
The 2nd European Young Researchers
Workshop on Service Oriented Computing

11-12 June 2007

Stephen Gorton
University of Leicester
smg24@mcs.le.ac.uk

Monika Solanki
Imperial College

monika@doc.ic.ac.uk

Stephen Reiff-Marganiec
University of Leicester

srm13@le.ac.uk

http://www.cs.le.ac.uk/events/yrsoc2007

Preface

Service Oriented Computing (SOC) is more than just ideas related to those
services: in particular it is a chance of bringing together the business/user domain
and the services domain. The word ’service’ encompasses web services, semantic
web services, grid services and e-services.

The 2nd European Young Researchers Workshop on Service Oriented Com-
puting (YR-SOC 2007) is a 2-day workshop aimed at PhD students, young re-
searchers working in the industry and researchers who have completed their
studies in the last few years. It followed on from the highly successful inaugral
event, hosted by De Montfort University in 2005. YR-SOC 2007 took place at
the University of Leicester, UK, and was organised by Stephen Gorton, Monika
Solanki and Stephan Reiff-Marganiec.

The aim of the workshop is to build a reputable and respectable forum for
young researchers with inputs from industry practitioners. The core objectives
are to exchange information regarding advancements in the state of the art and
practice of SOC, as well as to identify the emerging research topics and define
the future trends in this domain. Contributions cover aspects such as frameworks
for building SOC applications, SOC composition, orchestration and choreogra-
phy, SOC modelling and design, Semantic Web, ontologies, and SOC, and SOC
discovery and selection (although the call was considering further areas).

The programme included invited talks from Mark Little (JBoss, UK), Steve
Ross-Talbot (Pi4 Technologies, UK) and Martin Wirsing (Ludwig-Maximilians-
Universität München, Germany), plus presentations by Luis Andrade (ATX Soft-
ware, Portugal) and Nicolas Gold (SOSoRNet, UK). The technical programme
included a rich variety of papers from young researchers across Europe, including
Belgium, Germany, Italy and the UK.

The workshop received a total of 24 submissions, which were each reviewed
by at least 3 people from a strong programme committee of international reputa-
tion. The committee decided to accept 16 papers. In addition, 7 poster submis-
sions were received and the PC Chairs elected to accept them all for display at
the workshop. These proceedings include all accepted submissions, which were
updated in light of the reviews given. In addition, the abstracts of the poster
submissions are included.

The workshop was organised with generous sponsorship from the following
organisations:

University of Leicester
ATX Software
SENSORIA
SOSoRNet
De Montfort University (STRL)

June 2007 Stephen Gorton, Monika Solanki and Stephan Reiff-Marganiec

Preface III

Programme Chairs

Stephen Gorton (University of Leicester, UK)
Monika Solanki (Imperial College, UK)
Stephan Reiff-Marganiec (University of Leicester, UK)

Steering Committee

Barry Norton (Open University, UK)
Stephan Reiff-Marganiec (University of Leicester, UK)
Monika Solanki (Imperial College, UK)

Programme Committee

We are extremely grateful to the committee for their reviews of the submissions:

Roberto Bruni (University of Pisa, Italy)
Christoph Bussler (CISCO Systems Inc., USA)
Antonio Cau (De Montfort University, UK)
Schahram Dustdar (Technical University of Vienna, Austria)
David Edmond (Queensland University of Technology, Australia)
Dieter Fensel (DERI Innsbruck, Austria)
Gianluigi Ferrari (University of Pisa, Italy)
Reiko Heckel (University of Leicester, UK)
Frank Leymann (University of Stuttgart, Germany)
Aad van Moorsel (University of Newcastle, UK)
Arun Mukhija (University College London, UK)
Barry Norton (Open University, UK)
Mike Papazoglou (University of Tilburg, The Netherlands)
Stefan Tai (IBM Research, USA)
Emilio Tuosto (University of Leicester, UK)
Kenneth Turner (University of Stirling, UK)
Mathias Weske (University of Potsdam, Germany)
Hongji Yang (De Montfort University, UK)
Jian Yang (Macquarie University, Australia)
Gianluigi Zavattaro (University of Bologna, Italy)

IV

External Reviewers

In addition to the Programme Committee, we are grateful to the following peo-
ple who also provided reviews:

Vasilio Andrikopoulos
Laura Bocchi
Pin Chen
Sara Corfini
Stefania Galizia
Roberto Guanciale
Andrew Hughes
Peter Kilpatrick
Jacek Kopecky
Benedikt Kratz
Hernan Melgratti
Bart Orriëns
Carlos Pedrinaci
François Scharffe
Monika Solanki
Daniele Strollo
Ioan Toma
Zhixian Yan

Table of Contents

Full Papers

Quality Estimation for Streamed of VoIP Services . 1
Mousa Al-Akhras, Hussein Zedan

A Novel Approach to Web Services Discovery . 7
Marco Comerio

Verification of WS-CDL choreographies . 13
Flavio Corradini, Francesco De Angelis, Alberto Polzonetti

Advanced Language Constructs for Developing Intra-organizational
Service Architectures . 19

Sven De Labey, Eric Steegmans

Service Referrals in BPEL-based Choreographies . 25
Gero Decker, Oliver Kopp, Frank Puhlmann

Modelling Compensation with Timed Process Algebra 31
Simon Foster

Service and Protection Level Agreements for Business Processes 38
Ganna Frankova, Artsiom Yautsiukhin

A Model for exploring the Service-oriented Software Engineering
(SOSE) challenges . 44

Qing Gu, Patricia Lago

Methodology for a Precise Development Process of Service Oriented
Applications . 50

László Gönczy

Policy-Driven Service Discovery . 56
Helge Janicke, Monika Solanki

Course Generation as a Web-Service for E-Learning Systems 63
Tianxiang Lu, Carsten Ullrich, Babara Grabowski

Automated Web Service Composition in Practice: from Composition
Requirements Specification to Process Run. 69

Annapaola Marconi, Marco Pistore, Paolo Traverso

A Survey of Service Oriented Development Methodologies 75
Ervin Ramollari, Dimitris Dranidis, Anthony James Howard Simons

Verifying Business Process Compatibility . 81
Peter Wong, Jeremy Gibbons

A modified Logic Scoring Preference method for dynamic web service
evaluation and selection . 87

Hong Qing Yu, Hernán Molina

Modelling and Analysing an Identity Federation Protocol: Federated
Network Providers Scenario . 93

Maurice ter Beek, Corrado Moiso, Marinella Petrocchi

Posters

Aspect Oriented Web Service Composition and Choreography Analysis . . 103
Connie Haoying Bao, Nicolas Gold

WS-Engineer: Tool Support for Engineering Web Service Compositions
and Choreography . 106

Howard Foster

Reengineering Systems for Multi Channel Access - Systematic
Literature Review Protocol . 108

Clive Jefferies, Pearl Brereton

Using Enhanced Causal Paths based on Passive Tracing in Determining
a Web Service Topology . 110

Marian Mohr, Nicolas Gold

Typed Abstractions for Client-Service Interactions in OSGi 113
Sven De Labey, Eric Steegmans

A Mapping BPEL4WS Processes into CSP . 115
Tuvshintur Tserendorj

Inference Security Threats in Service-Based Systems 117
Philip Woodall, Pearl Brereton

Full Papers

Quality Estimation for Streamed VoIP Services

Mousa Al-Akhras and Hussein Zedan

STRL, De Montfort University, Leicester, UK
makhras@dmu.ac.uk, hzedan@dmu.ac.uk

http://www.cse.dmu.ac.uk/STRL/index.html

Abstract. Media services over IP networks are provided through Voice
over IP (VoIP) Protocols. In this paper an architecture for Quality of
Service (QoS) service within an enterprise business model is presented.
In the proposed architecture an enterprise offers media streaming services
to its clients and the client needs to pay for this service. The quality of
the received stream will be measured and based on the measured quality
the user’s profile is updated with the required cost for using the service.

keywords Voice over IP, VoIP, Multimedia, Service Quality, Streaming.

1 Introduction

Service Oriented Computing (SOC) has become an active area of research. The
research directions have concentrated mainly on areas such as compositionality,
service description languages, orchestration, models, etc. However a fundamental
research question to SOC is how these services provide functionalities within an
acceptable level of quality. This is very much embedded within QoS area. Devel-
opers/Designers often relegate these issues to the service providers themselves.
While this may be acceptable, we need to lift this responsibility to identifiable
self-contained service that can measure QoS of a given service(s) within a given
domain. This paper addresses the concept and the engineering of such a service.
We also give a general architecture which is realisable within SOC. The consid-
ered domain of application is voice synthesis and streaming which has its use
in for example the art world, video on demand and multimedia broadcasting.
These QoS issues are packaged in a separate and unique service that could be
used, composed, interacted with by other services.

Transmission of voice traffic over data networks such as packet switching
Internet Protocol (IP) networks in what is coined as Voice over IP (VoIP) has
revolutionised the way telecommunication services are being delivered. This in-
tegration of voice and data over one network offers several advantages over pure
telephone networks and makes the development of new and innovative services
possible. The IP network was originally designed to carry non real-time traffic
such as email or file transfer. Carrying real-time traffic in addition to non real-
time traffic over such networks is a challenge due to the possible degradations

2 Mousa Al-Akhras and Hussein Zedan

due to packet loss, delay and jitter (difference in packet interarrival time). Even
with such challenges, there are many great promises of such integration [1–3].

The advantages of the new technology are many, including: lower equipment
cost than the case of the pure telephone network, lower bandwidth requirements,
lower operating and management cost for one unified network, and integration
of both voice and data into one network, which makes the creation of new and
advanced services possible. Several applications are made possible by the inte-
gration of voice and data into one network. Some of the applications include:
call-centre integration, directory service over the network, making international
calls at the price of local calls, fax over IP, and broadcasting of voice and/or
video traffic.

The latter service is quite important and it is the focus of this paper as we
assume having a media server that streams voice/video to its customers, where
the media stream is provided by one or more media organisation(s). The cus-
tomers are charged for the media stream they receive based on the quality of the
stream, which depends on the network characteristics at the time of streaming.

