
A class of automata for the verification of
infinite, resource-allocating behaviours ? ??

Vincenzo Ciancia1 and Matteo Sammartino2

1 ISTI-CNR, Pisa
2 Dipartimento di Informatica, Università di Pisa, Pisa

Abstract. Process calculi for service-oriented computing often feature
generation of fresh resources. So-called nominal automata have been
studied both as semantic models for such calculi, and as acceptors of
languages of finite words over infinite alphabets. In this paper we investi-
gate nominal automata that accept infinite words. These automata are a
generalisation of deterministic Muller automata to the setting of nominal
sets. We prove decidability of complement, union, intersection, emptiness
and equivalence, and determinacy by ultimately periodic words. The key
to obtain such results is to use finite representations of the (otherwise
infinite-state) defined class of automata. The definition of such operations
enables model checking of process calculi featuring infinite behaviours,
and resource allocation, to be implemented using classical automata-
theoretic methods.

1 Introduction

This paper aims at contributing to the theory of formal verification of global
computing systems, by extending the theory of Muller automata to the case of
infinite alphabets, while retaining decidability. In this way, it is possible to adapt
the classical automata-theoretic approach to formal specification and verification
[2] to systems with resource generation capabilities, where the number of possible
resources is infinite, provided that these systems enjoy a finite memory property.

Transition structures, in the form of automata, are used to represent logic
formalisms interpreted over finite and infinite words, dating back to [3,4]. The
possibility of translating modal logic formulas to automata led to the devel-
opment of model checking. Systems that feature resource allocation (e.g. [5]),
typically in the form of name allocation, pose specific challenges. For instance,
they have ad-hoc notions of bisimulation, which cannot be captured by standard
set-theoretic models. Transition structures that correctly model name allocation
have been proposed in various forms, including coalgebras over presheaf cate-
gories [6,7,8,9,10], history-dependent automata [11], and automata over nominal
sets [12]. Equivalence of these models has been established both at the level

? Research partially funded by projects EU ASCENS (nr. 257414), EU QUANTICOL
(nr. 600708), IT MIUR CINA and PAR FAS 2007-2013 Regione Toscana TRACE-IT.

?? An extended version containing full proofs is available at [1]

of base categories [13,14,15] and of coalgebras [16]. More recently, the field of
nominal automata has essentially used the same structures, no longer as se-
mantic models, but rather as acceptors of languages of finite words (see e.g.,
[17,18,19,12]). In particular, the obtained languages are based on infinite alpha-
bets, but still enjoy finite memory (in fact, the well known register automata of
Francez and Kaminski can be regarded as nominal automata, see [12]).

The case of infinite words over nominal alphabets is more problematic, as
an infinite word over an infinite alphabet is generally not finitely supported.3

Consider a machine that reads any symbol from an infinite, countable alphabet,
and never stores it. Clearly, such a machine has finite (empty) memory. The set
of its traces is simply described as the set of all infinite words over the alphabet.
However, in the language we have various species of words. Some of them are
finitely supported, e.g. words that consist of the infinite repetition of a finite
word. Some others are not finitely supported, such as the word enumerating
all the symbols of the alphabet. Such words lay inherently out of the realm
of nominal sets. However, the existence of these words does not give infinite
memory to the language. More precisely, words without finite support can not
be “singled out” by a finite memory machine; if a machine accepts one of them,
then it will accept infinitely many others, including finitely supported words.

This work aims at translating the above intuitions into precise mathematical
terms, in order to define a class of languages made of infinite words over infinite
alphabets, enjoying finite-memory properties. We extend automata over nominal
sets to handle infinite words, by imposing a (Muller-style) acceptance condition
over the orbits (not the states!) of automata. By doing so, it turns out that our
languages not only are finite-memory, but they retain computational properties,
such as closure under boolean operations and decidability of emptiness (thus,
containment and equivalence), which we prove by providing finite representa-
tions, and effective constructions. As in the case of standard ω-automata, the
shift to infinite words requires these results to be proved from scratch, as it is not
possible to merely extend proofs from the finite words case. These results enable
automata-theoretic model checking to be performed on systems with infinite
resources, using traditional model-checking algorithms.

Furthermore, we prove that the defined languages are determined by their
ultimately-periodic fragments. This theorem is fundamental for learning logi-
cal properties (see e.g., [20], or [21]) and has been used to provide a complete
minimisation procedure for equivalent representations of Muller automata [22].
Establishing this theoretical result in the nominal case is an important step
towards the application of such techniques to global computing scenarios.

2 Example: peer-to-peer system

In order to introduce the presented topic, in this section we discuss an application
of nominal automata to distributed systems. Consider an idealized peer-to-peer

3 The notion of finite support, coming from the theory of nominal sets, will be clarified
later; roughly, finitely supported elements just use a finite set of names.

q0 q1 q2 . . . qn

s1 s2 . . . sn

q(?)
enq1

q(?)
enq2

q(?)
enq3

q(?)
enqn

s(1) id s(1) id s(1) id

q(?)

id

d(1) deq1 d(1) deq2 d(1) deqn

Fig. 1. Automaton for the FCFS policy.

system where each peer receives queries from an arbitrary, unbounded number of
other peers, represented by an infinite set of unique identifiers. Each peer buffers
requests in a finite queue. Then one query is selected, among the buffered ones,
and is served by establishing a temporary connection with the target. Peers
are not normally supposed to terminate, thus their relevant properties ought to
predicate on infinite words. On the other hand, actions executed by peers carry
information about other peers, which are drawn from an infinite set, therefore
the symbols constituting words are infinite. Finally, each peer has finite memory.
This is the key to maintain decidability, and is mathematically modeled by
the notion of finite support in nominal automata. Once established that our
languages are made of infinite words over an infinite alphabet, but retain a finite
memory property, we can use automata to characterize properties of local peers
in a global environment. We assume three kinds of observable actions for peers:
arrival of a new query from p, written q(p); selection of a query to serve and
connection to its sender p, written s(p); disconnection from p, written d(p).

