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Abstract. Causal reasoning is a powerful tool in analysing security pro-
tocols, as seen in the popularity of the strand space model. However, for
protocols that branch, more subtle models are called for to capture the
ways in which they can interact with a possibly malign environment. We
study a model for security protocols encompassing causal reasoning and
interaction, developing a semantics for a simple security protocol lan-
guage based on concurrent games played on event structures. We show
how it supports causal reasoning about a protocol for secure digital signa-
ture exchange. The semantics paves the way for the application of more
sophisticated forms of concurrent game, for example including symmetry
and probability, to the analysis of security protocols.

1 Introduction

The use of models that explicitly represent causality has proved highly useful
in the analysis of security protocols, as seen in the importance of the strand
space model [1]. By representing causal dependency, it is possible to perform
an analogue of Paulson’s inductive method [2] to establish safety properties by
deriving a contradiction to the existence of a minimal violating event, and anal-
yses of causal dependency clarify the specification and proof of authentication
properties.

Strand spaces as originally presented represent processes as sets of traces and
therefore lose information on branching; this led to Crazzolara and Winskel’s
development of the semantics based on event structures and Petri nets of a
security protocol language called SPL [3]. For the analysis of kinds of security
protocol other than authentication protocols, and in particular for the analysis
of digital signature exchange protocols, the ability of participants to choose to
branch on their decisions is at the core of the protocols. A key issue then becomes
the representation of which participant is making each choice: whether it is the
process following the protocol or an adversary is of central importance, and this
leads to the natural specification of their correctness properties in game-based
models [4], albeit in past work at the price of no longer representing causality.

In this paper, we study the application of concurrent games [5] in reasoning
about a digital signature exchange protocol, demonstrating how the model sup-
ports both causal and game-based reasoning. This represents an exciting starting
point where other features from the more abstract world of concurrent games,
such as probability [6] and symmetry [7], might be brought to bear.
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In more detail, we modestly extend SPL and use it to present the Asokan-
Shoup-Waidner protocol [8] for digital signature exchange. We then present the
semantics of SPL using concurrent games, showing how adversarial behaviour is
constrained to the Dolev-Yao model. We conclude by studying the key correct-
ness properties of the protocol.

2 SPL: A security protocol language

SPL, standing for Security Protocol Language, is introduced in [3] along with a
semantics based on Petri nets. The work shows how a causal semantics, using
a well-known model for concurrency, can be given to syntactically-represented
processes that supports the kind of causal reasoning important in the strand
space model. As is common when reasoning about security protocols, the lan-
guage assumes asynchronous communication over a network where we assume
messages to persist (for the benefit of any attacker). The language was initially
designed for authentication protocols, so we extend it slightly by allowing non-
deterministic choice and conditionals on input pattern matching.

We begin by assuming the following sets:

– the set Entity of entities or participants, ranged over by X,
– the set Key of encryption keys, ranged over by k. We assume that for every

X there is a key Sig(X) representing the signing key of X,
– the set Hash of hash values,
– the set New of nonces, representing long (secure pseudo-)randomly gener-

ated numbers, ranged over by n, and
– a set of basic strings ranged over by m, including for example the message

to be signed and any control instructions to be sent to the third party.

We shall assume that the sets above are disjoint: though in principle a nonce
value may be equal to a key, the probability of any encountered key being equal
to a generated nonce is negligible.

Input in SPL will involve pattern matching: processes specify that they will
accept a message matching a pattern, by which variables in the pattern are
resolved to messages. As such, rather than simply specifying a set of messages, we
define the set of message patterns, ranged over by M , which follow the grammar

M := m | X | k | n | (M1,M2) | {M}k | h(M) | ψ | x.

Above, {M}k represents the encryption of M using key k. The message h(M)
represents the application of a first- and second-preimage resistant cryptographic
hash function [9] to M1. The symbols ψ and x range over message variables; we
shall tend to use the former in patterns, explained next, where any message can
match and the latter to suggest that we expect the message to be a nonce or

1 Informally, a first preimage resistant cryptographic hash function is a hash function
for which it is computationally infeasible, given only y, to guess any x such that
h(x) = y. A second preimage resistant cryptographic hash function is one for which
it is computationally infeasible, given y, to find any x 6= y such that h(x) = h(y).
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hash value. We say that a message pattern is closed, or more simply is a message,
if it contains no message variables.

We assume that we are given a function associating to every key k its inverse
denoted by k−1. Given the key k−1, the message M can be recovered from {M}k.

Processes are ranged over by p and b ranges over simple boolean expres-
sions, with the standard definition of when a boolean holds where the atoms are
equalities of (closed) messages, following the grammar

p := done(X) | out new xM.p | in pat ψ M where b.p |
n

i∈I
pi | p+ p | P

b := M = M ′ | b ∧ b | ¬b
Above, ψ is a finite sequence of distinct message variables. In out new xM.p,
we view the variable x as bound, and in in pat ψ M where b.p we view the
variables in ψ as bound. We require the free variables in M to be equal to the
the variables in ψ, and write M [N/ψ] for the substitution of each message Ni
for free occurrences of ψi in M .

– done(X) is included for convenience in proofs, and indicates that the entity
X has completed its role in the protocol.

– out new xM.p generates a new nonce n and then outputs the messageM [n/x]
(using the newly generated nonce for x) before resuming as p[n/x].

– in pat ψ M where b.p inputs, for any sequence of messages N the same
length as ψ, the message M [N/ψ] providing the message is available on
the network and the proposition b[N/ψ] holds. The process then resumes
as p[N/ψ].