In SOC, the focus has thus far been on service composition, discovery, pub-
lishing and description. Little work has been done on QoS aspects of a given
service. This paper provides an approach for measuring QoS for any multimedia
service and in particular for streamed VoIP. The scenario for the above system
is described in section 2. Several protocols have been developed to aid in VoIP
signalling, and these protocols will be discussed in section 3. The ways the qual-
ity is measured in the system are discussed in section 4. Section 5 describes the
QoS service architecture of the system. Section 6 describes the interface for the
QoS service. Finally, section 7 concludes the paper.

2 Service Scenario

In our scenario depicted in Figure 1, an enterprise owns a media server that
establishes sessions with the enterprise’s customers. During a session different
kinds of media can be streamed to the user over the IP network. The server gets
its materials from several service providers including TV stations providing ei-
ther live streaming of their available channels or some of their recorded programs.
Other providers could include radio stations providing either live broadcasting
of the radio stations or a set of recorded programs. Other sources of media could
be a music database where different songs could be retrieved. The clients of the
media server can reach these media sources through the media server. A client
can connect to one or more media sources depending on his/her contract with
the media server enterprise, and the media server can then stream the required
materials over the IP network.

Quality Estimation for Streamed VoIP Services 3

Fig. 1. Service Scenario

3 VoIP Protocols

The way one or more of these media sources is described, published, discovered
and then streamed to the clients depends on the associated protocols. The basic
protocol stack for transmitting VoIP packets is RTP/UDP/IP. Real-time Trans-
port Protocol (RTP) is attached to provide information related to the speech
packet such as a time-stamp to help in order playout of the packets. Also, such
information can help identifying any loss of packets during transmission and
the time stamp aids in determining the time taken for the packet to reach the
receiver. User Datagram Protocol (UDP) is added in the transport layer, while
Internet Protocol (IP) header is added in the network layer. There are also many
protocols to help in session management. These include [1, 4–6]:

– Session Initiation Protocol (SIP): SIP is a flexible signalling protocol with
many optional and user-defined fields that provide the required mechanism
to set up and tear down media sessions and other signalling-related messages.

– Session Description Protocol (SDP): SIP does not care about the media
type to be transported. It relies on SDP for exchanging media capabilities
including the media format(s) to be used.

– Session Announcement Protocol (SAP): SAP is used for advertising mul-
timedia sessions described using SDP and transported using SIP. The an-
nouncement is within the same scope as the session it is announcing.

– Real Time Streaming Protocol (RTSP): RTSP is the most important proto-
col in terms of its capabilities in streaming media sessions. RTSP allows
clients to control media servers by instructing commands to record and
playback multimedia sessions including functions such as seek, fast forward,
rewind, and pause. A user can use SIP to invite a media server to a multi-
media session, and then uses RTSP to control operations during the session.

4 Measurement of the quality

In our scenario described in section 2, it is essential to measure the quality for
technical and commercial reasons as clients of the media server enterprise are
expecting a certain level of quality for this service. If the quality does not meet

4 Mousa Al-Akhras and Hussein Zedan

the user’s expectations as described in his/her agreement with the enterprise, the
payment should be cancelled/modified to reflect the degradation to the quality.

The quality in the system will be measured objectively on the user side us-
ing one of the International Telecommunication Union-Telecommunication Stan-
dardisation Sector (ITU-T) Recommendations called the E-Model [7]. In the
E-Model the network and terminal impairments such as packet loss, delay and
jitter are used to estimate the quality of the received stream and give estimation
on a scale of 1 to 5 where the numbers means the following (5) Excellent, (4)
Good, (3) Fair, (2) Poor, (1) Bad. Once the quality of the stream is estimated,
the server is notified in order to update the user’s profile with the session details
including the duration and the quality.

5 QoS Service Architecture

The enterprise responsible for operating the media server must explicitly notify
its customers that the quality of the stream is not guaranteed and they need to
be aware of this while using the service. However, the required payment depends
on the received quality.

Based on the company’s policy there are two types of customers. Customers
of the first type are aware of the variation in the quality and they are prepared
to pay different rates for the received stream where the amount to be paid is
proportional to the quality they receive. These customers may determine a lower
bound for the quality below which the stream becomes useless and the stream is
rejected. Customers of the second type are aware of the variation in the quality
as well, but they are not prepared to pay for the service if the quality is below
a certain level (good quality for example). As a kind of appreciation for its cus-
tomers of the first type for accepting the stream even with a lower quality than
expected, the enterprise offers 10% reduction in its streaming rates for these
customers.

The company dynamically advertises its current streams with a guideline es-
timation of the expected quality derived from the current network conditions.
The published quality is just a guideline and the user should be aware of a pos-
sible degradation and may be improvement could happen without prior notice.
On the client side, media streams are played back to the client, which is facili-
tated by a media playback service. At the same time, the received media stream
is captured by a QoS estimation service running on the client side. The QoS
estimation service uses the media stream and the RTP/UDP/IP headers of the
received packets in order to estimate the quality of the stream.

Once the quality is estimated on the client side, a record of the session details
is built including a session unique identifier, duration and quality. This record
is then reliably transmitted (in an XML format to guarantee platform indepen-

Quality Estimation for Streamed VoIP Services 5

dence) to the media server or possibly to a separate server (to reduce the load
on the media server). Once the session record arrives, the session details are
extracted from the XML file. Then the cost is calculated and the user’s profile
is updated with the session details including the duration, quality and most im-
portantly the cost for receiving that stream. Figure 2 illustrates the proposed
architecture. Once the user’s profile is updated with the session details, a bill
could be produced possibly on a daily, weekly or monthly basis.

Fig. 2. Service Architecture

6 QoS Estimation Service: Details and Interface

As discussed earlier in section 5, the received media stream is played back and
at the same time the stream is captured by a QoS estimation service running
on the client side in order to estimate the quality. The QoS estimation service
needs to be a non-intrusive based quality estimation service as it is running in
real-time and because the original stream before being transmitted over the IP
network is not available at the receiver side. The only material available at the
receiver side is the degraded stream. This degradation is due to the nature of
the IP network.

As described in section 4 the E-Model is used to estimate the speech quality
non-intrusively. The E-Model uses some of the network and terminal impair-
ments and utilizes the information contained in the RTP/UDP/IP in order to
estimate the quality. The pseudocode for the E-Model is shown in Figure 3.
From the RTP header information described in section 3, packet loss ratio and
packet loss distribution for the stream can be measured. From such information,
the E-Model estimates the degradation due to packet loss. Also, Degradation
due to delay is estimated by the E-Model using the time stamp information
contained in the RTP packet header. By combining degradation due to different
impairments, the overall degradation can be computed as shown in Figure 3.
This overall degradation can then be mapped into a quality estimation on a 1
to 5 scale as described in section 4.

6 Mousa Al-Akhras and Hussein Zedan

%Sum the degradation due to all factors

DegradationSum=Degradation_Loss+Degradation_Delay+Degradation_Echo+ . . .

R0=ReferenceQualityValue

%Subtract Sum of Degradation from a reference value to calculate R-Rating factor

R=R0-DegradationSum

%Convert the R-Rating factor to a quality estimation on the range 1 to 5

QualityEstimation=mapR(R)

Fig. 3. Pseudocode for the E-Model QoS Estimation Service

The QoS estimation service can be called from within the media playback
service. The media playback sends the session reference to the QoS estimation
service, which could be done using a command button. The QoS estimation
service then replies by sending its quality estimation to the media playback
which could be shown to the user via a label within the media playback service.
More details about this service and quality estimation issues can be found in [8].

7 Conclusions

In this paper a media service provisioning scenario is presented, where QoS
is estimated through a specialised service. In this scenario an enterprise offers
streamed media to its clients with a variable quality. Upon receiving the media
stream, the quality of the stream is estimated and based on the quality of the
received stream. The customer’s profile is updated with the details of the stream,
and the customer is billed accordingly.

References

1. Collins, D. Carrier grade voice over IP. McGraw-Hill Companies,2nd edition, 2003.
2. Low, C. The Internet telephony red herring. Global Telecommunications Conference,

1996.
3. Rosenberg, J. and Lennox, J. and Schulzrinne, H. Programming Internet telephony

services. IEEE Network , 13(3):42–49, 1996.
4. Schulzrinne, H. and Wedlund, E. Application-layer mobility using SIP. In IEEE

Service Portability and Virtual Customer Environments, pages 29–36, 2000.
5. Schulzrinne, H. and Rosenberg, J. Signaling for Internet telephony. In Proceedings

Sixth International Conference on Network Protocols, pages 298–307, 1998.
6. Nachiappan, N. and Sjoqvist F. Survey of Voice over IP (VoIP). tech. rep., Standford

University , 2004.
7. ITU-T. Recommendation G.107 - The E-model, a computational model for use in

transmission planning. International Telecommunication Union-Telecommunication
Standardization Sector (ITU-T), 2005.

8. Mousa Al-Akhras. Packet Loss in Voice over Internet Protocol Networks. Ph.D.
Thesis (To be Submitted), School of Computing, Faculty of Computing Sciences and
Engineering, De Montfort University, UK, 2007.

A Novel Approach to Web Services Discovery

Marco Comerio

Universitá di Milano - Bicocca,
Via Bicocca degli Arcimboldi 8, 20126 Milano Italy

comerio@disco.unimib.it

Abstract. The discovery of a Semantic Web service (SWS) is the act
of locating a machine-processable description of a SWS-related resource
that may have been previously unknown and that meets certain func-
tional criteria. The increasing availability of SWSs that offer similar func-
tionalities requires the discovery process to be enhanced with a selection
phase that considers non-functional properties (NFPs) of the SWSs. This
paper proposes a technique to enrich SWS requests and descriptions with
the specification of NFPs and a novel approach to a NFP-based SWSs
discovery.

Key words: Web Services Discovery, Semantic Web Services, Non-functional
properties, Semantic Matching.

1 Introduction

Service-Oriented Computing (SOC) is a computing paradigm that proposes ser-
vices as the basic constructs for the development of rapid, low-cost and easy-to-
compose distributed applications in heterogeneous environments [5].

Currently, Web services (WSs) are the technology enabling the implementa-
tion of the SOC paradigm to develop Web processes accessible within and across
organizational boundaries. Nevertheless, there is a growing consensus that WSs
alone are not sufficient to develop valuable and sophisticated Web processes due
to the degree of heterogeneity, autonomy, and distribution of the Web [1].

