
Session Types with Gradual Typing

Peter Thiemann

University of Freiburg, Georges-Khler-Allee 079, 79110 Freiburg, Germany,
thiemann@acm.org

Abstract. Session types enable fine-grained static control over commu-
nication protocols. Gradual typing is a means to safely integrate stati-
cally and dynamically typed program fragments.
We propose a calculus for synchronous functional two-party session types,
augment this calculus with a dynamically typed fragment as well as co-
ercion operations between statically and dynamically typed parts, and
establish its basic metatheory: type preservation and progress. A tech-
nical novelty is the notion of coercions for the choice operator in session
types which is related to coercions of sum types.

Keywords: session types, gradual typing, coercion calculus

1 Introduction

Session types enable fine-grained static control over communication protocols.
They evolved from a structuring scheme for two-party communication in π-
calculus [11] over calculi embedded in functional languages [6,7, 19] to a power-
ful means of describing multi-party orchestration of communication [13]. There
are various embeddings in object-oriented languages [2, 8] as well as uses in the
context of scripting languages [12, 14]. Their logical foundations have been in-
vestigated with interpretations in intuitionistic and classical linear logic [1, 20].

Gradual types [16], on the other hand, were conceived to improve the effi-
ciency of dynamically typed programs by imposing static typing where possible
and by resorting to dynamic checking where necessary. However, gradual types
have further applications. For example, the blame calculus [21] explores the safe
interaction of statically and dynamically typed program fragments on the basis
of gradual typing. There are also gradual versions of type systems for information
flow [3,5] and typestate [22].

Our work explores the safe interplay of statically and dynamically typed
program fragments in the context of session types. We start from a session-
typed functional calculus with synchronous communication and augment it with
a type D (dynamic) along with coercions into and out of that type. The resulting
calculus has interesting applications inspired by recent work on applying session
types in connection with scripting languages [12, 14]. In particular, in the cited
work, program stubs in a dynamically typed language are generated for clients
(and servers) from a session type specification. Our calculus can be used for

dynamically ensuring type safety when such a stub is used in connection with a
statically typed server (client).

In session types, the choice operations on the sender and receiver side nat-
urally generate a subtyping relation [6]: a receiver may accept more alterna-
tives than provided by a sender. Our calculus comes with a new, dynamically
checked notion of sender and receiver choice coercions, which allow a receiver
to accept fewer alternatives than provided by the sender. These coercions are
useful to manage prototyping situations, where a communication peer initially
implements only parts of a protocol or where the peer implements a protocol ex-
tension before it becomes part of the agreed upon protocol specification. Choice
coercions are closely related to gradual typing for sum types, which has not be
investigated in the literature so far.

Our calculus allows the application of coercions to all communications in a
channel, but it does not allow the coercion of an entire session type to type D.
We leave this additional step to future work because it requires a closer look at
the interaction between dynamic types and linear/affine types as investigated
by prior work [4,18,22]. In any case, our calculus seems to be a good fit for the
intended scenario of ensuring type safety for programs that are elaborations of
generated program stubs. In the dynamic part, the generated code guarantees
adherence to the message sequencing constraints imposed by the session typing.
Our calculus guarantees the type checking for the transmitted values on both
ends of the communication.

Furthermore, the work on gradual types for improving the efficiency of dy-
namically typed programs [16] imposes a type discipline on an underlying un-
typed calculus and then specifies a type-driven transformation that introduces
coercions. Our calculus follows the approach of the blame calculus [21] and con-
siders what can be seen as the target language of the transformation after coer-
cion introduction. This latter choice is appropriate when considering programs
composed of statically and dynamically typed fragments where the programmer
uses explicit coercions to demarcate the fragments.

Overview. Sec. 2 introduces the session calculus with gradual types with
examples. Sec. 3 contains the syntax, semantics, and typing of the calculus. Sec. 4
proves type soundness. Sec. 5 discusses related work.

2 Sessions Between Static and Dynamic Peers

Consider a client-server system that implements the web interface of a weather
forecast system. For this system, a simple protocol between client and server
might look like this: The client first sends its location as a number (postcode
or GPS coordinate, type num). Next, it may either request the current temper-
ature measurement (m) or a comprehensive report including historic data and
forecasts (r). After sending an m-request the client expects the current measure-
ment as a number. After sending an r-request the client expects a num->num

function that returns measurements according to its input. Zero corresponds to

2

client(p, location, single) {

cl = request p

cs = send (location, cl)

if (single) { ca = select m cs

(n:num, ca’) = receive ca

displayCurrent (n)

close ca’

} else { cb = select r cs

(f:num->num, cb’) = receive cb

display14DayAverage (f)

close cb’

}}

Fig. 1. Statically typed client code.

present, negative arguments return past measurements, positive arguments yield
forecasts. Results are meaningful only in a certain, undetermined range.1

This protocol is expressed as a session type on the port p providing the service
with ⊕〈. . . 〉 denoting a sender choice between sessions starting with label m or
r, ! t.s (? t.s) sending (receiving) an item of type t and continuing with s, and
END indicating the end of the connection:

p : [! num.⊕ 〈m : ? num.END, r : ? (num→ num).END〉]

Figure 1 contains code for statically typed client. It performs a request on the
port and obtains a channel typed with the session type associated to the port. It
then runs the protocol on the channel using the usual primitives of sessions types:
send and receive for simple messages, select x c for selecting alternative x

on connection c, and close for closing a connection. The assignment notation
in the code abbreviates sequences of let-expressions.

