do not emit the error Error6A80. For this, assuming the process
modelling the role of the passport has been modified to store in its log when it
starts and ends a session, and also the error code that it has emitted so far. In
other words, we assume here that each owner of a passport has a private log on
which he can write. One can assume for example the presence of a small device
that listens messages sent by the passport and writes messages on logs.

We can thus consider the following test:

φ1( , , ) = ∀i ∈ N.∀j ∈ N.(zstart[i, j] =
? true ⇒ zend[i, j] 6=

? Error6A80).

However, we may also be interested to state an unlinkability property w.r.t. to
a given passport i0 without saying anything on the other ones. This can be
achieved by considering the following test:

φ2(i0, , ) = ∀j ∈ N.(zstart[i0, j] =
? true ⇒ zend[i0, j] 6=

? Error6A80).

Note that the φ2-testable unlinkability ensures the non-tracability of a passport
as long as this particular passport never emitted Error6A80. However, we may
want to strengthen even more the security property. Indeed, requiring that a
passport never emit Error6A80 during all its sessions is quite strong. Actually, we
may say something about the unlinkability of two sessions of the same passport
instead of all sessions. To do so, we consider the following test:

φ3(i0, j0, j
′
0) = zend[i0, j0] 6=

? Error6A80 ∧ zend[i0, j
′
0] 6=

? Error6A80.

The φ3-testable unlinkability ensures that two sessions (here indexed by j0 and j′0)
of a given passport indexed i0 cannot be linked if they both did not emit the error
Error6A80. Amongst the other security properties, the φ3-testable unlinkability
is the strongest property that the French e-passport can satisfy.

5 Conclusion

Many kinds of cloud and online services involve providers which are not trust-
worthy, but also not fully malicious in the sense that they are willing to offer
evidence of their correct behaviour. Such providers could cheat, but doing so
would eventually be detected by their customers. We have presented a model
and framework to analyse such services, in which users carry out tests on data
that have been logged during the execution of the protocol. If these tests suc-
ceed, then security properties are assured. For that reason, we call them testable
properties.

Currently, no software tool exists that can automatically verify testable prop-
erties. Nevertheless, it should be possible to adapt some existing tools to analyse



Tests for establishing security properties 15

these kind of properties. In particular, among the tools which can check trace
equivalence for a bounded number of sessions, the APTE tool [6] can analyse pro-
tocols in presence of inequalities. Thus, this framework seems to be particularly
well-suited to being generalised to testable properties.

Acknowledgement. The authors acknowledge partial support from the EPSRC
projects Trustworthy Voting Systems and Analysing Security and Privacy Prop-

erties, and the project ProSecure ERC grant agreement n258865, as well as the
project JCJC VIP ANR-11-JS02-006.

References

1. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. Theory of Cryptography, 2007.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. 28th ACM Symp. on Principles of Programming Languages (POPL’01).

3. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proc. 23rd IEEE Computer Security
Foundations Symposium (CSF’10), 2010.

4. M. Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy for
RFID systems. In Proc. 23rd IEEE Computer Security Foundations Symposium
(CSF’10). IEEE Computer Society Press, 2010.

5. S. Bursuc, G. S. Grewal, and M. D. Ryan. Trivitas: Voters directly verifying votes.
In VOTE-ID, pages 190–207, 2011.

6. V. Cheval. APTE (Algorithm for Proving Trace Equivalence), 2013. http://

projects.lsv.ens-cachan.fr/APTE/.
7. V. Cheval, H. Comon-Lundh., and S. Delaune. Trace equivalence decision: Negative

tests and non-determinism. In Proc. 18th ACM Conference on Computer and
Communications Security (CCS’11), 2011.

8. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Prac-
tical covertly secure mpc for dishonest majority – or: Breaking the spdz lim-
its. In Proc. 18th European Symposium on Research in Computer Security (ES-
ORICS’13), pages 1–18. Springer, 2013.

9. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, (4):435–487, July 2008.

10. G. S. Grewal, M. D. Ryan, S. Bursuc, and P. Y. A. Ryan. Caveat coercitor:
Coercion-evidence in electronic voting. In IEEE Symposium on Security and Pri-
vacy, pages 367–381, 2013.

11. S. Kremer, M. Ryan, and B. Smyth. Election verifiability in electronic voting
protocols. In ESORICS, pages 389–404, 2010.

12. B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC 6962 (Ex-
perimental), 2013.

13. R. C. Merkle. A digital signature based on a conventional encryption function. In
CRYPTO, pages 369–378, 1987.

14. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
15. P. Roberts. Phony SSL certificates issued for Google, Ya-

hoo, Skype, others, March 2011. http://threatpost.com/

phony-ssl-certificates-issued-google-yahoo-skype-others-032311.
16. T. Sterling. Second firm warns of concern after Dutch hack, September 2011. http:

//news.yahoo.com/second-firm-warns-concern-dutch-hack-215940770.html.