In order to address this problem, an integrated technology for the next gener-
ation of the Web by combining Semantic Web technologies and Web services has
been proposed. Semantic Web services (SWSs) allow for the (semi)-automatic
development of Web processes representing complex interactions between orga-
nizations.

The discovery of a SWS is the act of locating a machine-processable descrip-
tion of a SWS-related resource that may have been previously unknown and
that meets certain functional criteria. The increasing availability of SWSs that
offer similar functionalities requires the discovery process to be enhanced with
a selection phase that considers non-functional properties (NFPs) of the SWSs.
NFPs can be considered to be constraints beyond the functionalities of a SWS.
Therefore, NFPs might be quite relevant to match a SWS request with a SWS
description. In fact, even if a SWS matches the requested functionalities, it can
still be unacceptable in terms of NFPs (e.g., cost is too expensive).

8 Marco Comerio

The management of NFPs is not a simple task because: (i) NFPs are char-
acterized by several properties; (ii) NFPs are of different kinds and (iii) NFPs
are often inter-dependent. All these problems can be addressed by developing
ontologies of NFPs (OntoNFPs) to formalize definitions, relations, dependencies,
heterogeneous measurements and evaluation methods.

This scenario highlights two needs: (i) enrichment of SWS descriptions with
a well-defined set of NFPs and (ii) enhancement of the matching functional-
ity between SWS requests and descriptions. The paper is organized as follows.
Section 2 presents the state of the art focusing on approaches available in the
literature for describing NFPs and for matching SWS requests and descriptions.
Section 3 proposes a technique for describing NFPs. Section 4 presents a novel
approach for a NFP-based SWS discovery process. Finally, Section 5 draws con-
clusions and shows the most relevant open problems of my research activity.

2 Related Work

In the literature, several approaches for describing NFPs and for matching a
service request with a service description are available. The importance of NFPs
to support sophisticated service discovery, service selection, automated service
negotiation and dynamic service substitution is the focus of [3] where a model
to describe the domain independent NFPs of services is proposed. This work
can be considered as a starting point towards a semantically enabled solution
for NFP-based service discovery and selection.

Several approaches aim to create a model for describing various aspects re-
lated to SWSs. WSMO [9] is an example of these approaches. Regarding the
description of NFPs, [6] discusses the current limitations of modelling NFPs
with WSMO and makes a set of proposals towards a richer NFPs modelling
support. One of the proposed approaches consists of describing NFPs accord-
ing to the model for capabilities in WSMO. NFPs are defined by using logical
expressions as pre/post-conditions, assumptions and effects are being defined in
a capability. The new technique for modelling NFPs described in Section 3 can
be used to enrich the one in [6] with the use of policies. A policy permits the
specification of an offered service level agreement based on NFPs values.

An algorithm to measure the degree of matching between two concepts is
proposed in [4]. The different values of matching degrees (namely exact, plug in,
subsumes and fail) are determined by the minimal distance between concepts in
a reference taxonomy tree. The proposed solution is based on DAML-S and it
is performed by considering only the capabilities of a service in terms of inputs,
outputs, preconditions and effects. NFPs are not considered as inputs of the
matching algorithm.

In [7], NFPs are modelled with an extension of the nonFunctionalProper-
ties class already defined in WSMO that supports a richer description of NFPs
characteristics (e.g., metricName, valueType, MeasurementUnit). The semantic
matching is performed between qualities of service (QoSs) requested by an user
and offered by several providers. The proposed method consists in normaliz-

A Novel Approach to Web Services Discovery 9

ing QoS values in the range [0..1], scaling the value ranges with the maximum
and minimum values of each quality metric and evaluating the global degree of
matching for each provider. This method deals only with QoSs that are a subset
of NFPs. The heterogeneity of the full set of NFPs makes the proposed method
difficult to apply. For example, the normalization of NFPs values is a complex
activity because NFPs are strictly related to a reference domain.

3 NFP Description

NFPs are able to enrich the description of a service. Due to the wide range of
possible NFPs, three different perspectives can be classified: (i) Business: NFPs
related to service nature and described from a business perspective. An example
is Payment Methods (i.e., acceptable methods to make a payment); (ii) WS
Provider : NFPs related to service delivery and described from a technological
perspective. An example is Performance (i.e., how fast a WS request can be
completed); (iii) Web service: NFPs related to the implementation of the Web
service. An example is the percentage of failure of a payment operation (i.e., the
frequency of incorrect behavior of a payment operation).

Ontologies of NFPs (OntoNFPs) are used as formal references that fully de-
scribe properties and relations of each NFP. In this paper, I propose a technique
for the description of two different types of NFPs: offered NFPs (offNFPs) to be
included in SWS description and NFP constraints (conNFPs) to be included in
SWS requests. OffNFPs are NFPs supported by the provider of the SWS. A SWS
can expose different sets of offNFPs for the same functionalities. For example a
SWS can offer a cost of 10 Euros and a response time of 10 seconds, or a cost of
20 Euros and a response time of 5 seconds. In order to express different sets of
NFPs, the concept of NFP-policy as a joint offer of offNFPs is used. OffNFPs
are described by:

– a property name (e.g., minimumCost), which represents a concept of On-
toNFP;

– a value (e.g., 45), which is the value assumed by the property;
– a measurement Unit (e.g., USD), which represents the attribute of the rela-

tion pattern which are fillers of properties of an OntoNFP.

Otherwise, conNFPs are requirements that the requester of a SWS wants
to have satisfied and they are collected in NFP-Requests that represent the
requester-side counterparts of NFP-policies. ConNFPs are described by:

– Property name (e.g., Cost);
– Constraint Expression: can be composed by several items each one specified

with:
• Constraint Operator (e.g., =, between, exist);
• Constraint Value (e.g., 50; [20..200], medium);

– Measurement Unit (e.g., USD);
– Relevance: defines the importance of a NFP constraint. It assumes a value

in the range [0..1], where 0 means weak constraint and 1 means strong con-
straint (i.e., if the NFP is not exactly matched the service cannot be invoked).

10 Marco Comerio

4 Semantic Discovery Process

Fig.1 shows a novel approach to WS discovery that enriches the traditional
UDDI-based process with the use of semantics and evaluation of NFPs. The
proposed SWSs discovery process is composed of five different phases.

Fig. 1. Semantic Discovery Process

The first phase is Mediation which at setup time defines mediators to support
matching functionalities. There are two main steps: (i) the definition of the
mediators, that are matching rules for pairs of conNFPs and offNFPs; (ii) the
definition of the meta-mediators, that identifies which matching rules need to be
invoked for a NFP-Request.

After Mediation the discovery process proceeds at runtime with the Func-
tional SWS Discovery that is the traditional SWSs discovery process. The activ-
ity has the goal of finding a list of SWSs that totally satisfy the functionalities
required by an end-user [2].

The NFP Evaluation phase is in charge of exploiting the matching rules
stored in mediators and meta-mediators to compute a set of numerical values in
the range [0..1]. Each value expresses the degree of matching between a conNFP
and an offNFP. The result of the NFP Evaluation is a set of values in the range
[0..1] associated with each NFP-policy of each SWS identified in the Functional
SWS Discovery.

This result is the input of the Filtering phase that consists in discarding
SWSs with NFP-Policies that do not satisfy user minimum requirements and
in evaluating a global degree of matching of each NFP-Policy. This activity is
composed of two steps: (i) Mandatory NFPs-driven SWSs discarding : checks if
the degree of matching is equal to 1 for all conNFPs with Relevance equal to 1.
Otherwise, the related NFP-Policy is discharged and it is no longer considered
during the selection process. (ii) Calculus of NFP Global Value (NGV): for each
NFP-Policy evaluates the NGV with the following formula:

NGV =
n∑

i=1

mi ∗ ri (1)

A Novel Approach to Web Services Discovery 11

where mi is the result of matchmaking the i-esim conNFP and ri is the relevance
of the i-esim conNFP. The result is a value in the range [0..n] that identifies the
global degree of matching of a NFP-Policy.

Finally, the Ranking phase sorts the policies of the SWSs on the basis of
their NGV values.

Fig. 2. Examples of NFP-Request and SWS Descriptions

In order to illustrate the proposed approach, let us consider the following
scenario: a user is searching for a WS that is able to provide a map with the
best route to cover a set of places. The NFP-Request (see Fig.2) is composed
of a set of conNFPs expressed by <propertyName, constraintExpression, mea-
surementUnit, relevance>. Let us suppose that mediators and meta-mediators
have been already defined and Functional SWS Discovery has returned a set
of similar SWSs, each associated with different NFP-policies characterized by
different values of offNFPs. As shown in Fig.2, each offNFP is expressed by
<propertyName, value, measurementUnit>.

NFP evaluation starts with the invocation of the meta-mediator associated
to the NFP-Request. This component uses matching rules defined by mediators
to evaluate the degree of matching between pairs of <offNFP, conNFP>. The re-
sults are the following: SWS1(Policy1)=<1,1,1,0.3>, SWS1(Policy2)=<0,1,1,1>
and SWS2(Policy1)=<1,1,0.6,0.6>. The Filtering phase takes these results as
inputs and concludes that: (i) SWS1(Policy2) is discharged. It is not considered
during the selection process because it does not satisfy the strong constraint
related to covered places; (ii) the NGVs are equal to 2.61 for SWS1(Policy1)
and 2.66 for SWS2(Policy1). Finally, the Ranking phase orders SWSs and the
related policies on the base of NGVs. SWS2 with Policy1 is shown to the user
as the best SWS to invoke.

5 Conclusion

In this paper, I propose an ongoing work concerning the definition of a NFP-
based SWS discovery process. The proposed approach leads to several activities

12 Marco Comerio

I am working on. The first one deals with the use of the WSMO environment to
make experiments in order to validate the proposal. I am defining an extension
of the Web Service Modeling Language (WSML)[8] of WSMO that permits the
specification of NFP-Requests in SWS requests (Goal in WSMO) and NFP-
Policies in SWS descriptions. Moreover, I am working on the design of mediators.
I am currently investigating the possibility of designing them by means of F-logic
rules stating when a conNFP of a NFP-Request is satisfied by an offNFP of a
NFP-Policy.