At the other end, the server may be written in a dynamically typed language
(Figure 2).2 Although the server can accept a connection on port p, it cannot
directly communicate on the connection obtained from it because the channel
does not accept dynamic values. For that reason, the server first coerces the
connection to process dynamically typed values.

The session type of the accepted connection is the dual of the client’s session
type: ? num.&〈m : ! num.END, r : ! (num → num).END〉. The cast applied to it is
expressed using a coercion calculus with # standing for coercion application and
; for left-to-right sequential composition of coercions. For each (session-) type
constructor, there is a corresponding coercion constructor that takes a coercion
that is applied to each constituent type of the constructor. The example code
uses the coercion operator for receiving choice, which fits to the type of the
accepted connection. The m compartment of the coercion contains a coercion

1 The protocol does not transmit the range to keep it simple.
2 The code makes all coercions explicit, including those that need not be written by

the programmer.

3

server(p) {
cl = accept p #

? (num↑).&〈m : ! (num↓b.1).END, r : ! ((D → D)↓b.2 ;(num↑→ num↓b.3)).END〉
(location, cd) = receive cl

case cd of {
m : fun ca => ca’ = send (24.3 # num↑, ca)

close ca’

r : fun cb => cb’ = send (

fun z => (24.3 + (z # num↓b)*0.1) # num↑ #(D → D)↑, cb)

close cb’

}
}

Fig. 2. Dynamically typed server code.

for the value before it is sent to the client: num ↓b.1 checks that a value of type
dynamic is indeed a num and extracts it. The annotation b.1 is a blame label
that identifies the source of the (potential) run-time error when the types do not
match. The coercion in the r compartment first checks that its argument is a
function and then applies a function coercion that transforms that argument and
result type to the desired target types. Assuming a code generator for session
types, all of this code except the boxed fragments would be generated.

2.1 Coercions as Proxies

Applying the coercion to the accepted session creates a proxy process that medi-
ates between the existing connection and the new connection. This proxy main-
tains a new channel of the desired target type of the coercion. The proxy forwards
the operations between the channels as prescribed by the session types. It ap-
plies the cast operations from the session coercion before writing to the other
end of a channel. It also retains the blame labels. Conceptually, the construction
of the proxy could be done by a program transformation before execution as
demonstrated with the transformed server program in Fig. 3.

2.2 Choice Coercions

There are two kinds of choice operators in session types, the internal choice
⊕〈. . . 〉 where the program selects a particular outcome and the external choice
where the program reacts and makes a case distinction driven by the label it
receives. The coercion operator corresponding to choice supplies a coercion for
each case mentioned in the type.

As a novel feature, a coercion may also add or remove cases from the set of
labels on which the session type branches. This flexibility is achieved by only
restricting the argument type of a coercion to match on the common branch
labels. The result type of the coercion specifies the branches in the coerced
session type. The branches which are not specified by the coercion result in

4

server_eager(p) {
cs’ = accept p

p’ = new port [? num.&〈m : !D.END, r : !D.END〉]
cl = pipe p’ (proxy cs’) (fun cl => cl)

(loc, cd) = receive cl

. . .
}
proxy = fun cl cl’ {
(dl : D, cp) = receive cl

cp’ = send (dl # num↑, cl’)

case cp of {
m : fun ca => (df : D, ca1) = receive ca

ca2 = send (df # num↓b.1, ca1)

close ca2

r : fun cb => (df : D, cb1) = receive cb

cb2 = send (df # (D → D)↓b.2 ;(num↑→ num↓b.3), cb1)

close cb2

}}

Fig. 3. Transformed server with proxy implementation of session coercion.

partial_server(p) {
cl = accept p # ? (num↑).&r 7→b.0

{m,r} 〈m : ! (num↓b.1).END〉
(loc, cd) = receive cl

case cd of {
m : fun ca => close (send (24.3 , ca))

}}

Fig. 4. Partial server code.

blame, but this blame may depend on the particular label. Thus, each choice
coercion is annotated with a blame map β indicating the blame β(l) which is
raised if a non-existing branch labeled l is addressed. If this blame map is a
constant function, then a single blame annotation suffices.