–
f
i∈I pi is the parallel composition of processes indexed by the set I.

– p1 + p2 is the non-deterministic sum of p1 and p2: if p1 can act to become
the resumption p′1 then so can p1 + p2, and similarly for p2.

– P (M) is a process identifier predicated by a set of messages, and we assume a
set of process definitions Q(ψ) = q allowing recursive definition of processes.

In the sequel, we adopt the notation p1 ‖ p2 for
f
i∈{1,2} pi and write nil for the

empty parallel composition. When the vector ψ is the set of free variables in M ,
we write inM where b.p for in pat ψ M where b.p, and when the condition b is a
tautology we simply write inM.p. When the variable x is not free in M or p, we
write outM.p for out new xM.p .

3 Optimistic signature exchange and the ASW protocol

A digital signature on a message by an entity indicates that the entity has seen
and agreed to sign the message. For example, the message “I agree to sell my
house to Bob in exchange for £50” can be signed by Alice by encrypting it
using her private key. Assuming that Alice has kept her private key safe and
that everybody has access to her public key, Bob can prove to an arbiter than
Alice has seen (and implicitly agreed to) this message.

Contracts require the exchange of messages, and this has to be done in a fair
way: were Alice simply to send her signature directly to Bob, he could wait an
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indeterminate amount of time and then decide not to proceed. In the meantime,
Alice would be left in limbo, unable to sell her house to anybody else.

Digital signature exchange protocols provide the means to fairly exchange
signatures without giving either party an advantage. There are two classes of
approach: incremental approaches in which the parties gradually release their
signature to each other [10] and those based on a trusted third party.

With access to an entity that both parties trust to act in a prescribed way,
the problem becomes much simpler: the two participants can simply send their
signatures to the third party which only exchanges them once both are received.
Though it can be shown that there is no non-incremental approach to signature
exchange that does not involve a third party [11], the third party is potentially
a bottleneck and represents a single point of failure; optimistic protocols, such
as the Asokan-Shoup-Waidner (ASW) protocol, aim to do better, by only using
the third party when necessary.

3.1 The ASW protocol in SPL

We now introduce the ASW protocol as given in [8], to which we refer the reader
for a fuller account. The protocol is run once the two parties, say O acting as
the originator of the protocol and R acting as the responder of the protocol,
have agreed on the message m that they both wish to sign and that an entity
T will act as a trusted third party. SPL terms representing both the originator,
orig(m,O,R,T), and responder, resp(m,O,R,T) are presented in Figure 1.

The protocol begins with O sending to R the message M1 defined in Fig. 1.
The message is signed by O and acts as a promise to provide R with O’s signature
on m providing R follows the protocol. We specify now how the promise of O’s
signature can be fulfilled:

Definition 1. A signature by O acting as originator for R on m is a pair of
messages n and {O,R,T,m, h(n)}Sig(O).

If the protocol proceeds normally (the possibility of aborting or resolving is
discussed below), the entity R then responds by sending O a message constituting
a promise to provide O with R’s signature. (Note that second preimage resistance
of h prevents O from taking this to be the signature on some other message.)

Definition 2. A signature by R acting as responder for O on m is a triple of
messages n and M = {O,R,T,m, n′}Sig(O) and {h(M), h(n)}Sig(R).

The promise by O is then fulfilled by sending R the nonce n chosen for x; assum-
ing the first preimage resistance of the hash function, this can only be revealed
by O, and acts as proof that O either has received R’s signature or can do so
via the third party. Finally, R sends to O its nonce that allows conversion of its
promise to an actual signature.

The ASW protocol allows both the originator and responder to contact the
trusted third party if their counterparty fails to respond in the expected way.
This could, for example, be due to network failure or due to the other participant
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Let M1 = {O,R,T,m, h(x)}Sig(O) and M2 = {O,R,T,m, z}Sig(O) in

orig(m,O,R,T)
def
=

out new xM1.
abort(M1,O,T)+

in {h(M1), z}Sig(R).
outx.
resolve(M1, {h(M1), z}Sig(R),O,T,O)
+ in y where h(y) = z.done(O)

resp(m,O,R,T)
def
=

in M2.
out new y{h(M2), h(y)}Sig(R).

in x where h(x) = z.
out y.done(R)

+ resolve(M2, {h(M2), h(y)}Sig(R),O,T,R)

abort(M,O,T)
def
=

out{abort,M}Sig(O).
in {aborted, {abort,M}Sig(O)}Sig(T).done(O)
+in {M, {h(M), z}Sig(R)}Sig(T).done(O)

resolve(M,M ′,O,T,X)
def
=

out(resolve,M,M ′).
in {aborted, {abort,M}Sig(O)}Sig(T).
done(X)

+ in {M,M ′}Sig(T).done(X)

Fig. 1. SPL terms for the originator and responder

(maliciously or not) failing to follow the protocol. The TTP handles two forms
of request as part of the abort and resolve subprotocols, both of which interact
in a complex way. SPL terms for the TTP are presented in Figure 2.

The abort subprotocol is called by the originator if it fails to receive a promise
from the responder after it has sent its promise to the responder. The resolve
subprotocol can be called by either participant once it has received the promise
from its counterparty.

If the resolve subprotocol is invoked and the abort subprotocol has not earlier
been invoked, the third party responds by providing a signature generated on
behalf of the counterparty.