Another activity is related to the definition of formulas to compute the degree
of matching between two NFP values. The degree of matching of pairs <conNFP,
offNFP> depends on the constraint operator o expressed in the NFP constraint
and it is computed by formulas like degree=fo(OffValue,ReqValue). I am working
to define the formulas related to the most common constraint operators.

Acknowledgements

The work presented in this paper has been partially supported by the European
IST project n. 27347 SEEMP - Single European Employment Market-Place and
the Italian FIRB project RBNE05XYPW NeP4B - Networked Peers for Business.

References

1. J. Cardoso and A. P. Sheth. Introduction to semantic web services and web process
composition. In Proc. of First Intl Workshop on Semantic Web Services and Web
Process Composition (SWSWPC’04), San Diego, CA, USA, 2004.

2. E. DellaValle and D. Cerizza. The mediators centric approach to automatic web
service discovery of glue. In Proc. of the 1st Intl Workshop on Mediation in Semantic
Web Services (MEDIATE2005), pages 35–50, Amsterdam, The Netherlands, 2005.

3. J. O’Sullivan, D. Edmond, and A. ter Hofstede. Formal description of non-functional
service properties. In Technical report, Queensland University of Technology, Bris-
bane. Available from http://www.servicedescription.com/, 2005.

4. M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic matching of
web services capabilities. In Proc. of the First Intl Semantic Web Conference on
The Semantic Web (ISWC ’02), pages 333–347, London, UK, 2002.

5. M. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. Krämer. Service-
oriented computing: A research roadmap. In Service Oriented Computing (SOC),
Dagstuhl Seminar Proceedings, 2006.

6. I. Toma, D. Foxvog, and M. C. Jaeger. Modeling qos characteristics in wsmo. In
Proc. of the 1st workshop on Middleware for Service Oriented Computing (MW4SOC
2006), pages 42–47, New York, NY, USA, 2006.

7. X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A qos-aware selection model for
semantic web services. In Proc. of the 4th Intl Conference on Service-Oriented
Computing (ICSOC’06), pages 390–401, Chicago, IL, USA, 2006.

8. WSML. The Web Service Modeling Language (WSML). Available at:
http://www.wsmo.org/TR/d16/d16.1/v0.21/20051005/, 2005.

9. WSMO. The Web Service Modeling Ontology (WSMO). Final Draft. Available at:
http://www.wsmo.org/TR/d2/v1.2/20050413/, 2005.

Verification of WS-CDL choreographies

Flavio Corradini, Francesco De Angelis, Alberto Polzonetti

Department of Mathematics and Computer Science,
University of Camerino, Via Madonna delle Carceri 9,

62032, Camerino (MC), Italy
e-mail: {name.surname}@unicam.it

Abstract. In this paper we report an approach to formal verification
of web service composition expressed using the WS-CDL language by
means of model checking. We analyze the WS-CDL language source and
isolate the necessary information to build a PROMELA model suitable
for the verification using the SPIN model checker.

1 Introduction

In recent years, the need of distributed applications able to support information
systems has driven the development of new technology for the vision of the
Service Oriented Computing. Currently, this vision is implemented with the web
service technology that rely on WSDL [1], SOAP [2], UDDI [3], WS-BPEL [4],
WS-CDL [5] and many other WS-* standard.

In this context it is an important matter to deal with verification and valida-
tion, moreover, the needs of models specification is very important to show how
different services can interact with each other by exchanging messages. Indeed,
like any other software application composed by processes, or components, or
objects, and so on, an application built from services needs a level of depend-
ability that cannot be ensured with approaches that lack formal verification.
Although, existing model checking [6] techniques can be extended or adapted to
deal with new problems arising in the web service world.

In this paper we propose a technique to model check web services chore-
ographies expressed in the WS-CDL language. WS-CDL [5] [7] (Web Service
Choreography Description Language) is an XML-based language for specifying
choreography models that describe collaborations between a collection of ser-
vices that interact each other to achieve a goal. Each involved party wishes to
remain autonomous and no party drive the interactions because there is not a
centralization point of control. A choreography does not describe internal action
of participants but concerns only with externally visible effects capturing them
from a global perspective. We use WS-CDL as a model for the verification and
we provide a translation of this model to a PROMELA model used by the model
checker SPIN to verify properties [8].

SPIN is a state-of-the-art model checker developed by G.J Holzmann [8]
based on automatons. It allows simulation and verification of models written in

14 Flavio Corradini et al.

PROMELA (Process Meta-Language) that are composed by a set of communi-
cating processes that exchange messages along channels.

For its maturity an potentiality SPIN is a widely used model checker used
in various application domain and several approaches for the verification of web
services compositions, included the one presented here, are based on it.

2 WS-CDL to PROMELA Translation

We show the mapping from WS-CDL to PROMELA using a little example com-
posed by four participants, each one is implemented as a web service. The par-
ticipants are represented with four roleType: a Buyer, a Seller, a CreditChecker
and a Shipper. The Buyer starts the interactions requesting a quote to the Seller.
After that the seller has replied, the Buyer can accept the quote or can starts
a bartering with the Seller using messages to update the proposed quote. When
the Buyer accept the quote sends two messages to the seller: one carries the
accepted quote and the other carries the channel that can be used for the com-
munication with the Buyer itself. The Seller checks the credit card information
to the CreditChecker and, if this operation is successful, forward the channel
to the shipper with all the detail to complete the delivery. Now, the Shipper
has a channel to directly communicate to the Buyer and can send it the right
information for the delivery. Clearly, if the CheckCredit doesn’t return a right
credit information to the Seller the Buyer cannot complete the purchase.

The translation from WS-CDL to PROMELA includes the identification of
the actors of the system modeled by web services and that can be mapped as pro-
cesses in PROMELA. For each participantType in WS-CDL a process is built
with the name used in the attribute name. Moreover a label end processname is
used to mark the initial state. This expedient is used to prevent a system dead-
lock if a process is never called. This can happen - as in the example - when a
web service/process is not involved in the choreography because something pre-
vent this. (In the example the Shipper isn’t used if the CreditChecker returns
a CreditReject message to the Seller). This is realistic because represents a
web service that is waiting for a request, and it can be in that state also when
the choreography will be complete and it had not participated.

Each channel variable defined in the choreography becomes a channel variable
in PROMELA. In the mapping each channel can carry two int, the first represent
the action invoked and the second is a constant that represents the type of the
message exchanged by the processes. To do this, for each action and for each
message type a constant is defined.

About channels, there is the necessity to make a distinction between channels
used to send, and receive, data and channels used for channel passing. If a
channel can be used for channel passing it can be translated into two channels
in PROMELA. One for data ({int, int}) and one for sending other channels
({int, chan}). The distinction is made looking at the channelType that shows
which channels are used to pass other channels and which is the type of the
passed channel. Variables that has this latter channelType are not translated

Verification of WS-CDL choreographies 15

into global channels because this will be local to the process that sends it for
first.

Each activity is mapped looking at several information that are present inside
an interaction: (i) relationshipType, fromRoleTypeRef and toRoleTypeRef;
(ii) channelVariable; (iii) exchange name, informationType and action. The
relationshipType is used to identify the processes involved in the interac-
tion. Using the fromRoleTypeRef value (resp. toRoleTypeRef), and looking
at participantType definitions, it is possible the identification of the name of
the participantType with the given role. This was used to name a process in
PROMELA and it is the process that starts the interaction sending the mes-
sage (resp. the process that receive the message). The message for the sending
process is built as: channelVariable! exchange name, informationType while
the message for the receiving process is the complementary one obtained using
“?” instead of “!”.

<interaction name=" BuyerRequestsQuote"
channelVariable =" Buyer2SellerC"
operation =" requestForQuote"
initiate ="true">
<participate

relationshipType =" BuyerSeller"
fromRoleTypeRef =" BuyerRoleType"
toRoleTypeRef =" SellerRoleType "/>

<exchange name=" request"
informationType=

"RequestForQuoteType"
action =" request">
<send/>
<receive/>

</exchange >
<exchange name=" response"

informationType =" QuoteType"
action =" respond">
<send/>
<receive/>

</exchange >
</interaction >

/* the Buyer process ... */
BuyerToSellerC!REQUEST ,

RequestforQuoteType;
BuyerToSellerC?RESPONSE ,

QuoteType;

/* the Seller process ... */
BuyerToSellerC?REQUEST ,

RequestforQuoteType;
BuyerToSellerC!RESPONSE ,

QuoteType;

Fig. 1. Activities

Continuing with the translation, in Figure 1 there is an example of a request-
response interaction between the Buyer and the Seller. This is an interac-
tion that is composed by a response after a request, both mapped using a
pair of complementary statements in PROMELA. The action attribute shows
if the message is a send message or a receive message from the perspective
of the fromRoleTypeRef role. If action is “request” then the message starts
from the fromRoleTypeRef while if it is “respond” the message is sent by the
ToRoleTypeRef. This is necessary because in WS-CDL there are three kinds of
interactions that respectively foresee only a request, only a response or - as in
the example - a request-response. This seems misleading but the ”From” and

16 Flavio Corradini et al.

”To” suffixes of RoleTypeRef refers to the relationshipType and not to the
interaction itself.

The mapping of sequence is straightforward because relies on the sequence
of statements in PROMELA. The choice and the repetitions (modeled with
workunit in WS-CDL) are more complex because the global behavior of a par-
ticipant must be projected locally to PROMELA processes. While this is simple
for a single interaction activity that use complementary PROMELA statements,
for a choice there is the necessity of an if statement in each PROMELA process
involved in the choice. Same considerations apply to repetitions that require a
do statement for each involved process. Then, the content of the if (resp. do) is
constituted of complementary statements performed in the choice (resp. in the
repetition).

For example, when the Seller performs the interaction that has the name
CheckCredit, the CreditChecker respond with a CheckOk or with a CheckFail
message. This imply a choice in WS-CDL and an if in PROMELA, both for
the Seller and the CreditCheker as shown in Figure 2.

<choice > <sequence >
<interaction name=" CheckFails"
channelVariable =" Seller2CreditChkC"
operation =" creditCheck">

<participate ... />
<exchange name=" checkCreditFails"
informationType=

"CreditRejectType"
action =" respond">
<send/> <receive/>
</exchange >

</interaction >
... notify the Buyer ...