As an example, consider a partial implementation of the server protocol that
just serves the current temperature (Fig. 4). If a client sends an r-request, then
the choice coercion intercepts this request and triggers blame with label b.0. This
label abbreviates a second branch in the choice: r : 0#⊥b.0, a failure coercion that
always triggers blame, applied to an arbitrary value. The proxy that implements
the “restricting” choice coercion is defined accordingly.

case cp of {
m : fun ca => (df : D, ca1) = receive ca

ca2 = send (df # num↓b.1, ca1)

close ca2

r : 0 # ⊥b.0
}

5

s ::= END | ! t.s | ? t.s | ⊕〈l : s, . . . 〉 | &〈l : s, . . . 〉
t ::= s | ∗ | t⊗ t | t(t | t→ t | [s]
k ::= ∗ | c{s} | n{s} | request | accept | send | receive | close
e ::= x | k | e⊗ e | letx⊗ x = e in e | recx(x)e | λx.e | e e |

select l e | case e of {l : e, . . . } | fork e e | pipe s e e
p ::= 0 | e | p ‖ p

Fig. 5. Syntax of sessions, types, constants, expressions, and processes.

The server may also implement alternatives that are not required by the
protocol, but these extra alternatives require no special handling because the
server type is a subtype of the protocol type, in this case.

Dually, the programmer of the client may apply a sender-choice coercion to
develop and type check future extensions of a protocol. For example, introducing
a new x-request into the client code in Fig. 1 would require adding a line like
the following.3

cl0 = request p

cl = cl0 # ! (ιnum).⊕x7→b
{x,m,r} 〈m : ι? num.END, r : ι? num→num.END〉

cs = send (loc, cl)

...

cx = select x cs

An execution that reaches select x cs would raise an exception after reducing
to cx # ⊥b. This execution is impossible with the protocol on p.

The final case, where a sender-choice coercion removes an alternative, is dual
to the addition of a receiver-choice alternative.

3 Session Calculus with Gradual Types

This section introduces syntax and semantics of the functional calculus with
synchronous session types and gradual types. The first subsection explains the
fragment without gradual types. It is inspired by Gay and Vasconcelos’s calculus
for asynchronous functional session types [7]. Our calculus differs from theirs by
being synchronous and by describing the semantics with a labeled transition
system, which simplifies our proofs. The second subsection introduces coercions
and gradual typing; the third subsection defines coercion typing.

3.1 Functional Session Calculus

Fig. 5 defines the syntax of the calculus. A session type s indicates the protocol
that can be run on a connection of this type: END means that the connection
can only be closed, ? t.s receiving a value of type t and continue according to s ,

3 The coercion ιt is the identity coercion at type t. The notation x 7→ b denotes a
one-element blame map.

6

v ::= k | v ⊗ v | recx(x)e | λx.e
E ::= � | E ⊗ e | v ⊗ E | letx⊗ x = E in e |

E e | v E | select l E | case E of {l : e, . . . }
P ::= � | p ‖P | E
α ::= τ | req c{s} | acc c{s} | sel(l, c) | case(l, c) |

!(v, c) | ?(v, c) | close(c)

END = END

! t.s = ? t.s̄

? t.s = ! t.s̄

&〈l : s, . . . 〉 = ⊕〈l : s̄, . . . 〉
⊕〈l : s, . . . 〉 = &〈l : s̄, . . . 〉

Fig. 6. Values, evaluation contexts, process contexts, actions, dual of a session type.

! t.s sending a value of type t and continue, &〈l : s, . . . 〉 and ⊕〈l : s, . . . 〉 receive
or send a choice with each alternative indexed by a label l and then continuing
according to s in that alternative.

A standard type t is either a session type s, a unit type ∗, a linear product
t⊗ t, a linear function t(t, a standard function t→ t, or a port [s] which may
be used to create connections that use the protocol s.

A constant k is either a unit value ∗, a connection token c{s}, a port token
n{s}, or a built-in operation involving a connection: request and accept both
take a port argument and produce a connection as described in the reduction
rules in Fig. 7. The operations receive, send, and close act on connections in
the obvious way. Both connection (channel) and port tokens are special symbols
which are adorned with a session type. Connection tokens never show up in
source programs and must be handled linearly.

Expressions e are constants, variables, introduction e ⊗ e and elimination
letx ⊗ x = e in e of pairs where the latter form is required because the pair
type is linear. There are recursive functions recx(x)e, linear functions λx.e,
function application e e, as well as select l e to send a label indicating a partic-
ular alternative in a sender choice, case e of {l : e, . . . } to perform a choice based
on the label received, fork e1 e2 to fork e1 as a new process, and pipe s e1 e2 to
create a channel of type s, fork e1, and pass the channel ends to e1 and e2.