Definition 3. A signature generated by T on behalf of either the originator O
or responder R on message m is a message of the form

{resolve,M, {h(M), n′}Sig(R)}Sig(T)

TTP(T) =
n

O,R∈Entity

n

m∈Message

n

z∈Hash

TTP0(T,O,R,m, z)

Let M2 be as in Fig. 1, Ma = {abort,M2}Sig(O) and Mr = (resolve,M2, {h(M2), z}Sig(R))

TTP0(T,O,R,m, z)
def
=

in Ma.
out{aborted,Ma}Sig(T).
TTPa(T,O,R,m, z)

+ in Mr.
out{Mr}Sig(T).
TTPr(T,O,R,m, z,Mr)

TTPa(T,O,R,m, z)
def
=

in Mr.
out{aborted,Ma}Sig(T).
TTPa(T,O,R,m, z)

TTPr(T,O,R,m, z)
def
=

in Mr.
out{Mr}Sig(T).
TTPr(T,O,R,m, z)

+ in Ma.
out{Mr}Sig(T).
TTPr(T,O,R,m, z)

Fig. 2. SPL terms for the TTP
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for some hash value n′ and M = {O,R,T,m, n}Sig(O) for some hash value n.

If, however, the abort subprotocol has been invoked prior to the resolve request,
the third party simply informs the participant that neither party shall receive a
signature from it and therefore that the participant can safely assume that its
counterparty shall receive no form of signature.

If the abort subprotocol is invoked by the originator and the resolve sub-
protocol for the message has not earlier been invoked, the TTP responds with
a message informing the participant that the transaction has, as above, been
aborted. If, otherwise, the other participant has earlier resolved the transaction,
the TTP responds with a signature generated on its counterparty’s behalf.

It is assumed that interaction with the TTP takes place over resilient com-
munication channels: a communication channel is resilient if any message sent
over it will eventually be received. An adversary can, however, observe messages
sent over the channel and temporarily delay them. We note here that communi-
cation between the participants and the TTP is not encrypted; this could easily
be added, but we have adhered to the original presentation since encrypted com-
munication is unnecessary for the correctness properties studied later.

4 Concurrent games

We now turn to giving a semantics to SPL, representing terms as concurrent
strategies. Concurrent strategies are founded upon event structures [12].

Definition 4. An event structure comprises three components (E,≤,Con), where
E is the set of events, ≤ ⊆ E × E is a partial order representing causal de-
pendency and the non-empty set Con ⊆ Pfin(E) represents consistency, which
jointly satisfy:

– {e′ : e′ ≤ e} is finite for all e ∈ E,
– {e} ∈ Con for all e ∈ E,
– if X ∈ Con and Y ⊆ X then Y ∈ Con, and
– if X ∈ Con and e ∈ X and e′ ≤ e then {e′} ∪X ∈ Con.

An event e of an event structure ES is said to be initial if e′ ≤ e implies e′ = e.
Events are viewed as atomic and can only occur once. A configuration of an
event structure is a subset of events x ⊆ E that is down-closed, meaning that
e ∈ x & e′ ≤ e =⇒ e′ ∈ x, and consistent, meaning that, for all subsets X ⊆ x,
if X is finite then X ∈ Con. Write C∞(ES ) for the configurations of an event

structure ES , write C(ES ) for its finite configurations, and write x
e
−−⊂ if e 6∈ x

and x ∈ C∞(ES) and x ∪ {e} ∈ C∞(ES). An event structure is elementary if
Con = Pfin(E).

We often make use of the binary relations of immediate causal dependency
and conflict between events. Immediate causal dependency e _ e′ means that
e 6= e′ and e ≤ e′, and for any u such that e ≤ u ≤ e′ either e = u or e′ = u. Often,
the consistency of a set of events can be determined just by examining pairs of
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events. In such a case, the consistency relation can be replaced by a conflict
relation placing two events in conflict, written e#e′, if there is no configuration
containing them both.

Given a subset of events V ⊆ E of an event structure ES = (E,≤,Con), the
projection (V,≤V ,ConV ) of ES to V has events V , causal dependency e ≤V e′

iff e ≤ES e
′ and X ∈ ConV iff X ∈ Con for any finite X ⊆ V .

Definition 5. A (partial) morphism from an event structure ES = (E,≤,Con)
to an event structure ES ′ = (E′,≤′,Con′) is a partial function f : E ⇀ E′ such
that fx ∈ C(ES ′) for all configurations x ∈ C(ES ), and

if e, e′ ∈ x and e 6= e′ and f(e), f(e′) both defined then f(e) 6= f(e′).

The latter condition enforces the view that events are indivisible. A morphism is
said to be total if f is total and rigid if it is total and preserves causal dependency
in the sense that f(e) ≤′ f(e′) whenever e ≤ e′. A rigid inclusion, written ↪→, is
a rigid map that is also an inclusion.

When defining event structures, it is necessary to ensure that every event has
a unique causal history. This aspect can be lightened by building event structures
out of rigid families.

Definition 6. A rigid family F is a non-empty set of finite partial orders that
are down-closed under rigid inclusions: if q′ ∈ F and q ↪→ q′ is a rigid inclusion,
viewing q and q′ as elementary event structures, then q ∈ F .

Concretely, down-closure of F stipulates that for any q ∈ F , if e is maximal in
q then q \ e ∈ F , where q \ e is the partial order with e removed.

Clearly, any event structure determines a rigid family where the orders are
its finite configurations ordered by causal dependency; we call the elements of
this family ordered configurations of the event structure. Conversely, an event
structure can be obtained from a rigid family by taking its events to be primes i.e.
the partial orders with a unique maximal element. Causal dependency between
primes p ≤ p′ is determined by whether there is a rigid inclusion p ↪→ p′. A set of
primes X is consistent in the event structure if it is finite and it has a supremum,
with respect to the partial order of rigid inclusion, in the rigid family.