Variants of a communication protocol in this setting may have very differ-
ent behaviors. Policies characterizing desired ones, for instance fairness require-
ments, can be specified by automata. For decidability reasons, policies should
be deterministic: they should always consider all possible actions from a given
state, even if not all of them will be accepted, and each action should have a
unique outcome. Our main example will be the specification of a “first come first
serve” peer selection policy for queries, named FCFS fair policy ; we shall also
discuss a policy that takes into account a number of locally identified “friend
peers” taking priority over the others, that we call friend policy.

FCFS fair policy. We model query selection by a fair FCFS discipline: queries
from already buffered peers are discarded. We assume that the buffer has size
n. The automaton is shown in Figure 1. Each state qi, si is equipped with i
registers, for i = 1, . . . , n, and q0 has no registers. Registers can store identifiers,
and are local to states (we will discuss this aspect throughout the paper), thus
each transition is equipped with a function expressing how registers in the target
state take values from those of the source state. We have two such functions:
enqi(x), mapping i to ? and x < i to x, and deqi, mapping x to x + 1. The
intuition is that transitions from qi to qi+1 labeled with ? correspond to buffering
a “fresh” query, from a peer whose identiy is not already known, and thus it is
stored in register i + 1. The loop on qn discards new peers when the buffer is
full. The transition from qi to si picks the query p from register 1, that is always

the oldest one, and establishes a connection to p; the transition from si to qi−1
removes p from the buffer, and shifts the registers’ content so that register 1
contains the query that arrived right after the one of p. Our automaton should
(1) be deterministic and (2) have a Muller-style accepting condition. For (1),
we assume each state has all possible outgoing transitions: those not shown in
Figure 1 are assumed to go to a sink state. For (2), we take all subsets of the
states, excluding the sink one, as Muller sets; that is: behaviors that go through
states and transitions depicted in Figure 1 are all accepted.

Friend queries. A friend query is a query coming from a “friend” peer, which
should be served as soon as possible, that is: after the current query has been
served. To model such scenarios, one can introduce an action qf (p) to model a
friend query from p. An automaton that correctly handles such queries can be
obtained from the one of Figure 1 as follows: we add a transition from qi to qi+1,
for each i = 0, . . . , n − 1, labelled with qf (?) and with the map topi, sending 1
to ? and x > 1 to x − 1; furthermore, a looping transition on qn is added with
label qf (?) and map id, which discards friend queries when the buffer is full.
Intuitively, topi always stores the friend query in register 1, so that transitions
s(1) will always pick it, and shifts the priority of all the other peers.

3 Background

Notation. Throughout the paper: f : X → Y is a total function, f : X � Y is
total and injective, f : X ⇀ Y is partial; dom(f) is the subset of X where f is
defined, Im(f) its image. Symbol ω denotes the set of natural numbers. For s a
sequence, we let si or s(i) denote its ith element. R∗ is the symmetric, transitive,
reflexive closure of binary relation R. We use ◦ for (partial) function composition
and also for “relational” composition, as usual, by seeing functions as relations.

We shall now briefly introduce nominal sets; we refer the reader to [23] for
more details on the subject. We assume a countable set of names N , and we
write P for the group of finite-kernel permutations of N , namely those bijections
π : N → N such that the set {a | π(a) 6= a} is finite.

Definition 1. A nominal set is a set X along with an action for P, that is a
function · : P×X → X such that, for all x ∈ X and π, π′ ∈ P, idN · x = x and
(π ◦ π′) · x = π · (π′ · x). Also, it is required that each x ∈ X has finite support,
meaning that there exists a finite S ⊆ N such that, for all π ∈ P, π|S = idS
implies π · x = x. We denote the least4 such S with supp(x). An equivariant
function from nominal set X to nominal set Y is a function f : X → Y such
that, for all π and x, f(π · x) = π · f(x).

Definition 2. Given x ∈ X, the orbit of x, denoted by orb(x), is the set {π ·x |
π ∈ P} ⊆ X. For S ⊆ X, we write orb(S) for {orb(x) | x ∈ S}. We call X
orbit-finite when orb(X) is finite.

Note that orb(X) is a partition of X. The prototypical nominal set is N with
π · a = π(a) for each a ∈ N ; we have supp(a) = {a}, and orb(a) = N .

4 It is a theorem that whenever there is a finite support, there is also a least support.

4 Nominal ω-regular languages

In the following, we extend Muller automata to the case of nominal alphabets.
Traditionally, automata can be deterministic or non-deterministic. In the case
of finite words, non-deterministic nominal automata are not closed under com-
plementation, whereas the deterministic ones are; similar considerations apply
to the infinite words case. Thus, we adopt the deterministic setting in order to
retain complementation.