</sequence > <sequence >
<interaction name=" CheckOk"
channelVariable=

"Seller2CreditChkC"
operation =" creditCheck">

<participate ... />
<exchange name=" checkCreditPasses"
informationType=

"CreditAcceptType"
action =" respond">
<send/> <receive/>
</exchange >

</interaction >
... interaction to delivery ...

</sequence > </choice >

/* CreditChecker */
if

:: SellerToCreditChkC!
CREDITCHECKFAILS ,
CreditRejectType ->skip;

:: SellerToCreditChkC!
CREDITCHECKPASSES ,
CreditAcceptType;->skip;

/*
* In both cases the
* execution ends
*/

fi;

/* Seller */
if

:: SellerToCreditChkC?
CREDITCHECKFAILS ,
CreditRejectType ->

/*
* ... notify the Buyer
* about the fail ...
*/

:: SellerToCreditChkC?
CREDITCHECKPASSES ,
CreditAcceptType ->

/* interaction to delivery */
fi;

Fig. 2. Choice

The parallel construct is a little bit different. When in the choreography
there is a parallel construct the processes in the PROMELA model must instan-
tiate one subprocess for each parallel activity.

Verification of WS-CDL choreographies 17

Each process must handle its ”part” of parallel activities. Supposing that a
participant must handle two parallel activities, it must instantiate two subpro-
cesses that synchronize on a specific channel created by the participant. While
the complementary actions can be performed by other processes in the usually
fashion. For example in Figure 3 is shown a synchronization between two pro-
cesses, subprocess1 and subprocess2, controlled using the local channel syncro.
Although, the participant involved in the parallel interactions can be different,
one participant can instantiate subprocesses that interact with other processes
that are already in concurrent execution without requiring they to instantiate
other subprocesses. This happens when the fromRoleTypeRef is the same for
the parallel activities but the toRoleTypeRef is different for them.

proctype Process (){
/* do something ... */
chan syncro = [2] of {int}
/* for 2 activities */
run subprocess1(syncro);
run subprocess2(syncro);
do
::full(syncro)->break;
od;
/* do something else ... */

}

Fig. 3. Parallel

We summarize the translation in the Table 1 showing the relation between
language constructs.

Table 1. Synoptic table of the translation

WS-CDL PROMELA

participantType a PROMELA process

channelVariable
one channel or two channels if the channelVariable is
used for passing channels

activity

statement in the form:
channelvariable[!|?]exchange name,

informationType
sequence sequence of statements

choice if statement inside the involved processes
repetitions
(formally workunit)

do statement inside the involved processes

parallel instantiation of subprocesses

18 Flavio Corradini et al.

3 Conclusions

In this paper we report an approach to formal verification of web service com-
position expressed using the WS-CDL language by means of a translation to a
PROMELA model suitable for the verification with the SPIN model checker.

At the moment, the developed mapping is only a proof of concepts to show
how a choreography can be tested using existing model checking techniques.
The mapping doesn’t refer to the whole specification but only to the main con-
cepts, namely, the main constructs that regulate compositions like interactions,
sequence, choice and parallel.

Now, works in progress go in two directions. First of all, we would imple-
ment the mapping to realize a prototype able to handle WS-CDL choreography
and to generate correct SPIN models. We would extend the mapping including
more construct including the possibility to call other choreography, exception
handling, finalizer, etc. Moreover, a particular importance must be given to
counterexample presentation to guide the developer in the correction of errors.
Finally, we want to investigate the formal basis of WS-CDL to theoretically
prove the validity of the mapping and of the approach, regarding also the issue
that not all choreographies are projectable as shown in [9] and [10].

References

1. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1 (15 March 2001)

2. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H.F.: Simple Object
Access Protocol

3. Bellwood, T., Capell, S., Clement, L., Colgrave, J., Dovey, M.J., Feygin, D., Hately,
A., Kochman, R., Macias, P., Novotny, M., Paolucci, M., von Riegen, C., Rogers,
T., Sycara, K., Wenzel, P., Wu, Z.: UDDI spec technical committee draft (2004)

4. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services Version 1.1 (July 2002)

5. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.:
Web Services Choreography Description Language Version 1.0 (9 November 2005)

6. Edmund M. Clarke, J., Grumberg, O., Peled, D.A.: Model checking. MIT Press,
Cambridge, MA, USA (1999)

7. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of the Web Services Chore-
ography Description Language (WS-CDL) (March 2005)

8. Holzmann, G.J.: The SPIN Model Checker: primer and reference manual. Addison
Wesley (2003)

9. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography Con-
formance and Contract Compliance. In: SC’07 Software Composition 2007. (2007)

10. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.: A
Theoretical Basis of Communication-Centred Concurrent Programming. W3C-
Working Note (October 2006)

Advanced Language Constructs for Developing

Intra-organizational Service Architectures

Sven De Labey and Eric Steegmans
K.U.Leuven, Dept. Computer Science, 200A Celestijnenlaan

B-3000 Leuven, Belgium
{svendl, eric}@cs.kuleuven.be

Abstract. Jini technology delivers a promising environment for building
intra-organizational, adaptive service architectures in Java. Currently,
however, the level of abstraction is too low, forcing programmers to im-
plement interactions that should have been hidden by the middleware.
Moreover, Jini’s limited expressiveness for fine-tuning service selection
makes it hard to program complex client-service interactions. In this
paper, we present ongoing work on JASA, the Java Advanced Services
Architecture. JASA provides middleware abstractions for service com-
puting and provides a Java extension, ServiceJ, with specialized concepts
for implementing complex client-service interactions.

1 Introduction

Service Oriented Architecture (SOA) started off as a paradigm for enabling cross-
organizational cooperation through the use of standardized, interoperable pro-
tocols such as XML-based Web Services. This same paradigm is now rising be-
yond its original domain, exploring new territories such as intra-organizational
plug-and-play service architectures. Jini [1] provides an environment for building
these architectures in Java. Current Jini technology supports dynamic service

discovery and Quality of Service (QoS) constrained service lookup, at the same
time subscribing to the standard Java programming model and as such allowing
programmers to interact with services as if they were plain Java objects.

In this paper, we review Jini in the context of client-service interactions. We
point out a number of shortcomings and introduce JASA, an advanced service
architecture based on ServiceJ [2], our programming language with full-blown
support for client-service interactions. This paper is structured as follows. Section
2 reviews Jini and defines a number of shortcomings. Section 3 gives an overview
of JASA whereas Section 4 discusses ServiceJ. Section 5 explains how JASA
manages services. Related work is presented in Section 6 and Section 7 concludes.

2 Jini as a Framework for Service-Oriented Computing

Jini technology focuses on building scalable, adaptive network systems [1] for
dynamic environments such as SOAs. In this Section, we focus on how clients
interact with Jini services (Sect. 2.1) and point out a number of shortcomings
(Sect. 2.2) that underly the design goals of JASA.

20 Sven De Labey and Eric Steegmans

2.1 Client-Service Interactions in Jini

Jini services are registered in registries that act as brokers between clients and
providers. Providers use a service registry to register the services they provide,
whereas clients use that registry to obtain references to services running on the
SOA. In this paper, we focus on (1) Jini support for service queries and (2) the
adaptability of the Jini service architecture.

Service Queries. Before a client is able to find services, a provider must first
register these services, as shown in Fig. 1 (S). On registration, a provider includes
service templates (T), which are objects that contain additional information
(location, price, . . .) about that service. On service lookup, clients may fine-tune
their service queries by including some of those templates. The lookup service
then matches these templates with those that were included by the provider and
returns a service that fully matches the request of the client.

Fig. 1. Jini architecture overview

Adaptable Service Architecture. Jini relies on a leasing mechanism in order
to guarantee that the lookup mechanism is synchronized with the actual state
of the service architecture. On service registration, service providers are given a
lease representing the time left until the service is automatically removed from
the lookup service. This lease must be renewed periodically, otherwise the lookup
service assumes that the provider has crashed, thus justifying service removal.

2.2 Shortcomings of Jini relative to Client-Service Interactions

Although basic support for service queries and service volatility is supported,
the overall Jini architecture provides only limited support for customized service

interactions. We identify three problems that lead to a list of goals for JASA:

1. Low level of abstraction. Programmers are responsible for interacting
with the middleware when retrieving services (using templates) or when
keeping services alive (using leases). These interactions obfuscate the busi-
ness logic of an application, i.e. the actual interaction with the Jini service.

2. Inflexible queries. The expressiveness of templates is limited by two fac-
tors. First, only exact matches on non-primitive types are supported, thus
disabling, for instance, searching for a printer that supports more than

20ppm. Second, templates are always combined conjunctively, thus disal-
lowing searches for printers supporting either 600dpi or color printing.

3. No Transparent Failover. Leasing policies allow for an adaptive dis-
tributed system, but they still force the client to fail when a service becomes
unreachable during a client-service session.

Advanced Language Constructs for Developing Intra-organizational . . . 21

3 The Java Advanced Services Architecture
JASA combines concepts from Jini with ServiceJ, an extension of Java that
introduces specialized language constructs for client-service interactions. This
Section outlines JASA, whereas Section 4 introduces ServiceJ.

Fig. 2. Java Advanced Services Architecture

Service Pools. An overview of the JASA architecture is shown in Figure 2.
The Jini lookup service is replaced by a more complex lookup mechanism, called
the Pool Manager. This service manages service pools, which are sets of inter-

changeable services that conform to a common service type. For example, all
services implementing the Printer interface are collected into a service pool of
type Printer. The Pool Manager is accessed using one of the following services:

1. Registration. This service is used by providers to advertise and unpublish

their services. Contrasting to Jini, providers no longer include templates and
they no longer renew leases, as these issues are transparently dealt with by
the middleware (see further). As such, service registration becomes trivial
because providers only have to send a service reference to the pool manager.

2. Retrieval. This service is used by clients in order to retrieve a pool of
interchangeable services, as explained in Section 4.

3. Management. This interface is used by services responsible for monitoring

and for supporting cross-pool consistency and transactions (see Section 5).

4 ServiceJ – A Language for Client-Service Interactions
We propose a Java extension, called ServiceJ, with specialized constructs for
client-service interactions. First, ServiceJ extends the type system with type

qualifiers [3] to enable transparent service failover (Sect. 4.1). Second, ServiceJ
provides developers with declarative operations for fine-tuning service selection
(Sect. 4.2).