Example 1. Let the rigid family F be the down-closure (w.r.t. rigid inclusions)
of the two partial orders on the left below. Their corresponding event structure
is drawn on the right, where the arrows represent causal dependency and the
wavy line represents conflict. The event c1 is the prime partial order a c

and c2 is the prime partial order c b .

a c b

a c b

a c1

c2 b

We make use of a number of constructions on event structures. Given an
event structure ES, we now adopt the convention of writing E for its set of
events, ≤ for its conflict relation and Con for its consistency relation. When ES
has a subscript, we add the subscript to its components.
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Firstly, the simple parallel composition of event structures
f
i∈I ESi has events⋃

i∈I{i}×Ei, causal dependency (i, e) ≤ (i′, e′) iff i = i′ and e ≤i e′ and a set of
events X is consistent iff {e : (i, e) ∈ X} ∈ Coni for i ∈ I. The event structure
!ES consists of countably-many copies of ES placed in parallel with each other,
!ES =

f
i∈NES.

The augmentation of an event structure aug(ES) is defined via a rigid family.
A partial order q is in the rigid family if its underlying set |q| is a member of
C(ES) and the order is an extension of the order on the configuration in ES: it
satisfies e ≤ e′ =⇒ e ≤q e′ for all e, e′ ∈ |q|.

Note that there are total maps from aug(ES) and !ES to ES taking any
event in either aug(ES) or !ES to the event that generated it.

4.1 Concurrent games and winning strategies

An event structure with polarity is an event structure with a total function
pol : E → {+,−} attaching a polarity, either + for player or − for opponent,
to every event. The intuition is that the state of an interaction between the
player and the opponent is a configuration of an event structure with polarity
called the game. The player can extend the configuration by playing any of the
+ events and the opponent can extend the configuration by playing any of the
− events. The occurrence of any event can affect what the other player can do:
it can enable events in the game that causally depend upon it and it prohibits
the occurrence of events that are inconsistent with it.

The constructions on event structures above extend straightforwardly to
event structures with polarity, with polarity being inherited from the event struc-
tures from which they are constructed. A further important operation is the dual
ES⊥, which is (E,≤,Con,pol′) where pol′(e) = + iff pol(e) = −.

We now introduce strategies on event structures with polarity as introduced
in [5], which are potentially non-deterministic specifications of how the player is
to act. Their definition is guided by properties that are desired when strategies
are composed; we briefly mention an application of composition in the conclusion.

Definition 7. A strategy for the player is a total morphism σ : S → A between
event structures with polarity s.t.
– (Polarity preservation) polS(e) = polA(σ(e)) for all e ∈ ES,

– (Receptivity) for any x ∈ C∞(S), if σ(x)
e
−−⊂ and pol(e) = − then there

exists unique s such that x
s
−−⊂ and σ(s) = e, and

– (Innocence) if e _ e′ in S then either σ(e) _ σ(e′) in A or pol(e) = − and
pol(e′) = +

Correctness properties shall be expressed with reference to winning strategies
[13].

Definition 8. Consider a strategy σ : S → A. With reference to a set W ⊆
C∞(A) of winning configurations, the strategy σ is winning if every +-maximal
configuration of S (i.e. every configuration x ∈ C∞(S) for which there is no s

satisfying x
s
−−⊂ and pol(s) = +) has σx ∈W .
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4.2 Semantics of SPL

The semantics of a closed SPL term shall be given as a strategy on a game
denoted by SPL, in which players perform actions successively and potentially
repeatedly. Let Msg denote the set of all (closed) messages and

Act ={inM : M ∈Msg} ∪ {outM : M ∈Msg}
∪ {done(X) : X ∈ Entity} ∪ {new n : n ∈ New}.

Given an event structure Y and p ∈ {+,−}, let Y p denote the event structure
with polarity where the underlying event structure is Y and all events have
polarity p. Viewing Act as an event structure with trivial causal dependency
and consistency relations, we define the game SPL0 = aug(!Act−) ‖ aug(!Act+).
Let the function sending an event of SPL0 to its image in Act be denoted by
act : SPL0 → Act . The game SPL is specified as a rigid family: its partial order
configurations are configurations x in C(SPL0) inheriting order from SPL0 for
which, for any n ∈ New, there is at most one e ∈ x such that act(e) = new n.

Events with negative polarity represent actions of the opponent, where the
opponent is any other process that may act in parallel with the process to which
we give semantics, which we represent by positive events. The definition of the
game SPL allows the player to have strategies that successively perform actions
in response to those of the opponent; in particular, the use of augmentation
is necessary for the strategy to be innocent. The difference between the games
SPL0 and SPL is that, in SPL, a nonce can be generated only once.

We now proceed to give the semantics of SPL terms. We omit the formal defi-
nition of recursion, which is a straightforward adaption of the recursive definition
of event structures [14]. By induction on the size (the number of actions) of terms,
we shall define an event structure with polarity Sp and strategy σp : Sp → SPL.
In each case, the set of negative events in Sp shall be equal to the set of negative
events in SPL. Any two negative events in Sp are causally dependent iff they
are causally dependent in SPL. For any finite set of negative events X of Sp, we
shall have X ∈ Conp iff X is consistent in SPL.