Definition 3. A nominal deterministic Muller automaton (nDMA) is a tuple
(Q,−→, q0,A) where:

– Q is an orbit-finite nominal set of states, with q0 ∈ Q the initial state;
– A ⊆ P(orb(Q)) is a set of sets of orbits, intended to be used as an acceptance

condition in the style of Muller automata.
– −→ is the transition relation, made up of triples q1

a−→ q2, having source

q1, target q2, label a ∈ N ;
– the transition relation is deterministic, that is, for each q ∈ Q and a ∈ N

there is exactly one transition with source q and label a;
– the transition relation is equivariant, that is, invariant under permutation:

there is a transition q1
a−→ q2 if and only if, for all π, also the transition

π · q1
π(a)−→ π · q2 is present.

In nominal sets terminology, the transition relation is an equivariant function of
type Q×N → Q. Notice that nDMA are infinite state, infinitely branching ma-
chines, even if orbit finite. For effective constructions we employ equivalent finite
structures (see Section 5). Definition 3 induces a simple definition of acceptance,
very close to the classical one. In the following, fix a nDMA A = (Q,−→, q0,A).

Definition 4. An infinite word α ∈ Nω is an infinite sequence of symbols in N .
Words have point-wise permutation action, namely (π · α)i = π(αi), making a
word finitely supported if and only if it contains finitely many different symbols.

Definition 5. Given a word α ∈ Nω, a run of α from q ∈ Q is a sequence
of states r ∈ Qω, such that r0 = q, and for all i we have ri

αi−→ ri+1. By
determinism (see Definition 3), for each infinite word α, and each state q, there
is exactly one run of α from q, that we call rα,q, or simply rα when q = q0.

Definition 6. For r ∈ Qω, let Inf (r) be the set of orbits that r traverses in-
finitely often, i.e., orb(q) ∈ Inf (r) iff. for all i, there is j > i s.t. rj ∈ orb(q).

Definition 7. A word α is accepted by state q whenever Inf (rα,q) ∈ A. We let
LA,q be the set of all accepted words by q in A; we omit A when clear from the
context, and q when it is q0, thus LA is the language of the automaton A. We
say that L ⊆ Nω is a nominal ω-regular language if it is accepted by a nDMA.

Remark 1. We useN as alphabet. One can chose any orbit-finite nominal set; the
definitions of automata and acceptance are unchanged, and finite representations
are similar. Using N simplifies the presentation, especially in Section 5.

q0

qa

qb qc

. . .

A = {{{q0}, {qa | a ∈ N}}}

a

b

c

. . .a
b, c, d, . . .

b

a, c, d, . . .
c

a, b, d, . . .

. . .

(a)

x0 y0 z0 x1 y1 z1

y2x2 z2

q0 q1

q2

z0

?x2

(b)

q0 A = {{q0}}?

(c)

q0 q1
x

A = {{q0, q1}}
?

?

x

(d)

Fig. 2. Some automata, together with their accepting conditions.

Example 1. Consider the nDMA in Figure 2(a). We have Q = {q0} ∪ {qa |
a ∈ N}. For all π, we let π · q0 = q0, π · qa = qπ(a). We have supp(q0) =

∅, and supp(qa) = {a}. For all a, let q0
a−→ qa, qa

a−→ q0, and for b 6= a,

qa
b−→ qa. Each of the infinite “legs” of the automaton rooted in q0 remembers

a different name, and returns to q0 when the same name is encountered again.
There are two orbits, namely orb0 = {q0} and orb1 = {qa | a ∈ N}. We let
A = {{orb0, orb1}}. For acceptance, a word needs to cross both orbits infinitely
often. Thus, Lq0 = {aua | a ∈ N , u ∈ (N \ {a})∗}ω. This is an idealized version
of a service, where each in a number of potentially infinite users (represented by
names) may access the service, reference other users, and later leave. Infinitely
often, an arbitrary symbol occurs, representing an “access”; the next occurrence
of the same symbol denotes a “leave”. One could use an alphabet with two
infinite orbits to distinguish the two kinds of action (see Remark 1), or reserve
two distinguished names of N to be used as “brackets” before the different
occurrences of other names, adding more states.

Accepted words may fail to be finitely supported. However, languages are. This
adheres to the intuition that a machine running forever may read an unbounded
amount of different pieces of data, but still have finite memory.

Theorem 1. For L a language, and π ∈ P, let π · L = {π ·α | α ∈ L}. For each
state q of an nDMA, Lq is finitely supported.

5 Finite automata

In this section, we introduce finite representations of nDMAs. These are similar
to classical finite-state automata, but each state is equipped with local regis-
ters. There is a notion of assignment to registers, and it is possible to accept,

and eventually store, fresh symbols. Technically, these structures extend history-
dependent automata (see [24]), introducing acceptance of infinite words.

Definition 8. A history-dependent deterministic Muller automaton (hDMA) is
a tuple (Q, | − |, q0, ρ0,−→,A) where:

– Q is a finite set of states;
– for q ∈ Q, |q| is a finite set of local names (or registers) of state q;
– q0 ∈ Q is the initial state;
– ρ0 : |q0|� N is the initial assignment;
– A ⊆ P(Q) is the accepting condition, in the style of Muller automata;

– −→ is the transition relation, made up of quadruples q1
l−→
σ

q2, having

source q1, target q2, label l ∈ |q1|] {?}, and history σ : |q2|� |q1| ∪ {l};
– the transition relation is deterministic in the following sense: for each q1 ∈
Q, there is exactly one transition with source q1 and label ?, and exactly one
transition with source q1 and label x for each x ∈ |q1|.