Process expressions p are either the null process 0, single expressions e or
two processes running in parallel p ‖ p. Process expressions are identified up to
commutativity and associativity of parallel composition ‖ with the null process
0 serving as an identity.

We specify the semantics in small-step operational style using a labeled tran-
sition system. Fig. 6 specifies values v as a subset of expressions (constants, pairs
of values, and functions), evaluation contexts E for expressions where � is the
empty evaluation context (standard strict left-to-right evaluation), and evalua-
tion contexts P for processes. The latter are understood up to associativity and
commutativity of ‖ so that p ‖P selects either the left or right subprocess.

Reductions are adorned with actions α, where τ is the silent action (i.e., no
interaction), req c{s} and acc c{s} signal that a request or accept operation
has been performed on channel c{s}, similarly, the sel, case, ?, !, and close actions
signal that the corresponding operation has been performed on the indicated
channel. We usually omit the silent action τ .

7

P[letx1 ⊗ x2 = (v1 ⊗ v2) in e] → P[e[x1, x2 7→ v1, v2]]
P[(recx1(x2)e1) v] → P[e1[x1, x2 7→ (recx1(x2)e1), v]]
P[(λx.e) v] → P[e[x 7→ v]]

P[v] → P[0]
P[0 ‖ p] → P[p]
P[fork e1 e2] → e1 ‖P[e2]
P[pipe s e1 e2] → e1 (c{s̄}) ‖P[e2 (c{s})] c{s} /∈ fc(P, e1, e2)

P[requestn{s}] req c{s}−→ P[c{s}]
P[acceptn{s}] acc c{s}−→ P[c{s̄}]

P[select lj c{⊕〈li : si, . . . 〉}]
sel(lj ,c)−→ P[c{sj}]

P[case c{&〈li : s̄i, . . . 〉} of {li : ei, . . . }]
case(lj ,c)−→ P[ej c{s̄j}]

P[send (v ⊗ c{! t.s})] !(v,c)−→ P[c{s}]
P[receive c{? t.s̄}] ?(v,c)−→ P[v ⊗ c{s̄}]
P[close c{END}] close(c)−→ P[∗]

RClose

p1
close(c)−→ p′1 p2

close(c)−→ p′2

P[p1 ‖ p2]→ P[p′1 ‖ p′2]

RSingle

p1
!(v,c)−→ p′1 p2

?(v,c)−→ p′2

P[p1 ‖ p2]→ P[p′1 ‖ p′2]

RChoice

p1
sel(l,c)−→ p′1 p2

case(l,c)−→ p′2

P[p1 ‖ p2]→ P[p′1 ‖ p′2]

RConnect

p1
req c{s}−→ p′1 p2

acc c{s}−→ p′2
c{s} /∈ fc(P[p1 ‖ p2])

P[p1 ‖ p2]→ P[p′1 ‖ p′2]

Fig. 7. Evaluation rules.

Fig. 7 specifies the top-level reduction relation→ which relies on an auxiliary
labeled reduction relation where the label specifies a communication action α.
The context rules RClose, RSingle, RChoice, and RConnect guarantee that
these labeled reductions always pair up one producer action and one consumer
action. The RConnect rule guarantees that the newly created connection token
is fresh, using fc(p) for the set of connection tokens in process p. The labeled
reduction rules are not intended to run at the top-level. For each of them, there is
a context rule that matches it up with a corresponding labeled reduction (labeled
with the complementary action on the same channel) in another process.

The reduction rules for let, rec, and lambda are standard. A process that has
been reduced to a value turns into the null process. The null process in parallel
to some p is eliminated. The fork e1 e2 expression starts e1 as a new process.
The pipe s e1 e2 expression creates a fresh channel c{s}, passes the server end
to e1 and the client end to e2, and then starts the server e1(c{s̄}) as a new
process. The labeled reductions for request and accept work together with the
RConnect rule to create a new connection. The RConnect rule makes sure that
the same connection token is used with the same session type in both contracta.

8

Additionally, the accept rule emits the server end of the channel where the
session type is inverted (dualized). This inversion is indicated by the function
s̄ (see Figure 7). It exchanges the read and write operations in a protocol to
generate the server view from the client view.

The reductions for select and case work together with RChoice to select an
alternative in a session choice. They update the session type of the connection
token accordingly. The reductions for send and receive work together with
RSingle in the same way. The send operation takes a linear pair and the receive
operation returns one because these pairs contain a connection token, which is
a linear value.

The reduction for close consumes the connection token at returns the unit
value. The RClose rule guarantees that exactly two processes perform a close
step on both ends of the same connection.

Figure 8 contains the definition of the type system. It first defines symbol
environments Σ that associate channel names with session types and typing
environments Γ that map identifiers to types. The use of Γx in the definition
indicates that x does not occur in Γx. In contrast, a symbol environment may
contain multiple identical associations for the same channel. The predicate unr(t)
specifies unrestricted types, which need not be treated linearly, along with its
extension unr(Γ) to typing environments. The splitting operator + for environ-
ments is defined as usual to avoid the duplication and weakening of linearly
typed values. We also use splitting for symbol environments.