A useful operation is prefixing by a positive action. Given a strategy σp :
Sp → SPL and α ∈ Act , and assuming first that α 6= new n for n ∈ New, we
define α.σp : α.Sp → SPL to have domain α.Sp formed with events the disjoint
union of those from Sp and a new event, say a, with positive polarity. Causal
dependency in α.Sp extends that of Sp with a ≤ e for all events e with positive
polarity. A subset of events X of α.Sp is consistent iff X \ {a} is consistent in
Sp. Let a′ be the first2 initial positive α-event in SPL and let SPL ↑ a′ be the
projection of SPL to all negative events along with positive events that causally
depend on but are not equal to a′. There is an isomorphism φ : SPL ∼= SPL ↑ a′
that acts as the identity on events with negative polarity. The morphism α.σp
sends a to a′ and e 6= a to φ(e).

Now, if α = new n, due to freshness and the requirement on event structures
that any event must occur in some configuration, it is necessary to remove from

2 this choice is arbitrary and can be alleviated by adding symmetry: see the conclusion.
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α.Sp all positive events u for which there exists e ≤ u satisfying e 6= a and
pol(e) = + and act(e) = new n. A subset of events X of α.Sp is consistent iff
X \ {a} is consistent in Sp and there is no e ∈ X such that pol(e) = − and
act(e) = new n.

A second convenient operation is the generalized sum of strategies as de-
scribed above (i.e. strategies with negative events those from SPL). Given a non-
empty family of strategies σi : Si → SPL for i ∈ I where Si = (Ei,≤i,Coni,poli),
their sum

∑
i σi :

∑
i Si → SPL is defined as follows. The event structure∑

i Si = (E,≤,Con,pol) has negative events and causality dependency within
them, as specified above, from SPL. The positive events form the set {(i, e) : i ∈
I & e ∈ Ei}. No negative event depends on any positive event (as required for
innocence), but for a positive event (i, e) we have u ≤ (i, e) iff either u is positive
and there exists e′ s.t. u = (i, e′) and e′ ≤i e or u is negative and u ≤i e. For a
subset of events X ⊆ E, we have X ∈ Con iff there exists i ∈ I and Y ∈ Coni
such that X = {e ∈ Y : poli(e) = −} ∪ {(i, e) : e ∈ Y & poli(e) = +}.
Input The strategy for in pat ψ M where b.p is as follows. Let A be the set
of events e in SPL with negative polarity for which there exists M0 such that
act(e) = outM0 and there exists a sequence of messages N the same length as
ψ satisfying M0 = M [N/ψ] and b[N/ψ] holds. Note that any such sequence is
unique for e. For any e ∈ A, by prefixing we form the strategy in M0.σp[N/ψ]

where σp[N/ψ] is the strategy inductively obtained for p[N/ψ]. From this strat-
egy, we obtain a strategy σe by adding a single immediate causal dependency
e _ a, where a is the event for the initial input, the least positive event in
inM0.Sp[N/ψ]. Finally, we define σ =

∑
e∈A σe.

Output Considering out new xM.p, let n be any nonce. By induction, we have
a strategy σp[n/x] and so, by prefixing twice, a strategy σnew n . outM [n/x].p[n/x].
The strategy for out new xM.p is defined to be

∑
n∈New σn.

Parallel composition The strategy for the parallel composition
f
i∈I pi is rela-

tively simple: we do not at this stage introduce any causal dependencies between
the processes since we do now know with which other processes

f
i∈I pi shall be

composed. Formally, we define the strategy σ : S → SPL where S = (E,≤,Con)
as follows. For i ∈ {I}, let σi : Si → SPL be the strategy strategy for pi where
Si = (Ei,≤i,Coni,poli), and let SPL = (ESPL,≤SPL,ConSPL,polSPL).

E = {e ∈ ESPL : polSPL(e) = −} ∪
⋃
i∈I({i} × {e : e ∈ Ei & poli(e) = +})

e ≤ e′ ⇐⇒ pol(e) = − & pol(e′) = − & e ≤SPL e
′

or pol(e) = − & pol(e′) = + & ∃i, u′ : e′ = (i, u′) & e ≤i u′

or pol(e) = + & pol(e′) = + & ∃i, u, u′ : e = (i, u) & e′ = (i, u) & u ≤i u′

X ∈ Con ⇐⇒ {e ∈ X : pol(e) = −} ∈ ConSPL and for all i ∈ I :

{u : (pol(u) = − & u ∈ X) or ((i, u) ∈ X & pol(i, u) = +)} ∈ Coni

Nondeterministic sum The sum p1 + p2 has strategy
∑
i∈{1,2} σi, where σi is

the strategy for pi.
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There is an asymmetry in the semantics above that warrants explanation:
Any player input event in the strategy causally depends on an opponent event
that outputs the same message, but there are no causal dependencies of the
opponent events on player events (such dependencies would, indeed, violate the
innocence condition). Causal dependency of opponent events on those of the
process are central to reasoning about security protocols: for example, an initially
secret message may be replayed but not guessed by an attacker, so any attacker
event that outputs the secret message causally depends on some output by the
process. As we proceed to describe, these causal dependencies are introduced
after we have inductively obtained the strategy σp on SPL; the reason why it is
not defined as we give the semantics for each term is that we do not know with
which other processes the processes under consideration shall be composed and
therefore what messages it will be possible for the attacker to output.

4.3 Constraining the attacker

We now move from strategies that can be composed to form semantics to ones
that are used to reason about the behaviour of adversaries.