4.1 Type Qualifiers Specify Invocation Semantics

ServiceJ introduces a new kind of variables, called pool variables, that have
special characteristics for interacting with remote services. Pool variables differ
from normal variables in two ways:

– Initialization. Whereas Java variables are typically initialized by the pro-
grammer, pool variables are initialized by the JASA middleware. On method
invocation, the middleware (1) obtains the service pool of type T from the
Pool Manager, (2) selects a pool member, and (3) injects that reference into
the pool variable. Then, the operation is invoked on that injected reference.

22 Sven De Labey and Eric Steegmans

– Fault-tolerant. Pool variables transparently support service failover. If a
method invocation fails, JASA transparently (1) selects another pool mem-
ber, (2) injects it into the pool variable and (3) reinvokes the operation.

Fig. 3. Transparent service lookup and fault-tolerant client-service interactions

Both the JASA failover mechanism and the service pools are hidden for
programmers, thus allowing them to concentrate on business interactions. The
latter only have to decorate their pool variables with a type qualifier, pool,
to indicate that the variable must be managed by the JASA middleware. The
following code, for instance, prints a file (myFile, a normal variable) using a
Printer service (printer, a pool variable):

pool Printer printer; //create a pool of printers

printer.print(myFile); //print ’myFile’ on any available printer

Other qualifiers besides pool are defined for implementing different semantics
such as multicasting method invocations. A detailed discussion on how type
qualifiers influence application-middleware interactions is presented in [3].

4.2 Declarative Operations enable Fine-tuned Service Selection

Pool variables provide basic support for transparent failover, but we still need
a mechanism for imposing business requirements and QoS constraints for fine-
tuning service lookup. The template-based query mechanism of Jini is insufficient
because templates cannot handle customized queries, thus forcing the program-
mer to write a considerable amount of boilerplate code to hardcode the query in
the source code. We solve this problem by introducing declarative operations:
– where. This operation accepts a boolean expression representing QoS con-

straints. It triggers JASA to filter a service pool, retaining those pool mem-
bers that comply with the constraint. For example, selecting those Printer

services that support color printing is written as:
pool Printer p where p.supportsColorPrinting();

– orderby. This operation is used to specify user-defined preferences based
on service-specific characteristics (e.g. price, location, . . .). It triggers JASA
to inject the service that best approximates the preferences of a user. For
example, selecting the printer with the lowest printing cost is written as:

sequence Printer printer orderby printer.getCost();

Note that the pool qualifier is replaced by the sequence qualifier. This is a
subqualifier of pool because it uses a more specific communication seman-
tics: pools use non-deterministic selection whereas sequences use determin-

istic selection based on user preferences. See [3] for further information.

Advanced Language Constructs for Developing Intra-organizational . . . 23

Runtime filtering. During compilation, ServiceJ is translated to normal Java
code in order to support interoperability with existing Java applications. Ar-
guments of where and orderby operations are transformed to separate query

objects following the Command pattern [4]. Before an operation is invoked on a
pool variable, these query objects are sent to the Pool Manager, where they are
used to compose the desired service pool. This constrained pool is then returned
to the client, where it is used by JASA to inject a pool member into the pool
variable. Finally, the method is invoked on this injected pool member.

5 The JASA Management Architecture

Jini relies on a leasing mechanism to ensure that the lookup service has an up-to-
date view on the service architecture. This works fine for volatile, mobile services,
but it leads to excessive keepalive messaging in the case of stable services such
as printers, calendars, etc. Therefore, we extend the JASA middleware with an
optimistic pooling protocol for registering such stable services.

Optimistic pooling. This strategy no longer expects stable services to renew
their leases temporarily. Instead, the Pool Monitor (see Fig. 2) assumes that
stable services are always available. Failures are automatically detected after an
unreachable service is injected into a pool variable and the transparent failover
mechanism of JASA completely hides these problems for programmers. First, it
notifies the Pool Manager about the failure, causing the failing reference to be
removed from its service pool. Second, JASA injects another pool member and
reinvokes the operation.

Other services related to pool management, such as the Transaction Manager
and the Replication Manager cannot be discussed due to space restrictions.

6 Related Work

Jini underlies the development of JavaSpaces [5] and GigaSpaces [6], which both
provide a distributed persistence and object exchange mechanism for code writ-
ten in Java. Inspired by Linda [7], JavaSpaces and GigaSpaces use tuple matching
algortihms for service lookup. Tuple matching, however, is implemented on top
of Jini templates, leading to the disadvantages discussed in Sect. 2.2.

Another domain of related work is grid computing [8]. Similar to JASA ser-
vices, grid services are registered and found through interactions with a registry

grid service that ressembles our Pool Manager. The Java Commodity Grid Kit
(CoG) [9], for instance, provides libraries for grid service lookup, but its query
mechanism is weaker than Jini templates. It relies on string-based, exact matches
and therefore fails to support expressive, type-checked, and customized service
queries. Additionally, service management in JavaCoG requires a lot of boiler-
plate code, whereas JASA transparently manages these tasks.

A detailed comparison of JXTA [10], OGSI [11] and Jini support for Service
Oriented Architecture was presented in [12] in the context of the Iceni frame-
work [13]. Iceni is a dynamic management framework for service environments.

24 Sven De Labey and Eric Steegmans

Layered on top of Jini, it provides two different views for each grid service: a local

view through Jini interfaces and a global view based on OGSA [14] compliant
web services. The main drawback is that the weaknesses of Jini propagate to
the Iceni layer, such as the weak query mechanism and the obligation to refresh
leases for stable services.

7 Conclusion and Future Work
Jini is currently the de facto standard for intra-organizational service architec-
tures written in Java, but it provides no high-level concepts for complex client-
service interactions. We have introduces JASA, an advanced middleware that
hides the technical details of client-service interactions. JASA is based on Ser-
viceJ, a language with specialized language constructs for service queries (where

and orderby). Furthermore, JASA has additional protocols for managing ser-
vices, such as optimistic pooling, replication management and transaction man-
agement.

Current work on JASA focuses on the ServiceJ-to-Java transformation. An
interesting direction of future work is an evaluation on how frameworks layered
on top of Jini, such as Iceni and JavaSpaces can be ported to work on top of
JASA.

References

1. Jini Architecture Specification v2.1. (http://www.jini.org)
2. S. De Labey, M. van Dooren, and E. Steegmans: ServiceJ. A Java Extension for

Programming Web Service Interactions. In: Proceedings of the 5th International
Conference on Web Services, Salt Lake City, Utah (2007)

3. S. De Labey and E. Steegmans: A Type System Extension for Middleware Inter-
actions. In: 1st Workshop on Middleware-Application Interaction. (2007)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object Oriented Software. Addison-Wesley (1995)

5. Mamoud, Q.: JavaSpaces Technology: Beyond Conventional Distributed Program-
ming Paradigms – www.javaspaces.org. (2005)

6. Gigaspaces Specification. (http://www.gigaspaces.com)
7. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4) (1989) 444–458
8. Lee, C., Talia, D.: Grid Programming Models: Current Tools, Issues and Directions.

In: Grid Computing: Making the Global Infrastructure a Reality. (2003)
9. von Laszewski, G., Gawor, J., et al.: Features of the Java Commodity Grid Kit.

In: Concurrency and Computation: Practice and Experience. (2001)
10. Gong, L.: JXTA: A Network Programming Environment. In: IEEE Internet Com-

puting. (2001)
11. Sandholm, T., Seed, R., Gawor, J.: OGSI Technology Preview Core – A Grid

Service Container Framework, www.globus.org/research/papers/. (2002)
12. Furmento, N., Hau, J., Lee, W., Newhouse, S., Darlington, J.: Implementation of

a Service-Oriented Architecture on top of Jini, JXTA and OGSI. (2002)
13. Furmento, N., Lee, W., Mayer, A., Newhouse, S., Darlington, J.: ICENI: An Open

Grid Service Architecture Implemented with Jini. In: ACM/IEEE SC 2002 Con-
ference. (2002)

14. Foster, I., Kishimoto, H., Savva, A., Berry, D., et. al.: The Open Grid Services
Architecture Specification, Version 1.0 – http://www.globus.org. (2005)

Service Referrals in BPEL-based Choreographies

Gero Decker1, Oliver Kopp2, Frank Puhlmann1

1 Hasso Plattner Institut, University of Potsdam, Germany
{gero.decker,frank.puhlmann}@hpi.uni-potsdam.de

2 Institute of Architecture of Application Systems, University of Stuttgart, Germany
oliver.kopp@iaas.uni-stuttgart.de

Abstract. Choreographies describe the interactions between two or
more services from a global perspective and specify allowed service con-
versations. Choreographies typically do not rely on static binding, i.e. the
participating services are not selected at design-time of the choreography.
Some services might only be selected at runtime and this selection has
to be propagated in the case of multi-lateral conversations. Hence, the
notion of service referrals (also called link passing mobility) is recurrent
in choreographies. In past work, we have proposed BPEL extensions
for describing service choreographies, namely BPEL4Chor. This paper
closely investigates the link passing mobility capabilities of BPEL4Chor
and illustrates their semantics using π-calculus.

1 Introduction

Service-oriented architecture (SOA) is an architectural style for information
systems that relies on message exchanges between loosely coupled services [4].
Web services are typically used for implementing an SOA. The first standards
in the field of Web services such as XML, WSDL, and SOAP put simple re-
quest/response interactions between services into the center of attention. Fur-
ther standards like BPEL [10] enable the implementation of services that engage
in more complex interaction scenarios with its environment. This second gen-
eration of Web services supports long-running conversations in bilateral and
multi-lateral settings.