Remark 2. To keep the notation lightweight, we do not use a symmetry attached
to states of an hDMA. It is well known (see [11]) that symmetries are needed
for existence of canonical representatives; we consider this aspect out of the
scope of this work. Note that (classical) Muller automata do not have canonical
representatives up-to language equivalence. To obtain those, one can use two-
sorted structures as in [22]. Even though this idea could be applied to hDMAs,
this is not straightforward, and requires further investigation.

In the following we fix an hDMA A = (Q, | − |, q0, ρ0,−→,A). We overload

notation (e.g., for the inf-set of a word) from section 4, as it will be always
clear from the context whether we are referring to an nDMA or to an hDMA.
Acceptance of α ∈ Nω is defined using the configuration graph of A.

Definition 9. The set C(A) of configurations of A consists of the pairs (q, ρ)
such that q ∈ Q and ρ : |q|� N is an injective assignment of names to registers.

Definition 10. The configuration graph of A is a graph with edges of the form
(q1, ρ1)

a−→ (q2, ρ2) where the source and destination are configurations, and

a ∈ N . There is one such edge iff there is a transition q1
l−→
σ

q2 in A and either

l ∈ |q1|, ρ1(l) = a, and ρ2 = ρ1 ◦ σ, or l = ?, a /∈ Im(ρ1), ρ2 = (ρ1 ◦ σ)[a/σ−1(?)].

The definition deserves some explanation. Fix a configuration (q1, ρ1). Say that
name a ∈ N is assigned to the register x ∈ |q1| if ρ1(x) = a. When a is not
assigned to any register, it is fresh for a given configuration. Then the transition

q1
l−→
σ

q2, under the assignment ρ1, consumes a symbol as follows: either l ∈ |q1|
and a is the name assigned to register l, or l is ? and a is fresh. The destination
assignment ρ2 is defined using σ as a binding between local registers of q2 and
local registers of q1, therefore composing σ with ρ1 and eventually adding a
freshly received name, whenever ? is in the image of σ. For readability, we assume
that the functional update [a/σ−1(?)] is void when ? /∈ Im(σ). The following
lemma clarifies the notion of determinism that we use.

Lemma 1. For each configuration (q1, ρ1) and symbol a ∈ N , there is exactly

one configuration (q2, ρ2) such that (q1, ρ1)
a−→ (q2, ρ2).

We use the notation (q1, ρ1)
v

=⇒ (q2, ρ2) to denote a path that spells v in the
the configuration graph. Furthermore, we define runs of infinite words.

Definition 11. A run r of an infinite word α ∈ Nω from configuration (q, ρ)
is a sequence (qi, ρi) of configurations, indexed by ω, such that (q0, ρ0) = (q, ρ)

and for all i, in the configuration graph, we have (qi, ρi)
αi−→ (qi+1, ρi+1).

Finally, after a simple corollary of Lemma 1, we define acceptance of hDMAs.

Proposition 1. Given (q1, ρ1) ∈ C(A) and v ∈ Nω, there exists a unique path

(q1, ρ1)
v

=⇒ (q2, ρ2) in the configuration graph of A. Similarly, for each word α
and configuration (q, ρ), there is a unique run rα,q,ρ from (q, ρ). We omit q and
ρ from the notation, when dealing with the initial configuration (q0, ρ0).

Definition 12. Consider the unique run r of an infinite word α from configura-
tion (q, ρ). Let Inf (r) denote the set of states that appear infinitely often in the
first component of r. By finiteness of Q, Inf (r) is not empty. The automaton
A accepts α whenever Inf (r) ∈ A. In this case, we speak of the language LA of
words accepted by the automaton.

As an example, the language Nω of all infinite words over N is recognised by the
hDMA in Figure 2(c); the initial assignment ρ0 is necessarily empty, and so is
the history σ along the transition. Differently from nDMAs, hDMAs have finite
states. Finite representations are useful for effective operations on languages, as
we shall see later. The similarity between configuration graphs of hDMAs, and
nDMAs, is deep and is the essence of the proof of Proposition 2 below. These
are similar to the categorical equivalence results in [13,14]; however, notice that
representing infinite branching systems using “allocating transitions” requires
further machinery, similar to what is studied in [16].

Proposition 2. For each (orbit-finite) nDMA there is a finite hDMA accepting
the same language, and vice versa.

Example 2. Consider the hDMA in Figure 2(d), where the labelled dot within
q1 represents its register, and the dashed line depicts the history from q1 to q0
(we omit empty histories). This automaton accepts the language of Example 1.
In fact, q0 is the only element in the orbit of the initial state of the nDMA, and
q1 canonically represents all qa, a ∈ N . This notation for hDMAs will be used
throughout the paper.

6 Synchronized product and boolean operations

The product of two finite automata uses the well-known synchronized product
construction. In this section we define this operation on the underlying transi-
tion structures of hDMAs, i.e. on tuples T = (Q, | − |, q0, ρ0,−→) (we want to

be parametric w.r.t. the accepting condition). One should be careful in handling
registers. When forming pairs of states, some of these registers could be con-
strained to have the same value. Thus, states have the form (q1, q2, R), where R
is a relation linking registers of q1 and q2 that represent the same register in the
synchronized product. This is implemented by quotienting registers w.r.t. the
equivalence R∗ induced by R; the construction is similar to the case of register
automata, and to the construction of products in named sets given in [16].