The key principle is that any message that the attacker outputs has to be
justified, in the sense of the Dolev-Yao [15] model, from messages to which it
has access. For a set of messages s, we write s `M if M is justified by s, defined
to be the least relation satisfying the following rules:

s `M if M ∈ s s ` (M1,M2) if s `M1 and s `M2

s `M1 and s `M2 if s ` (M1,M2) s `M if s ` k−1 and s ` {M}k
s ` {M}k if s `M and s ` k s ` h(M) if s `M

We write M ≺ M ′ if M is a sub-message of M ′, the least reflexive transitive
relation such that M1 ≺ (M1,M2) and M1 ≺ {M1}k. Given a set of messages s
that is initially on the network, we now refine the game SPL so that all opponent
outputs are justified and all opponent inputs of messages not in s depend on
on corresponding outputs. We also ensure that any generated nonce is not a
submessage in s. The game, denoted by ASPL(s), is defined to be the event
structure obtained from the following rigid family of configurations (inheriting
polarity from SPL):

Definition 9. For x any configuration, s ⊆Msg and α : x→ Act, the configu-
ration x is defined to be secured w.r.t. α iff for any e such that pol(e) = − and
there exists M such that α(e) = outM , we have s∪ {N : ∃e′ ≤ e.pol(e′) = − &
act(e′) = in N} ∪ {n : ∃e′ ≤ e.pol(e′) = − & act(e′) = new n} ` M . A source
map for x and α is a partial function κ : x ⇀ x that is defined on an event e iff
pol(e) = − and there exists M 6∈ s such that e = inM , in which case we require
that act(f(e)) = outM .

The rigid family defining ASPL(s) consists of finite partial orders ≤ over
configurations x ∈ C(SPL) that contain no event e such that act(e) = new n
for any n ∈ New if n ≺ M ∈ s, that are secured w.r.t. act : x → Act and
for which there exists a source map κ such that ≤ is the transitive closure of
(≤SPL ∩(x× x)) ∪ {(κ(e), e) : e ∈ x & κ(e) defined}.
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There is a morphism of event structures ŝ : ASPL(s)→
SPL. Given a strategy σp : Sp → SPL representing

the semantics of p, we can form a strategy σ̂p : Ŝp →
ASPL(s) by pullback as drawn to the right, since the
pullback of a strategy against a morphism that preserves
polarity is also a strategy [6]. Concretely, the strategy σ̂p

Ŝp //

σ̂p

��

Sp

σp

��
ASPL(s)

ŝ
// SPL

only has opponent events that are justified by what the opponent may have inter-
cepted according to the Dolev-Yao model. The pullback can be viewed as mini-
mally modifying the domain Sp so that it meets the additional causal constraints

in ASPL(s). From now on, we denote by LpMs the strategy σ̂p : Ŝp → ASPL(s).
A particular instance of the pullback is obtained as follows.

Theorem 1. A finite partial order ≤x ⊆ x×x is an order configuration of Ŝp iff
there is no e ∈ x such that act(e) = new n and n ≺M ∈ s, there exists an order
configuration ≤y ⊆ y × y of Sp such that y is secured w.r.t. act ◦ σp : y → Act
and there exists a source map κ : y ⇀ y such that ≤x is the transitive closure of
the following relation: ≤y ∪{(κ(e), e) : e ∈ y & κ(e) defined}.
Note that the configurations are required to be partial orders: if the source map
creates a cyclic dependency, it will not result in an order configuration.

The pullback construction has the effect of introducing causal dependencies
of negative events on positive ones. For example, an order configuration of Sp of
the form on the left below (where we label events with their actions) gives rise
to the configuration in Ŝp on the right.

+
outM

−
in M

−
outM

+
in M

+
outM

−
in M

−
outM

+
in M

This kind of pattern is always encountered when one player event outputs a
message that the attacker does not initially know and another player event re-
ceives it. It has the correct causal dependency of the player input on the player
output. The intermediate opponent events are useful: they mean that we give
the attacker the ability to intercept or delay messages.

5 Correctness properties

We now use the semantics to formulate correctness properties for the ASW
protocol. The properties that we consider are expressed in terms of strategies
being winning with respect to particular sets of winning configurations.

It is in the formulation of correctness properties that we capture the notion of
resilient communication between the third party and the participants. Since we
do not explicitly represent channels of communication, we directly characterize
the messages intended to be between participants and the third party T as those
either under the key Sig(T) or containing either abort or resolve.

The following predicates on configurations x of ASPL(s) will be useful.

– x |= SigpOrig(X,Y,T,m) if {M : ∃e ∈ x : act(x) = in M & pol(e) = p}
contains a signature by X acting as originator for Y on m with TTP T
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– x |= SigpResp(X,Y,T,m) if {M : ∃e ∈ x : act(x) = in M & pol(e) = p}
contains a signature by Y acting as responder for X on m with TTP T

– x |= SigpTTP(X,Y,T,m) if {M : ∃e ∈ x : act(x) = in M & pol(e) = p}
contains a signature by TTP T on behalf of X or Y

– x |= Resil(T) if for all events e ∈ x such that pol(e) = + and act(e) = outM
and M is a message to/from the third party T, there exists e′ ∈ x such that
pol(e′) = − and act(e′) = outM

The first property is effectiveness: that whenever the protocol completes
without invoking the third party, each party has the signature of the other.