The calculus contains type and session type indexed families of constants
for the operations request, accept, send, receive, and close. The function hd(s)
describes the next possible communication on a channel of type s. It may be a
set of labels, with the empty set denoting that the channel may only be closed,
or the type of the next value that may be transmitted on the channel.

The typing rules are standard for a lambda calculus with linear types. The
rule for a channel makes sure its type is specified by the symbol environment.
The rules for the select and case constructs are standard for the session choice
operators in a calculus with session types. Because connections are represented
by type-carrying connection tokens, the typing judgment for processes does not
require a typing environment, but the symbol environment is required to ensure
consistent use of channels.

3.2 Gradual Typing

Gradual typing adds a type D “dynamic” to the type language, introduces a
type cast operation of the form e#γ, and a blame signal ⇑b to the expression
language. A cast checks the actual type of a value of type dynamic at run time. A
value of dynamic type has the form Dtc(v), which is a pair of a type constructor

and a ground type value v of type tc(
−→
D). The new syntactic form γ is a coercion

defined along with the other syntactic extensions by the grammar in Figure 9.
Type constructors (except session types) are ranged over by tc, each with an
associated arity. Ground types g are applications of a type constructor to all
dynamic arguments.

9

Symbol environments, variable environments, unrestricted types

Σ ::= · | Σ, c : s Γ ::= · | Γx, x : t unr(∗) unr(t→ t) unr([s])
Unrestricted environments

unr(·)
unr(Γ) unr(t)

unr(Γ, x : t)
Environment splitting

·+· = ·
unr(t) Γ1 + Γ2 = Γ

x : t, Γ1 + x : t, Γ2 = x : t, Γ

Γ1 + Γ2 = Γ

x : t, Γ1 + Γ2 = x : t, Γ

Γ1 + Γ2 = Γ

Γ1 + x : t, Γ2 = x : t, Γ
Typing of constants

request : [s]→ s accept : [s]→ s̄

send : t⊗ (! t.s)→ s receive : (? t.s)→ t⊗ s close : END→ ∗
Head of session type

hd(END) = ∅ hd(? t.s) = hd(! t.s) = t

hd(&〈l : s, . . . 〉) = hd(⊕〈l : s, . . . 〉) = {l, . . . }
Typing rules for expressions

unr(Γ)

·, Γ + x : t ` x : t

unr(Γ)

·, Γ ` ∗ : ∗
unr(Γ)

c : s, Γ ` c{s} : s

unr(Γ)

·, Γ ` n{s} : [s]

Σ1, Γ1 ` e1 : t1 Σ2, Γ2 ` e2 : t2

Σ1 +Σ2, Γ1 + Γ2 ` e1 ⊗ e2 : t1 ⊗ t2

Σ1, Γ1 ` e1 : t1 ⊗ t2 Σ2, Γ2 + x1 : t1, x2 : t2 ` e : t

Σ1 +Σ2, Γ1 + Γ2 ` letx1 ⊗ x2 = e1 in e : t

unr(Γ) ·, Γ + x1 : t2 → t, x2 : t2 ` e : t

·, Γ ` recx1(x2)e : t2 → t

Σ, Γ + x : t1 ` e : t2

Σ,Γ ` λx.e : t1 (t2

Σ1, Γ1 ` e1 : t2 → t Σ2, Γ2 ` e2 : t2

Σ1 +Σ2, Γ1 + Γ2 ` e1 e2 : t

Σ1, Γ1 ` e1 : t2 (t Σ2, Γ2 ` e2 : t2

Σ1 +Σ2, Γ1 + Γ2 ` e1 e2 : t

Σ, Γ ` e : ⊕〈l : s, . . . 〉
Σ,Γ ` select l e : s

Σ1, Γ1 ` e : &〈li : si, . . . 〉 Σ2, Γ2 ` ei : si (t

Σ1 +Σ2, Γ1 + Γ2 ` case e of {li : ei, . . . } : t

Σ1, Γ1 ` e1 : ∗ Σ2, Γ2 ` e2 : t2

Σ1 +Σ2, Γ1 + Γ2 ` fork e1 e2 : t2

Σ1, Γ1 ` e1 : s̄(∗ Σ2, Γ2 ` e2 : s(t2

Σ1 +Σ2, Γ1 + Γ2 ` pipe s e1 e2 : t2
Typing rules for processes

· ` 0
unr(t) Σ, · ` e : t

Σ ` e
Σ1 ` p1 Σ2 ` p2
Σ1 +Σ2 ` p1 ‖ p2

Fig. 8. Typing rules and auxiliary definitions.