Given two transition structures Ti = (Qi, | − |i, qi0, ρi0,−→i), i = 1, 2, we
define their synchronized product T1⊗T2. Given q1 ∈ Q1,q2 ∈ Q2, Reg(q1, q2) is
the set of relations that are allowed to appear in states of the form (q1, q2, R),
namely those R ⊆ |q1|1 × |q2|2 such that, for each (x, y) ∈ R, there is no other
(x′, y′) ∈ R with x′ = x or y′ = y. This avoids inconsistent states where the
individual assignment for q1 or q2 would not be injective. In the following we
assume [x]R∗ (the canonical representative of the equivalence class of x in R∗)
to be {x} when x does not appear in any pair of R.

Definition 13. T1 ⊗ T2 is the tuple (Q⊗, | − |⊗, q⊗0 , ρ
⊗
0 ,

//⊗) where:

– Q⊗ := {(q1, q2, R) | q1 ∈ Q1, q2 ∈ Q2, R ∈ Reg(q1, q2)};
– |(q1, q2, R)|⊗ := (|q1|1 ∪ |q2|2)/R∗ , for (q1, q2, R) ∈ Q⊗;

– q⊗0 := (q10 , q
2
0 , R0), where R0 := {(x1, x2) ∈ |q10 |1 × |q20 |2 | ρ10(x1) = ρ20(x2)};

– ρ0([x]R∗
0
) = ρi0(x) whenever x ∈ |qi0|i, i ∈ {1, 2};

– transitions are generated by the following rules

(Reg)

q1
l1−→1
σ1

q′1 q2
l2−→2
σ2

q′2

∃i ∈ {1, 2} : li ∈ N ∧ [li]R∗ = {l1, l2} ∩ N

(q1, q2, R)
[li]R∗

σR
//⊗ (q′1, q

′
2, S)

(Alloc)

q1
l1−→1
σ1

q′1 q2
l2−→2
σ2

q′2 l1, l2 = ?

(q1, q2, R)
?

σA
//⊗ (q′1, q

′
2, S)

where S := σ−12 ◦R ∪ {(l1, l2)} ◦ σ1 and

στ ([x]S∗) :=

[σi(x)]R∗ x ∈ |q′i|i ∧ σi(x) 6= ?

[l3−i]R∗ x ∈ |q′i|i ∧ σi(x) = ? ∧ τ = R

? x ∈ |q′i|i ∧ σi(x) = ? ∧ τ = A

Before explaining in detail the formal definition, we remark that the relation
S is well defined, i.e. it belongs to Reg(q′1, q

′
2): the addition of {(l1, l2)} to R

is harmless, as will be explained in the following, and σ1 and σ−12 can never
map the same value to two different values (as they are functions) or vice versa
(as they are injective). The definition of q⊗0 motivates the presence of relations
in states: R0-related registers are the ones that are assigned the same value
by ρ10 and ρ20; these form the same register of q⊗0 , so ρ⊗0 is well-defined. The
synchronization mechanism is implemented by rules (Reg) and (Alloc): they
compute transitions of (q1, q2, R) ∈ Q⊗ from those of q1 and q2 as follows.

Rule (Reg) handles two cases. First, if the transitions of q1 and q2 are both
labelled by registers, say l1 and l2, and these registers correspond to the same one

in (q1, q2, R) (condition [li]R∗ = {l1, l2}, recalling that [li]R∗ cannot contain more
labels due to injectivity of register maps), then (Reg) infers a transition labelled
with [li]R∗ (the specific i is not relevant). The target state of this transition is
made of those of the transitions from q1 and q2, plus a relation S obtained by
translating R-related registers to S-related registers via σ1 and σ2. In this case,
adding the pair (l1, l2) to R in the definition of S has no effect, as it is already
in R. The inferred history σR just combines σ1 and σ2, consistently with S∗.

The other case for (Reg) is when a fresh name is consumed from just one
state, e.g. q2. This name must coincide with the value assigned to the register
l1 labelling the transition of q1. Therefore the inferred label is [l1]R∗ . The target
relation S changes slightly. Suppose there are l′1 ∈ |q′1| and l′2 ∈ |q′2| such that
σ1(l′1) = l1 and σ2(l′2) = ?; after q1 and q2 perform their transitions, both
these registers are assigned the same value, so we require (l′1, l

′
2) ∈ S. This pair

is forced to be in S by adding (l1, ?) to R when computing S. This does not
harm well-definedness of S, because [l1]R∗ is a singleton (rule premise [l1]R∗ =
{l1, ?} ∩ N = {l1}), so no additional, inconsistent identifications are added to
S∗ due to transitivity. If either l1 or ? is not in the image of the corresponding
history map, then augmenting R has no effect, as the relational composition
discards (l1, ?). The history σR should map [l′2]S∗ to [l1]R∗ : this is treated by the
second case of its definition; all the other values are mapped as before.

Transitions of q1 and q2 consuming a fresh name on both sides are turned by
(Alloc) into a unique transition with freshness: S is computed by adding (?, ?)
to R, thus the registers to which the fresh name is assigned (if any) form one
register in the overall state; the inferred history σA gives the freshness status to
this register, and acts as usual on other registers.

Remark 3. T1 ⊗ T2 is finite-state and deterministic. In fact, every set in the
definition of Q⊗ is finite. As for determinism, given (q1, q2, R) ∈ Q⊗, each l ∈
|(q1, q2, R)|⊗ ∪ {?} uniquely determines which labels l1 and l2 should appear
in the rule premises (e.g. if l = {l1}, with l1 ∈ |q1|1, then l2 = ?), and by
determinism each qi can do a unique transition labeled by li.