Theorem 2 (Effectiveness). Let s be any set of messages such that s 6` Sig(O)
and s 6` Sig(R) and s does not contain, for any M , the message {O,R,T,m,M}Sig(O).
The strategy Lorig(m,O,R,T) ‖ resp(m,O,R,T) ‖ TTP (T)Ms is winning with re-
spect to winning configurations x of ASPL(s) that satisfy either:

– x |= Sig+
Orig(O,R,T,m) and Sig+

Resp(O,R,T,m),
– there exists e ∈ x and M such that pol(e) = + and act(e) = outM but there

is no e′ ∈ x such that pol(e′) = − and act(e′) = outM , or
– there exists e ∈ x such that pol(e) = + that carries a message containing

either abort or resolve.

Note that, since we trust how the third party will behave, it is included in the
process being considered. The proof of the theorem is omitted, but it makes
use of causal reasoning: the key aspect is that no attacker can interfere with
the protocol since any such action would causally depend on some process event
that outputs the signing key for either O or T, of which there is none.

The statement of effectiveness makes use of the notion of winning strategy
to ensure that the environment (assumed to be hostile) does not indefinitely
block transmission of a message. In particular, a configuration is winning if
the process outputs a message but there is no corresponding negative event
outputting the same message. The same kind of definition is used later to ensure
that the attacker always releases messages to/from the third party: the other
correctness properties do not require all messages eventually to get through.

Two further correctness properties for the ASW protocol are fairness and
timeliness. Fairness asserts that if one party gains a signature of the other then
the other party will gain a signature of the first if it continues with the protocol.
Timeliness asserts that each party can proceed with the protocol no matter how
the other party acts: it will not be stuck indefinitely waiting for the other. It
is convenient to prove fairness and timeliness together. The properties for the
originator and responder are stated separately since they hold even when the
other party is dishonest (i.e. doesn’t follow the protocol), and we only present
them for the originator; those for the responder are similar.

Theorem 3 (Fairness and timeliness for the originator). Let s be any
set of messages such that s 6` Sig(O) and s 6` Sig(T) and s does not contain,
for any M , the message {O,R,T,m,M}Sig(O). The strategy Lorig(m,O,R,T) ‖
TTP(T)Ms is winning with respect to the set of winning configurations x of
ASPL(s) that satisfy either x 6|= Resil(T) or both
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1. if x |= Sig−Orig(O,R,T,m) ∨ Sig−TTP(O,R,T,m) then x |= Sig+
Resp(O,R,T,m) ∨

Sig+
TTP(O,R,T,m), and

2. x contains a player event done(O).

Fairness is the first point above and timeliness the second. Again, causal rea-
soning comes to the fore in their proofs (Appendix A). The key properties for
fairness are that the key Sig(O) is never available to the adversary, as before,
and that if the adversary gains a signature either by O or on behalf of O then the
signature must have come from either the O or the third party, and these events
causally depend on other events that allow the generation of R’s signature.

6 Conclusion and related work

We have given a semantics for SPL using concurrent games and used this to
reason about causality in the correctness of the ASW protocol. The represen-
tation of causality has the potential to support both more direct proofs and
efficient automated reasoning techniques than those based on interleaving struc-
tures. The work provides a starting point for application of concurrent games
and their extensions to provide a rich foundation for the semantics of security
protocols, where both interaction and causality are explicitly represented and
where existing general work on models for concurrency can be exploited.

Formal methods have been applied previously to analyse the ASW and GJM
protocols in [16, 4, 17]. [16] describes the use of the Murϕ model checker, and
implicitly assumes the fairness of runs (in the sense that it is assumed that the
entities terminate) to study protocol fairness and other correctness properties. [4]
introduced the idea of specifying fairness through the use of strategies and used
the Mocha model checker to study them. Notably, their games are played over
interleaving structures, and fairness constraints on runs have to be added to deal,
for example, with resilience. Finally, [17] studies the GJM (Garay-Jakobbsson-
MacKenzie) protocol using a combination of inductive methods and interleaved
tree structures to represent the game.

The semantics given here for SPL can also be applied to give an account
of the GJM protocol [18], which uses a cryptographic primitive called private
contract signatures to provide a property called abuse freeness: that there is no
reachable configuration where one entity can prove to an external entity that it
has to ability to choose unilaterally either to exchange signatures or to abort
the protocol. In previous work [16, 17], this has been simplified to considering
balance, which is that there is no reachable configuration where one entity can
choose between exchange of signatures or aborting. Balance can be formulated
in the game framework by demonstrating the non-existence of counterstrategies
[13] with appropriate winning configurations.

There are a number of variations on the basic game structures that we intend
to study. Firstly, rather than directly representing input moves in the game, we
can model them using ‘neutral’ events in a ‘partial strategy’ [19]. Composition
of partial strategies (such as those for the originator and responder) then has
neutral events representing a global session type [20]. Composition may also
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play a role when probabilistic strategies [6] are studied, using probability to
discuss the likelihood of either breaking a key or being able to do no better
than simply guessing what value is encrypted beneath a key. Finally, the current
work motivates the study of games with symmetry for the analysis of multiparty
exchange in the GJM protocol.
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A Fairness

We give an overview of the proof of fairness for the originator.

Theorem (Fairness for the originator) Let s be any set of messages such
that s 6` Sig(O) and s 6` Sig(T) and s does not contain, for any M , the mes-
sage {O,R,T,m,M}Sig(O). The strategy Lorig(m,O,R,T) ‖ TTP(T)Ms is win-
ning with respect to the set of winning configurations x of ASPL(s) that satisfy
either x 6|= Resil(T) or

if x |= Sig−Orig(O,R,T,m) ∨ Sig−TTP(O,R,T,m)

then x |= Sig+
Resp(R,O,T,m) ∨ Sig+

TTP(O,R,T,m).