10

t ::= · · · | D
e ::= · · · | e#γ | ⇑b
E ::= · · · | E#γ
v ::= · · · | Dtc(v)

tc ::= ∗ | ⊗ | (| → | [s]
g ::= ∗ | D ⊗D | D(D | D → D | [s]
γ ::= σ | ιt | g↑| g↓b| γ ; γ | γ ⊗ γ | γ (γ | γ → γ | ⊥b

σ ::= END | ! γ.σ | ? γ.σ | ⊕βL〈l : σ, . . . 〉 | &β
L〈l : σ, . . . 〉

Fig. 9. Syntax extensions for gradual typing: type constructors, ground types, coer-
cions, and session coercions.

A coercion term γ is either a session coercion σ, an identity coercion ιt
indexed by a type, an injection of a ground type into type D, a projection from
D into a ground type, diagrammatic (left-to-right) composition of coercions γ ;γ,
functorial coercions that apply coercions under the type constructors for pair,
linear function, and function, or a coercion ⊥b that always fails. It is indexed with
the blame label b that is raised when the coercion is executed. The projection is
also indexed with a blame label that is raised if the underlying dynamic value
does not match the expected ground type.

Session type coercions σ mimic the syntax of session types, but with coercions
in place of types. As with subtyping, sending type positions in session types and
coercions are covariant whereas receiving positions are contravariant. The choice
coercions carry a blame map b and their range index set L as annotations. They
facilitate the addition and removal of alternative choices.

The send choice coercion ⊕βM〈l : σ | l ∈ L〉 applies to a channel with alterna-
tives at least L and it provides a channel with alternatives M. Only the coercions
for the L continuations need to be provided, the others generate blame accord-
ing to the blame map β. The domain of β is M \ L. Dually, the receive choice

coercion &β
M〈l : σ | l ∈ L〉 applies to a connection with at most M alternatives

and it provides a channel with L alternatives. Only labels in L are forwarded,
the others generate blame according to β. The domain of β is again M \ L.

3.3 Coercion Typing

Coercions come with their own type system which derives judgments of the form
γ : t⇒ t. Figure 10 contains the typing rules for coercions along with expression
typing rules for coercion application and the blame expression. It remains to
define the semantics of the coercions in Figures 11 and 12.

Applying a composed coercion gets reduced to a nested application of the
components. We split a composed coercion in this way to simplify the creation of
proxies: they only have to deal with simple, non-composed coercions at the top-
level. The identity coercion leaves its argument unchanged. The injection of a
ground type into D adds the type tag to the value. The projection from dynamic
checks the type constructor and either yields the value if the type constructors
coincide or raises a blame exception, otherwise. Applying the failure coercion
directly raises blame. A functorial coercion expands its argument and applies
the constituent coercions to the constituents of the argument. A session coercion

11

Typing rules for coercion terms

ιt : t⇒ t g↑: g ⇒ D g↓b: D ⇒ g
γ1 : t0 ⇒ t1 γ2 : t1 ⇒ t2

γ1 ; γ2 : t0 ⇒ t2

γ : t′1 ⇒ t1 γ′ : t2 ⇒ t′2

γ → γ′ : t1 → t2 ⇒ t′1 → t′2

γ : t′1 ⇒ t1 γ′ : t2 ⇒ t′2

γ (γ′ : t1 (t2 ⇒ t′1 → t′2

γi : ti ⇒ t′i

γ1 ⊗ γ2 : t1 ⊗ t2 ⇒ t′1 ⊗ t′2
⊥b : t⇒ t′

Typing rules for session coercions

ιs : s⇒ s
γ : t⇒ t′ σ : s⇒ s′

! γ.σ : ! t.s⇒ ! t′.s′
γ : t′ ⇒ t σ : s⇒ s′

? γ.σ : ? t.s⇒ ? t′.s′

(∀l ∈ L)σl : sl ⇒ s′l dom(β) = M \ L
⊕βM〈l : σl | l ∈ L〉 : ⊕〈l : sl | l ∈ L〉 ⇒ ⊕〈l : s′l | l ∈M〉

(∀l ∈ L)σl : sl ⇒ s′l dom(β) = M \ L
&β

M〈l : σl | l ∈ L〉 : &〈l : sl | l ∈M〉 ⇒ &〈l : s′l | l ∈ L〉
Expression typing rules

Σ,Γ ` e : t γ : t⇒ t′

Σ,Γ ` e#γ : t′ Σ,Γ ` ⇑b : t

Fig. 10. Coercion typing.

creates a new connection of the target type of the coercion and it forks a new
process running the expression generated by the meta-function Proxy (x, σ,y)
from the coercion σ. This process serves as a proxy between the source-typed
connection x and the target-typed connection y.