As BPEL only considers conversations from the perspective of an individual
service, a new viewpoint was proposed to capture conversations from a global
point of view. These choreographies define allowed conversations and therefore
serve as interaction agreement between different parties. In some choreographies
it is already defined which concrete services are to participate in the conver-
sations. Imagine e.g. a collaboration between two companies who defined their
respective interaction behavior in the choreography. In other choreographies, a
notion of roles or participant types can be found, leaving it open to select partic-
ipating services just before starting a conversation or even after the conversation
has already started. As typically more than two services participate in such con-
versations, it is important to pass on the reference to the concrete service during
the conversation. The Service Interaction Patterns [1], a catalog of common pat-
terns in interaction scenarios, highlight such link passing mobility as recurrent

26 Gero Decker et al.

phenomenon under the name of Request with Referral. We therefore conclude
that support for link passing mobility is an essential feature of choreography
description languages. As an alternative to existing languages and in order to
enable more direct integration of service orchestrations and choreographies, we
have introduced BPEL extensions for choreography modeling (BPEL4Chor) in
[5]. In this paper we are going to closely investigate how link passing mobil-
ity is realized in BPEL4Chor. In order to provide unambiguous semantics we
use π-calculus, a modern process algebra that inherently supports link passing
mobility. An extended discussion on the advantages can be found in [12].

The remainder of this paper will be organized as follows. The next section
discusses related work, before section 3 gives a short overview of BPEL4Chor.
The main contribution will be found in section 4 where link passing mobility in
BPEL4Chor is discussed. Section 5 concludes and points to future work.

2 Related Work

Since the formal semantics of BPEL4Chor is based on π-calculus, we refer to ear-
lier work on the formal representation of process and interaction patterns [13,7].
Dynamic binding in π-calculus is introduced in [11]. In a nutshell, the π-calculus
is based on a set of agent identifiers (denoted with uppercase letters) and an-
other set of names (denoted with lowercase letters). Names are a unification of
concepts known as pointers, links, channels, etc. The agents of the π-calculus
can interact by sending names via names used as channels, denoted as a〈b〉, and
receiving names via names used as channels, denoted as a(x). The ordering of the
send and receive operations can be sequential, denoted as a(b).b〈x〉.0, parallel,
denoted as a(b).0 | x〈y〉.0, or exclusive, denoted as a(b).0 + x〈y〉.0. Each exe-
cution path is terminated with 0. Furthermore, agents can create new, unique
names during their execution, denoted as νx, where x is the new name. Due
to space limitations, we refer to [9] for an extended introduction. Existing ap-
proaches for formalizing BPEL do not support dynamic binding and are hence
improper for an extension to choreographies [8,3].

A strong competitor for BPEL4Chor is given by WS-CDL as a choreography
language. While WS-CDL is able to support most of the service interaction pat-
terns, it also introduces different realizations for the workflow patterns. Notable,
these are difficult to map to BPEL [6]. Since BPEL is the state-of-the-art orches-
tration language for business processes, a mismatch between choreography and
orchestration languages should be avoided. This paper focuses on an extension of
BPEL to overcome these limitations. Other competitors are given by BPML [2]
and BPSS [14]. However, both are outdated nowadays.

3 BPEL4Chor Overview

In contrast to other choreography languages such as BPSS and WS-CDL,
BPEL4Chor does not have interactions as basic building blocks but rather com-
munication actions, i.e. send and receive actions. Therefore, control flow depen-

Service Referrals in BPEL-based Choreographies 27

Listing 1 Participant behavior description for a migration service
<process name="migrationservice" targetNamespace="urn:visa:ms"

abstractProcessProfile="urn:HPI_IAAS:choreography:profile:2006/12">

<sequence>

<receive wsu:id="ReceiveEmployeeDetails" createInstance="yes" />

<opaqueActivity name="PrepareVisaApplication" />

<invoke wsu:id="SubmitVisaApplication" />

<receive wsu:id="ReceiveConfirmation" />

</sequence>

</process>

dencies are not defined between interactions but locally between communication
actions. BPEL4Chor uses participant behavior descriptions (PBDs) for this pur-
pose. For each participant type a PBD has to be provided. PBDs are a special
kind of abstract BPEL processes. This enables to define control and data flow
in choreographies as it is the case in BPEL.

In contrast to classic BPEL, where send and receive actions include informa-
tion about who the respective interaction partner is (through the partnerLink

and operation attributes), PBDs have to be glued together in a separate artifact,
the participant topology. This document captures the structural aspects of the
choreography and defines which two communication actions from the PBDs are
connected through a message link. While the PBDs and the topology are free
of web-service-specific configuration, participant groundings are introduced to
provide the mapping of elements in the topology to WSDL specifications.

Listings 1 and 2 show two BPEL4Chor artifacts of a choreography descrip-
tion, where a visa is to be organized for a new employee. As the employing
company has outsourced all migration related activities, it sends the employee’s
details to a migration service. This service prepares and submits a visa appli-
cation to the government’s immigration office. The immigration office sends a
nomination approval to the employer which is needed for picking up the visa
from the embassy. In addition, a confirmation is sent to the migration service.

4 Link Passing Mobility in BPEL4Chor

The example from the previous section illustrates the main concepts in
BPEL4Chor. While merely control and data flow is defined in the participant
behavior descriptions, the main structural setting can be found in the topol-
ogy. Here, participant types and participant references are defined. It is possible
that several references or even reference sets are used for one participant type.
This indicates that different participants of the same type are involved in one
conversation. Imagine e.g. a logistics scenarios where several shippers transport
goods from a production site to a warehouse or imagine a bidding scenario where
different bidders take part in one auction.

28 Gero Decker et al.

Listing 2 Participant topology for the visa application scenario
<topology name="visa" targetNamespace="urn:visa" xmlns:ms="urn:visa:ms">

<participantTypes>

<participantType name="MigrationService"

participantBehaviorDescription="ms:migrationservice" />

<participantType name="Employer" ... />

<participantType name="ImmigrationOffice" ... />

</participantTypes>

<participants>

<participant name="e" type="Employer" selects="ms" />

<participant name="ms" type="MigrationService" />

<participant name="io" type="ImmigrationOffice" />

</participants>

<messageLinks>

<messageLink name="employeeDetailsLink" sender="e"

sendActivity="SubmitEmployeeDetails" receiver="ms"

receiveActivity="ReceiveEmployeeDetails"

messageName="employeeDetails" />

<messageLink name="visaApplicationLink" sender="ms"

sendActivity="SubmitVisaApplication" receiver="io"

receiveActivity="ReceiveVisaApplication"

messageName="visaApplication" participantRefs="e" />

<!-- ... -->

</messageLinks>

</topology>

Although participant references are defined on a global level, not all partici-
pants necessarily know about all other participants involved. Through the receipt
of messages or through explicit link passing the knowledge about participants is
propagated. The immigration office knows which migration service is involved in
the conversation as it receives a message from it. On the other hand, the office
gets to know the employing company through the mechanism of link passing
mobility. The migration service passes the reference to this company on to the
immigration office as part of the visa application.

The notion of participant references cannot be directly found in π-calculus.
On the other hand, send and receive activities are mapped to input and output
actions on a π-channel, leading to the fact that message links from BPEL4Chor
are represented by one or several π-channels. Several channels are needed in the
case of several participants of the same type taking part in the conversation.
We therefore introduce the term message link instance for corresponding to the
actual connection between two participants in a conversation. The example from
the previous section could be formalized as follows:

E
def
= (νdetails,na) ed〈details,na〉.na(approval).0

MS
def
= (νc, application) ed(details,na).va〈application, c,na〉.c(conf).0

Service Referrals in BPEL-based Choreographies 29

IO
def
= (νapproval , conf) va(application, c,na).(na〈approval〉.0 | c〈conf 〉.0)

SYS
def
= (E | MS | IO) .

The message link employeeDetailsLink is represented by channel ed and
visaApplicationLink by va. We see that ed and va are free names. This indi-
cates that there is a static binding between the employer E and the migration
service MS as well as between MS and the immigration office IO . In order to
explicitly represent dynamic selection of the migration service by the employer
(which is indicated by the selects attribute in the participant topology) a broker
B could be introduced into the formalization:

SYS ′ def
= (E ′ | MS | IO | B) with E ′ def

= lookup(ed).E and B
def
= lookup〈ed〉.B .

The propagation of knowledge about participants can be found in the formal-
ization. We have mentioned that this propagation either takes place (i) through
the receipt of a message or (ii) through passing on participant references. (i) can
be found where MS sends c as attachment to the visa application. MS therefore
passes a callback channel to IO for the confirmation. Hence, this is an example
for indirectly representing participant references through message link instances.
(ii) can be also found where MS sends the application to IO : na is the channel
where the approval has to be sent to, again indirectly representing the partici-
pant reference for the employer. This formalizes the attribute participantRefs

of the message link visaApplicationLink set to e. In both cases we see that the
propagation of knowledge about participants corresponds to the notion of scope
extrusion in π-calculus.

We can summarize that the information given in the PBDs is mainly en-
coded in control flow constructs in π-calculus, i.e. choice, parallelism and se-
quence. [13] shows how more complex control flow constructs are represented in π-
calculus. The information given in the participant topology specifies the π-names
used and defines which names have to be passed in interactions between the differ-
ent π-processes. In addition to the attribute participantRefs indicating link pass-
ing mobility, message links can also have the attribute copyParticipantRefsTo

set. As an effect the bound name in the receiving π-process is simply renamed.
All BPEL4Chor constructs can be translated to BPEL constructs. E.g.

participantRefs indicates that a copy from partnerLink action takes place prior
to a send activity and a copy to partnerLink after a receive activity. In the case
of copyParticipantRefsTo set, the target partnerLink at the receiving side has a
different name than the source partnerLink on the sending side.

5 Conclusion

This paper has investigated the link passing mobility capabilities of BPEL4Chor.
For illustrating this, a sample choreography was partially given in BPEL4Chor
and formally given in π-calculus. It was briefly discussed how constructs from
BPEL4Chor map to those from π-calculus. As link passing mobility plays an

30 Gero Decker et al.

essential role in choreographies, any useful formalization of BPEL4Chor has to
include this concept. Therefore, a complete mapping from BPEL4Chor to π-
calculus is desirable. Since BPEL4Chor is heavily based on BPEL and since
there is no complete π-formalization of BPEL so far, such a complete mapping
goes beyond the scope of this paper and is therefore left to future work.

References

1. A. Barros, M. Dumas, and A. ter Hofstede. Service interaction patterns. In Busi-
ness Process Management, volume 3649 of LNCS, Nancy, France, September 2005.
Springer.