The order of rigid extension of configurations, for which we shall write v, is
well-founded: there is no infinite strictly descending sequence for any configura-
tion. Hence, to show that all configurations satisfy a property, it is sufficient to
suppose the existence of a v-minimal configuration violating the property and
then to derive a contradiction.

We begin by establishing the secrecy of the signing keys. For any config-
uration x of Lorig(m,O,R,T) ‖ TTP(T)Ms, let the set of attacker messages
omsg(x) = s ∪ {M : ∃e ∈ x.pol(e) = − & act(e) = inM}.
Lemma 1. Suppose that s 6` Sig(O) and s 6` Sig(T). For all configurations x of
Lorig(m,O,R,T) ‖ TTP(T)Ms, both omsg(x) 6` Sig(O) and omsg(x) 6` Sig(T).

Proof. Assume, for contradiction, that y is a v-minimal ordered configuration
such that omsg(x) ` Sig(O); the case for T proceeds similarly. By minimality,

there exists an event e ∈ y and y′ such that y′
e
−−⊂ y (extending the notation

·
−−⊂ to ordered configurations) and omsg(y′) 6` Sig(O). It immediately follows
that pol(e) = − and act(e) = in M . Hence, by Theorem 1, there exists e′ ∈ y′
such that pol(e′) = + and act(e′) = outM .

Write ≺ for the sub-message relation on messages. Consider how e can re-
lease Sig(O): there are two possible ways. Firstly, we may have Sig(O) ≺M ; the
messages in y′ and the rest of M justify any keys necessary to extract Sig(O).
However, a simple analysis of the actions of orig(m,O,R,T) ‖ TTP(T) reveals
that there is no positive output event e that outputs any such message M . Alter-
natively, the message M must contain a key. However, again a simple analysis of
the actions of orig(m,O,R,T) ‖ TTP(T) reveals that there is no positive output
event e that outputs any such message. From this, we arrive at the required
contradiction. ut

We now return to the proof of fairness. Assume that x is a +-maximal config-
uration such that x |= Resil(T ) and x |= Sig−Orig(O,R,T,m) ∨ Sig−TTP(O,R,T,m).

We must show that x |= Sig+
Resp(O,R,T,m) ∨ Sig+

TTP(O,R,T,m).

We only present the case where x |= Sig−Orig(O,R,T,m); the other follows a
similar style of reasoning. There exist events e1, e2 ∈ x and message n such that
pol(e1) = pol(e1) = − and act(e1) = in {O,R,T,m, h(n)}Sig(O) and act(e2) =
in n. By assumption, s does not contain the message {O,R,T,m, h(n)}Sig(O).
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Lemma 2. For any configuration x of Lorig(m,O,R,T) ‖ TTP(T)Ms and set of
messages s, if omsg(x) 6` Sig(O) and s 6` {O,R,T,m, h(n)}Sig(O) and there is
e ∈ x such that pol(e) = − and act(e) = in {O,R,T,m, h(n)}Sig(O) then there
exists e′ ∈ x and N ∈ Msg such that e′ ≤ e and pol(e′) = + and act(e′) =
out{O,R,T,m, h(n)}Sig(O).

Proof. Let M1 = {O,R,T,m, h(n)}Sig(O). Without loss of generality, assume
that e is a ≤-minimal event with negative polarity such that act(e) = inM1. By
Theorem 1, there exists e′ such that e′ ≤ e and act(e′) = outM1. By Theorem 1
again, the configuration is secured; letting t = s ∪ {N : ∃e′′ ≤ e′ & pol(e′′) = −
& act(e′′) = in N}, we have t `M1. From this, it is straightforward to derive a
contradiction from the fact that the key Sig(O) is assumed not to be in t and
the process orig(m,O,R,T) ‖ TTP(T) does not output any key. ut

Applying the two lemmas above, there exists an event e′1 ∈ x with e′1 ≤ e1 and
pol(e′1) = + and act(e′1) = out{O,R,T,m, h(n)}Sig(O). It follows immediately
from the definition of the process that there exists an event e0 ≤ e′1 such that
pol(u) = + and act(e0) = new n.

We now establish that a positive event outputting n is in x, from which we
will apply maximality to infer that the configuration includes a successful resolve
sequence. Here, we apply a reasoning principle asserting that nonces are secret
until released:

Lemma 3. Let x be a configuration of LpMs containing an event e with pol(e) =
+ and act(e) = new n and also containing an event e′ such that pol(e′) = −
and act(e′) = in M for M such that n ≺ M . Then there exists u ∈ x such that
e ≤ u ≤ e′ and pol(e) = + and act(u) = outN for some N such that n ≺ N .

Proof. A straightforward consequence of configurations being secured and any
generated nonce not being a submessage of any message in s. ut

Let M1 = {O,R,T,m, h(n)}Sig(O). Applying this lemma and considering the
positive events of Lorig(m,O,R,T) ‖ TTP(T)Ms, we observe that the only possi-
bility is that there there exists u ∈ x such that e0 ≤ u ≤ e2 and pol(u) = + and
act(u) = outn, and furthermore there exists v ≤ u such that pol(v) = + and
act(v) = in {h(M1), z}Sig(R) for some z.

A now straightforward analysis (omitted) considering maximality that es-
sentially runs the process forward from this point allows us to conclude that
x |= Sig+

Resp(R,O,T,m) ∨ Sig+
TTP(O,R,T,m)).