We shall now relate the configuration graphs of T1 ⊗ T2, T1 and T2.

Definition 14. Let ((q1, q2, R), ρ) ∈ C(T1 ⊗ T2). Its i-th projection, denoted πi,
is defined as πi((q1, q2, R), ρ) = (qi, ρi) with ρi := λx ∈ |qi|i.ρ([x]R∗)

Projections always produce valid configurations in C(T1) and C(T2): injectivity of
ρi follows from the definition of Reg(q1, q2), ensuring that two different x1, x2 ∈
|qi|i cannot belong to the same equivalence class of R∗, i.e. cannot have the same
image through ρi. The correspondence between edges is formalized as follows.

Proposition 3. Given C ∈ C(T1 ⊗T2): (i) if C
a−→ C ′ then πi(C)

a−→ πi(C
′),

i = 1, 2; (ii) if πi(C)
a−→i Ci, i = 1, 2, then ∃C ′ : C

a−→ C ′ and πi(C) = Ci.

Corollary 1. Let C0 = (q⊗0 , ρ0). We have a path C0
a0−→ . . .

an−1−→ Cn in the

configuration graph of T1 ⊗ T2 if and only if we have paths πi(C0)
a0−→ . . .

an−1−→
πi(Cn) in the configuration graphs of Ti, for i = 1, 2. The correspondence clearly
holds also for infinite paths, i.e. runs.

This result allows us to relate the Inf of runs in the defined transition structures.

Theorem 2. Given α ∈ Nω, let r be a run for α in the configuration graph of
T1 ⊗T2, and let r1 and r2 be the corresponding runs for T1 and T2, according to
Corollary 1. Then π1(Inf(r)) = Inf(r1) and π2(Inf(r)) = Inf(r2).

Let L1 and L2 be ω-regular nominal languages, and let A1 = (T1,A1) and
A2 = (T2,A2) be automata for these languages, where T1 and T2 are the under-
lying transition structures. By Theorem 2 above, we are now able to show that
constructing the automaton for a boolean combination of L1 and L2 amounts
to defining an appropriate accepting set for T1 ⊗ T2.

Theorem 3. Using the transition structure T1⊗T2, define the accepting condi-
tions A∩ = {S ⊆ Q⊗ | π1(S) ∈ A1 ∧ π2(S) ∈ A2}, A∪ = {S ⊆ Q⊗ | π1(S) ∈
A1 ∨ π2(S) ∈ A2} and AL1

= P(Q1) \ A1, where Q1 are the states of A1. The

obtained hDMAs accept, respectively, L1 ∩ L2, L1 ∪ L2, and L1.

Theorem 4. Emptiness and, as a corollary, equality of ω-regular nominal lan-
guages are decidable.

7 Ultimately-periodic words

An ultimately periodic word is a word of the form uvω, with u, v finite words.
Given a language of infinite words L, let UP (L) be its ultimately periodic frag-
ment {α ∈ L | α = uvω ∧ u, v are finite}. It has been proven in [25,26] that, for
every two ω-regular languages L1 and L2, UP (L1) = UP (L2) implies L1 = L2,
i.e. ω-regular languages are characterised by their ultimately periodic fragments.
In this section we aim to extend this result to the nominal setting.

The preliminary result to establish, as in the classical case, is that every non-
empty nominal ω-regular language L contains at least one ultimately periodic
word. For ω-regular languages, this involves finding a loop through accepting
states in the automaton and iterating it. For hDMAs, freshness constraints could
forbid consuming the same name in consecutive traversals of the same transition.
We first show that, given a loop in a hDMA, there always is a path induced by
consecutive traversals of the loop, such that its initial and final configurations
coincide. Thus, such path can be taken an arbitrary number of times.

Fix a loop L := p0
l0−→
σ0

p1
l1−→
σ1

. . .
ln−1−→
σn−1

p0 (the specific hDMA is not

relevant). We write i for i mod n. For all i = 0, . . . , n − 1, let σ̂i : |pi+1| ⇀ |pi|
be the partial maps telling the history of old registers and ignoring the new
ones, formally σ̂i := σi \ {(x, y) ∈ σi | y = ?}, and let σ̂ : |p0| ⇀ |p0| be their
composition σ̂0 ◦ σ̂1 · · · ◦ σ̂n−1. We define the set I as the greatest subset of
dom(σ̂) such that σ̂(I) = I, i.e. I are the registers of p0 that “survive” along
L. We denote by T all the other registers, namely T := |p0| \ I. These are
registers whose content is eventually discarded (not necessarily within a single
loop traversal), as the following lemma states.

Lemma 2. Given any x ∈ T , let {xj}j∈Jx be the smallest sequence that satisfies
the following conditions: x0 = x and xj+1 = σ−1j (xj), where j + 1 ∈ Jx only if

σ−1j (xj) is defined. Then Jx has finite cardinality.

Now, consider any assignment ρ̂0 : |p0| → N . We give some lemmata about
paths that start from (p0, ρ̂0) and are induced by consecutive traversals of L.
The first one says that the assignment for I given by ρ̂0 is always recovered after
a fixed number of traversals of L, regardless of which symbols are consumed. In
the following, given a sequence of transitions P , we write (q1, ρ1)

v
=⇒P (q2, ρ2)

whenever (q1, ρ1)
v

=⇒ (q2, ρ2) and such path is induced by P .