The generation of the proxy expression is straightforward (Fig. 12) except for
two special twists. One point is the generation of code from an identity coercion
ιs. It continues by mapping the type into the corresponding eta-expanded iden-

tity coercion ŝ: !̂ t.s = ! ιt.ŝ, ̂⊕〈l : sl | l ∈ L〉 = ⊕∅
L〈l : ŝl | l ∈ L〉, and analogously

for the remaining session type constructors.
The other point is the consumption of the two linearly typed channels in the

choice coercions that discard alternatives. In these cases, the proxy code bundles
the channels into a linear pair and applies a failure coercion to the pair.

4 Type Preservation and Progress Properties

This section considers the interplay between the operational semantics and the
type system. We show that reduction of expressions and processes preserves their
types. We further characterize the conditions under which typed expressions and
processes make progress. We only consider the extended calculus with gradual
types and start by establishing preservation and progress for expressions.

12

v#(γ ; γ′) → (v#γ)#γ′

v#ιt → v
v#tc↑ → Dtc(v)

Dtc(v)#tc↓b → v

Dtc(v)#tc′ ↓b → ⇑b tc 6= tc′

v#⊥b → ⇑b

v#(γ ⊗ γ′) → letx1 ⊗ x2 = v in (x1#γ)⊗ (x2#γ′)
v#(γ → γ′) → rec f(y)(v (y#γ))#γ′

v#(γ (γ′) → λy.(v (y#γ))#γ′

v#σ → pipe s′ (λy.Proxy (v, σ, y)) (λy.y)
if σ : s⇒ s′

Fig. 11. Eager cast reduction (in context P or E).

Proxy (x, ιs,y) = Proxy (x, ŝ,y)
Proxy (x, END,y) = closex; closey
Proxy (x, ? γ.σ,y) = letx1 ⊗ x2 = receivex in let y = send ((x1#γ)⊗ y) in

Proxy (x2, σ, y)
Proxy (x, ! γ.σ,y) = Proxy (y, ? γ.σ̄,x)

Proxy (x,&β
M〈l : σl | l ∈ L〉,y)

= casex of { l : λx.let y = select l y inProxy (x, σl, y) | l ∈ L,

l : λx.(x⊗ y)#⊥β(l) | l ∈M \ L }
Proxy (x,⊕βM〈l : σl | l ∈ L〉,y) = Proxy (y,&β

M〈l : σ̄l | l ∈ L〉,x)

Fig. 12. Coercion proxies.

Lemma 1 (Preservation I). Suppose that Σ, · ` e : t and that e
α−→ e′. Then

there exists some Σ′ such that Σ′, · ` e′ : t.

Lemma 2 (Progress I). If Σ, · ` e : t, then one of the following holds: 1. e is
a value; 2. e = ⇑b raises blame; 3. ∃e′ such that e → e′; 4. e = E [fork e1 e2];
5. e = E [pipe s e1 e2]; 6. e = E [requestn{s}]; 7. e = E [acceptn{s}]; 8. e =
E [select lj c{⊕〈li : si, . . . 〉}]; 9. e = E [case c{&〈li : s̄i, . . . 〉} of {li : ei, . . . }];
10. e = E [send (v⊗c{! t.s})]; 11. e = E [receive c{? t.s̄}]; 12. e = E [close c{END}].

Preservation for expressions extends to processes.

Lemma 3 (Preservation II). Suppose that Σ ` p and p → p′. Then there
exists some Σ′ such that Σ′ ` p′.

Lemma 4 (Progress II). Suppose that Σ ` p. Then one of the following holds:
1. p = 0; 2. p = ⇑b; 3. ∃p′ such that p→ p′; 4. p = p1 ‖ p2 ‖ p3 where
– p1 = E [requestn1{s}] ‖ . . . ‖ E [requestnk2{s}],
– p2 = E [acceptnk2+1{s}] ‖ . . . ‖ E [acceptnk2+k3{s}]
– {n1, . . . , nk1} ∩ {nk1+1, . . . , nk1+k2} = ∅,
– p3 = E [N1[c1{s}]] ‖ . . . ‖ E [Nk4 [ck4{s}]] where all cj are distinct and
N ::= select lj � | case� of {lj : ej , . . . } | send (v ⊗�) | receive� | close�
It is understood that p1 = 0 if k1 = 0 and analogously for p2, p3, and p4.

All proofs for the preservation results (Lemmas 1 and 3) proceed by induction on
the reduction relation. The progress results (Lemma 2 and 4) are by induction

13

on the typing derivation. The proof of the last lemma exploits associativity and
commutativity of the ‖ operator as well as the neutrality of 0.

Typing does not guarantee progress. The creation of a connection via request
and accept guarantees that the two ends of a channel start of in different pro-
cesses. However, this interaction may never happen (p1 and p2). Furthermore,
due to the presence of higher-order channels, a process may receive the other
end of a channel that it already works with. Any action on one of the ends leads
to deadlock according to p5 in Lemma 4.