Lemma 3. There is θ ≥ 1 such that, for all v0, . . . , vθ−1 satisfying (p0, ρ̂0)
v0=⇒L

(p0, ρ̂1)
v1=⇒L . . .

vθ−1
=⇒L (p0, ρ̂θ) we have ρ̂θ|I = ρ̂0|I .

The second one says that, after a minimum number of traversals of L, a config-
uration can be reached where the initial values of T , namely those assigned by
ρ̂0, cannot be found in any of the registers.

Lemma 4. There is ε ≥ 1 s.t., for all γ ≥ ε ,there are v0, . . . , vγ−1 satisfying

(p0, ρ̂0)
v0=⇒L (p0, ρ̂1)

v1=⇒L . . .
vγ−1
=⇒L (p0, ρ̂γ), with Im(ρ̂γ) ∩ ρ̂0(T) = ∅.

We give the dual of the previous lemma: if we start from a configuration where
registers are not assigned values in ρ̂0(T), then these values can be assigned back
to T in a fixed number of traversals of L, regardless of the initial assignment.

Lemma 5. There is ζ ≥ 1 such that, for any ρ̃0 : |p0| → N with Im(ρ̃0) ∩
ρ̂0(T) = ∅, there are v0, . . . , vζ−1 satisfying (p0, ρ̃0)

v0=⇒L (p0, ρ̃1)
v1=⇒L . . .

vζ−1
=⇒L

(p0, ρ̃ζ), with ρ̃ζ |T = ρ̂0|T .

Finally, we combine the above lemmata. We construct a path where: (1) the
values assigned to T are forgotten and then recovered (2) the values assigned
to I are swapped, but the initial assignment is periodically regained. Therefore,
the length of such path should allow (1) and (2) to “synchronize”, so that the
final assignment is again ρ̂0.

Theorem 5. For each loop L with initial state p0, and assignment ρ̂0 : |p0| →
N , there are v0, . . . , vn such that (p0, ρ̂0)

v0=⇒L (p0, ρ̂1)
v1=⇒L · · ·

vn=⇒L (p0, ρ̂0).

Example 3. We justify the construction on the hDMA of Figure 2(b), with initial
assignment ρ0(x0) = a,ρ0(y0) = b and ρ0(z0) = c. Consider the loop L formed
by all the depicted transitions. We have I = {x0, y0} and T = {z0}. Look at

the path (q0, [a/x0, b/y0, c/z0])
c−→ (q1, [b/x1, a/y1, c/z1])

d−→ (q2, [b/x2, a/y2, d/z2])
b−→

(q0, [b/x0, a/y0, d/z0]) where d 6= a, b, c. The values of x0 and y0 are swapped ac-
cording to the permutation (a b), and d is assigned to z0. Our aim is to recover
ρ0 again. According to Lemma 3, x0 and y0 get their assignment back in θ = 2
traversals of L (in fact (a b)2 = (a b)). As for z0, its assignment is established in
the second transition, but c should not have been assigned to any register of q1 in

order for it to be consumed during this transition. This is where Lemma 4 comes
into play: it says that in at least ε = 1 traversals of L the name c is discarded.
This is exactly what happens in the path shown above. Then we can assign c to
z0 in another ζ = 1 traversal of L, according to Lemma 5. Since ε+ ζ = θ = 2,
traversing L twice is enough (e.g., consider the path cdbdca).

Finally we introduce the main results of this section.

Theorem 6. When L is a non-empty nominal ω-regular language, UP (L) 6= ∅.

Theorem 7. For L1,L2 nominal ω-regular, UP (L1) = UP (L2) =⇒ L1 = L2.

Note that a similar result could not be achieved in the presence of so-called global
freshness [17], e.g. the one-state automaton accepting only globally fresh symbols
would have empty ultimately periodic fragment, just like the empty language.
As a concluding remark, we note that, by Theorem 7, every ω-regular language
is characterized by a sublanguage of finitely supported words (the support of
uvω just contains the finitely many symbols in u and v). We find this result
appealing, given the central role of the notion of support in the nominal setting.

8 Conclusions

This work is an attempt to provide a simple definition that merges the the-
ories of nominal automata and ω-regular languages, retaining effective closure
under boolean operations, and decidability of emptiness, and language equiva-
lence. We sketch some possible future directions. A very relevant application of
formal verification in the presence of fresh resources could be model-checking
of nominal process calculi. However, the presented theory only accommodates
the deterministic case; undecidability issues arise for non-deterministic systems.
Future work will be directed to identify (fragments of) nominal calculi that re-
tain decidability. For this, one needs to limit not only non-determinism, but also
parallel composition (again, decidability may be an issue otherwise). A calculus
that could be handled by the current theory is a deterministic, finite-control
variant of the π-calculus; capturing analogous versions of more recent calculi,
e.g., ψ-calculi [27], should be possible, as they are based on nominal structures
with notions of permutation action, support, orbits. As mentioned in section 2,
we argue that deterministic behavior is enough to specify meaningful policies.
Furthermore, recall that automata correspond to logic formulae: hDMAs could
be used to represent logic formulae with binders; it would also be interesting to
investigate the relation with first-order logic on nominal sets [28]. There may
be different logical interpretations of hDMAs, where causality or dependence
[29,30] between events are made explicit. Finally, extending the two-sorted coal-
gebraic representation of Muller automata introduced in [22] to hDMAs would
yield canonical representative of automata up to language equivalence.