5 Related Work

The introduction gives an overview of a small fraction of the work on session
types. This work is the first to explore the connection of session types with
gradual types. A further novelty is the exploration of gradual typing in the
presence of choice types.

Gradual types are also briefly explored in the introduction. Here, we offer
some additional perspective on the use of coercions in such a calculus. Henglein
[9] introduced the coercion calculus to investigate the foundations of dynamic
typing and in particular the optimization possibilities from manipulating type
tagging and untagging operations. Early work on gradual types [16] did not use
coercions, however, the need for space efficient representations [10] required a
normalization procedure for compositions of casts. This effort culminated in the
discovery of threesomes [17], roughly casts with an intermediate type, which are
a compressed representation of arbitrary sequences of simple casts. The same
paper also shows that threesomes are intertranslatable with coercions.

6 Conclusions and Future Work

We define the first calculus with session types and gradual types. The calculus
provides useful insights for interlanguage programs, where one end of a proto-
col is run by a statically typed program and the other end by a dynamically
typed one. It introduces a novel, liberal notion of cast between session types. We
establish its basic metatheory and explore an eager implementation casts with
proxies. In future work, we want to consider a different, lazy implementation of
casts with commuting conversions as well as further extensions to the calculus.

References

1. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions.
In CONCUR, volume 6269 of LNCS, pages 222–236, Paris, France, Aug. 2010.
Springer.

2. M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida. Objects
and session types. Information and Computation, 207(5):595–641, 2009.

3. T. Disney and C. Flanagan. Gradual information flow typing. In STOP, 2011.

14

4. L. Fennell and P. Thiemann. The blame theorem for a linear lambda calculus with
type dynamic. In H.-W. Loidl and R. Peña, editors, TFP 2012, volume 7829 of
LNCS, pages 37–52, St Andrews, UK, June 2012. Springer.

5. L. Fennell and P. Thiemann. Gradual security typing with references. In V. Cortier
and A. Datta, editors, CSF, pages 224–239, New Orleans, LA, USA, 2013. IEEE.

6. S. J. Gay and M. J. Hole. Types and subtypes for client-server interactions. In Proc.
1999 ESOP, volume 1576 of LNCS, pages 74–90, Amsterdam, The Netherlands,
Apr. 1999. Springer.

7. S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session
types. J. Funct. Program., 20(1):19–50, 2010.

8. S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira. Modular
session types for distributed object-oriented programming. In POPL 2010 [15],
pages 299–312.

9. F. Henglein. Dynamic typing: Syntax and proof theory. Science of Computer
Programming, 22:197–230, 1994.

10. D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing. In Trends
in Functional Programming (TFP), 2007.

11. K. Honda. Types for dyadic interaction. In E. Best, editor, Proceedings of 4th
International Conference on Concurrency Theory, number 715 in LNCS, pages
509–523, Aug. 1993.

12. K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, and N. Yoshida. Scribbling
interactions with a formal foundation. In ICDCIT 2011, volume 6536 of LNCS,
pages 55–75, Bhubaneshwar, India, 2011. Springer.

13. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In P. Wadler, editor, Proc. 35th ACM Symp. POPL, pages 273–284, San Francisco,
CA, USA, Jan. 2008. ACM Press.

14. R. Hu, R. Neykova, N. Yoshida, R. Demangeon, and K. Honda. Practical inter-
ruptible conversations - distributed dynamic verification with session types and
python. In RV, volume 8174 of LNCS, pages 130–148, Rennes, France, Sept. 2013.
Springer.

15. Proc. 37th ACM Symp. POPL, Madrid, Spain, Jan. 2010. ACM Press.
16. J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, editor, 21st ECOOP,

volume 4609 of LNCS, pages 2–27, Berlin, Germany, July 2007. Springer.
17. J. G. Siek and P. Wadler. Threesomes, with and without blame. In POPL 2010 [15],

pages 365–376.
18. J. A. Tov and R. Pucella. Stateful contracts for affine types. In A. D. Gordon,

editor, ESOP 2010, volume 6012 of LNCS, pages 550–569. Springer, 2010.
19. V. T. Vasconcelos, A. Ravara, and S. J. Gay. Type checking a multithreaded

functional language with session types. Theoretical Computer Science, 368(1-2):64–
87, 2006.

20. P. Wadler. Propositions as sessions. In R. B. Findler, editor, ICFP’12, pages
273–286, Copenhagen, Denmark, Sept. 2012. ACM.

21. P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Proc. 18th
ESOP, volume 5502 of LNCS, pages 1–16, York, UK, Mar. 2009. Springer.

22. R. Wolff, R. Garcia, É. Tanter, and J. Aldrich. Gradual typestate. In ECOOP,
volume 6813 of LNCS, pages 459–483, Lancaster, UK, 2011. Springer.

15