Related work. Automata over infinite data words have been introduced to
prove decidability of satisfiability for many kinds of logic: LTL with freeze quan-
tifier [31]; safety fragment of LTL [32]; FO with two variables, successor, and

equality and order predicates [33]; EMSO with two variables, successor and
equality [34]; generic EMSO [35]; EMSO with two variables and LTL with ad-
ditional operators for data words [36]. The main result for these papers is de-
cidability of nonemptiness. These automata are ad-hoc, and often have complex
acceptance conditions, while we aim to provide a simple and seamless nominal
extension of a well-known class of automata. We can also cite variable finite
automata (VFA) [37], that recognize patterns specified through ordinary finite
automata, with variables on transitions. Their version for infinite words (VBA)
relies on Büchi automata. VBA are not closed under complementation and de-
terminism is not a syntactic property. For our automata, determinism is easily
checked and we have closure under complementation. On the other hand, VBA
can express “global” freshness, i.e. symbols that are different from all the others.

Acknowledgements. The authors thank Nikos Tzevelekos, Emilio Tuosto and
Gianluca Mezzetti for several fruitful discussions related to nominal automata.

References

1. Ciancia, V., Sammartino, M.: A class of automata for the verification of infinite,
resource-allocating behaviours - extended version. CoRR abs/1310.3945 (2014)

2. Clarke, E.M., Schlingloff, B.H.: Model checking. In: Handbook of Automated
Reasoning. Elsevier (2001) 1635–1790

3. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math. 6 (1960) 66–92

4. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. (98) (1961) 21–51

5. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I/II. Inf.
Comput. 100(1) (1992) 1–77

6. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS 2001, IEEE
Computer Society (2001) 93–104

7. Bonchi, F., Buscemi, M.G., Ciancia, V., Gadducci, F.: A presheaf environment for
the explicit fusion calculus. J. Autom. Reasoning 49(2) (2012) 161–183

8. Miculan, M.: A categorical model of the fusion calculus. ENTCS 218 (2008)
275–293

9. Ghani, N., Yemane, K., Victor, B.: Relationally staged computations in calculi of
mobile processes. ENTCS 106 (2004) 105–120

10. Montanari, U., Sammartino, M.: A network-conscious π-calculus and its coalge-
braic semantics. To appear in Theor. Comput. Sci. (2014)

11. Montanari, U., Pistore, M.: Structured coalgebras and minimal hd-automata for
the π-calculus. Theor. Comput. Sci. 340(3) (2005) 539–576

12. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: LICS 2011,
IEEE Computer Society (2011) 355–364

13. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras,
(pre)sheaves and named sets. Higher-Ord. and Symb. Comp. 19(2-3) (2006) 283–
304

14. Fiore, M.P., Staton, S.: Comparing operational models of name-passing process
calculi. Inf. Comput. 204(4) (2006) 524–560

15. Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models
of resource binding. ENTCS 264(2) (2010) 63–81

16. Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation
of names. Inf. Comput. 208(12) (2010) 1349 – 1367

17. Tzevelekos, N.: Fresh-register automata. In: POPL 2011, ACM (2011) 295–306
18. Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders. In:

FOSSACS 2012, Springer (2012) 255–269
19. Gabbay, M.J., Ciancia, V.: Freshness and name-restriction in sets of traces with

names. In: FOSSACS 2011. (2011) 365–380
20. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.

118(2) (1995) 316–326
21. Farzan, A., Chen, Y.F., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Extending au-

tomated compositional verification to the full class of omega-regular languages.
TACAS 2008, Berlin, Heidelberg, Springer (2008) 2–17

22. Ciancia, V., Venema, Y.: Stream automata are coalgebras. In: CMCS 2012. Volume
7399 of LNCS. Springer (2012) 90–108

23. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding.
Formal Asp. Comput. 13(3-5) (2002) 341–363

24. Pistore, M.: History Dependent Automata. PhD thesis, University of Pisa (1999)
25. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-

languages. In: MFPS 1993. Volume 802 of LNCS., Springer (1993) 554–566
26. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: 1960

International Congress on Logic, Methodology and Philosophy of Science, Stanford
University Press (1962) 1–11

27. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. LMCS 7(1) (2011)

28. Bojanczyk, M.: Modelling infinite structures with atoms. In: WoLLIC 2013. Vol-
ume 8071 of LNCS., Springer (2013) 13–28

29. Väänänen, J.A.: Dependence Logic - A New Approach to Independence Friendly
Logic. Volume 70 of London Mathematical Society student texts. Cambridge Uni-
versity Press (2007)

30. Galliani, P.: The Dynamics of Imperfect Information. PhD thesis, University of
Amsterdam (September 2012)

31. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3) (2009)

32. Lazic, R.: Safety alternating automata on data words. ACM Trans. Comput. Log.
12(2) (2011) 10

33. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4) (2011) 27

34. Kara, A., Schwentick, T., Tan, T.: Feasible automata for two-variable logic with
successor on data words. In: LATA 2012. Volume 7183 of LNCS., Springer (2012)
351–362

35. Bollig, B.: An automaton over data words that captures EMSO logic. In: CONCUR
2011. Volume 6901 of LNCS., Springer (2011) 171–186

36. Kara, A., Tan, T.: Extending Büchi automata with constraints on data values.
CoRR abs/1012.5439 (2010)

37. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite
alphabets. In: LATA 2010. Volume 6031 of LNCS., Springer (2010) 561–572

	A class of automata for the verification of infinite, resource-allocating behaviours