2. BPMI.org. Business Process Modeling Language, 2002.
3. A. Brogi and R. Popescu. From BPEL Processes to YAWL Workflows. In Web

Services and Formal Methods, volume 4184 of LNCS, pages 107–122, Berlin, 2006.
Springer Verlag.

4. F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weerawarana. Web Ser-
vices Platform Architecture: Soap, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, 2005.

5. G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4Chor: Extending BPEL
for Modeling Choreographies. ICWS 2007.

6. G. Decker, H. Overdick, and J. M. Zaha. On the Suitability of WS-CDL for
Choregraphy Modeling. In EMISA 2006, volume P-95 of LNI, pages 7–19, Bonn,
2006. Gesellschaft für Informatik.

7. G. Decker, F. Puhlmann, and M. Weske. Formalizing Service Interactions. In
Business Process Management, volume 4102 of LNCS, pages 414–419, Berlin, 2006.
Springer Verlag.

8. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri nets. In Business
Process Management, volume 3649 of LNCS, pages 220–235, Berlin, 2005. Springer
Verlag.

9. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I/II.
Information and Computation, 100:1–77, September 1992.

10. Web Services Business Process Execution Language Version 2.0 – OASIS Standard.
Technical report, Organization for the Advancement of Structured Information
Standards (OASIS), Mar 2007.

11. H. Overdick, F. Puhlmann, and M. Weske. Towards a Formal Model for Agile
Service Discovery and Integration. In Proceedings of the International Workshop on
Dynamic Web Processes (DWP 2005), IBM technical report RC23822, Amsterdam,
December 2005.

12. F. Puhlmann. On the Suitability of the Pi-Calculus for Business Process Manage-
ment. In Technologies for Business Information Systems, pages 51–62. Springer
Verlag, 2007.

13. F. Puhlmann and M. Weske. Using the π-Calculus for Formalizing Workflow Pat-
terns. In Business Process Management, volume 3649 of LNCS, Nancy, France,
September 2005. Springer.

14. UN/CEFACT and OASIS. ebXML Business Process Specification Schema (Version
1.01). http://www.ebxml.org/specs/ebBPSS.pdf, 2001.

http://www.ebxml.org/specs/ebBPSS.pdf

Modelling Compensation with
Timed Process Algebra

Simon D. Foster 〈S.Foster@dcs.shef.ac.uk〉

Department of Computer Science, University of Sheffield

Abstract. Compensation is a feature of Business Process Modelling
which allows error correction based on non-atomic rollback. Several vari-
ant strategies exist for compensation in a similar way that many pat-
terns exist for workflow. Existing formalisations model compensation and
workflow in an ad-hoc fashion, mainly due to their high-level nature. In
this paper we propose a low-level approach using Timed Process Algebra,
which can be extended to model several strategies within a component-
oriented framework with compositional semantics.

1 Preliminaries

Composition of Web services in a component-wise fashion is an increasingly de-
sirable method of building distributed applications. A necessary feature of service
composition is the handling of runtime exceptions, specifically with the purpose
of error correction. When something goes wrong it is essential that prior work of
the same overall goal or transaction can be reverted in an attempt to return the
world to its previous state. However, unlike in the database world where such
transactions can be kept atomic via locking, in the world of Web services things
are not so simple due to distribution of resources. As a result, instead of perform-
ing atomic rollback, orchestrations need to perform compensation [1] – undoing
work where possible and making “amends” where not. An example is shown in
Fig. 1 where the shipment of goods must be cancelled if billing fails. Register-
Shipment, upon completion, installs a compensation CancelShipment which will
execute if and only if part of the transaction fails.

Fig. 1. Example compensable transaction

32 Simon D. Foster

Existing formalisations of compensation, such as Sagas Calculi [2] and cCSP
[3], extend process calculi with specialised compensation operators. Thus the
expression RegisterShipment÷CancelShipment represents the compensation pair
in Fig. 1. This is united with a transaction block operator, which limits the
scope of exceptions and the resulting compensations, and a specific strategy for
compensation flow (e.g. distributed vs. centralised). Our intention is to improve
on this approach by showing how compensation can be modelled using a set of
more canonical operators. Thus, rather than hard-wiring a particular compensa-
tion strategy, we can give a semantics to variant strategies. We also take account
of dataflow with its implications and take a more abstract, component oriented
approach than the existing formalisations.

Timed Process Algebra is a field of Computer Science which looks at how
temporal constraints can be placed on concurrent processes. As well as simply
modelling the relative ordering of actions, as in CCS and CSP, time further con-
strains when an action can be performed based on its “speed” with respect to
other events. In the context of CCS, time can be abstracted as a discrete multi-
party event (σ, the “clock”) limited by the presence of faster internal actions (τ)
which are formed when something unobservable occurs (e.g. handshake synchro-
nisation, hidden activity). This facilitates the maximal progress assumption – the
maximum amount of internal activity must be performed within a clock’s scope
before it is allowed to tick, thus signalling that time has progressed. One of the
most recent realisations of this concept is CaSE [4] (Calculus of Synchronisation
and Encapsulation) – a timed extension of CCS with multiple clocks.

We have shown that this timed process algebra is particularly useful for
modelling orchestration due to the elegant way in which block structured com-
ponent systems may be represented [5]. Each block is associated with its own
distinctly named clock which will only tick once the internal work is complete.
Since these clocks may themselves be internalised and thus promoted (via clock
hiding, which defines their scope), a hierarchical system results with lower blocks
necessarily completing before higher blocks. This style of process algebra lends
itself to compositional modelling of orchestration, where components are seman-
tically substitutive, via the bisimulation-based equivalence theory. Bisimulation
is a game-based equivalence which requires that two labelled transition systems
be capable of matching each others moves in every possible evolution. CaSE
adopts a weak form which abstracts from internal activity and thus identifies
components which provide the same visible communications.

In the remainder of this paper we demonstrate how discrete time with max-
imal progress also allows the modelling of compensation without the need for
specialised operators, with application to a suitable orchestration language.

2 A language for compensable orchestrations

Cashew-S is a language which represents orchestrations using block-type control
flow constructs based around workflow patterns [6]. Workflow patterns attempt
to draw out generic and flexible workflow constructs which have applicability

Modelling Compensation with Timed Process Algebra 33

in many different problem domains, with examples including Sequence, Parallel
Split and Exclusive Choice. Dataflow is driven by isochronic broadcast [7] which
uses abstract time with maximal progress to determine when all consumers have
been satisfied.

Initially we designed the language to act as a superset of the OWL-S service
model [8], but we have since enhanced it with further features. In particular we
have added a form of interruption and compensation based on cCSP, though
simplified for the purposes of this paper (e.g. compensations cannot fail to com-
plete1).

Transaction ::= Perform p Transaction CWorkflow

TransList ::= Transaction | TransList; Transaction

CWorkflow ::= Workflow w (Acceptors) (Offerors) CPattern

CPattern ::= Seq (CPerfList) | Par (CPerfList)

| Inter (CPerfList) | Conc z z z (TransList)

| Choice (CPerfList) | Skip | Throw | Yield

CPerformance ::= AtomicPerformance | Compensation

| CWfPerformance | Transaction

CWfPerformance ::= Perform p CWorkflow

Compensation ::= CPerformance ÷Performance

CPerfList ::= CPerformance

| CPerfList ;Connection

| CPerfList ;CPerformance

z ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | · · ·

Fig. 2. Compensable fragment of Cashew-S language

We reproduce the compensable fragment of this language in Fig. 2 without
dataflow (due to space constraints). Performances are named components: they
are either primitives for calling Web services, communicating with the client
and evaluating expressions (i.e. an AtomicPerformance) or encapsulated work-
flows. Performances within a transaction may be associated with another (non-
compensable) performance to act as a compensation. Each workflow has associ-
ated with it a set of input and output handlers (resp. Acceptors and Offerors)
and a pattern of composition. In this language and for the remainder of this
paper w represents the name of a workflow and p the name of a performance.

Cashew-S contains five compensable workflow constructs for composing a
list of performances. The Seq pattern models sequential composition. Par and
Conc model two forms of concurrency, the former simply executing all perfor-
mances with synchronisation at the beginning and end, and the latter allowing
customisation of exactly how many performances need to be executed and resyn-
chronised. Conc can thus model complex control flow patterns like the discrim-

1 Or rather they can, but the failure must be in a separate transaction block so that
there is no upwards propagation of errors into the containing block.

34 Simon D. Foster

inator [6], which allows only a subset of concurrent flows to resynchronise after
execution. Inter executes the performances in the order in which they become
ready to execute (e.g. by satisfaction of dataflow). Choice picks the performance
which becomes ready first, cancelling the others.

Compensation is triggered by a Throw pattern, which raises an exception
in the block. The block then has to wait for the internals to halt (i.e. centralised
compensation with interruption), which can be achieved using the Yield pattern
or simply waiting for completion. Once all sub-threads have yielded, compensa-
tion proceeds in the reverse order of the pattern. A compensation for our example
would be rendered as follows (minus internal details of the Web services, referred
to pragmatically as a Goal):

Perform perfRegisterShipment Goal registerShipment (· · ·) ÷
Perform perfCancelShipment Goal cancelShipment (· · ·)

The former performance (with goal registerShipment) is called the forward
performance, while the latter is called the compensation performance.

3 Behavioural Semantics

The behavioural semantics is given using a conservative extension of CaSE [4]
called CaSiE [9]. It allows both input-output synchronisation and deterministic
multi-party synchronisation (restricted by maximal progress) over multiple dis-
tinct clocks. Processes are by default patient – permitting any clock transition,
even if not directly causing them to mutate. Specific clocks may, nevertheless, be
blocked if required (e.g. to prioritise a non-internal action) and we make exten-
sive use of this in our agents below to inhibit clocks without an explicit outgoing
transition. CaSiE also adds interruption actions which are of higher priority than
both silent actions and clock ticks. These allow, for example, exceptions raised in
a workflow to pre-empt remaining internal activity and perform compensation.

Fig. 3. Overview of compensation scheduling

The orchestration semantics architecture, illustrated in Fig. 3, is as follows.
Each Performance in a workflow is composed with a Scheduler agent which
defines the preconditions of execution particular to the pattern. Each workflow
in turn has a Governor – a scheduler of schedulers, which communicates with the

Modelling Compensation with Timed Process Algebra 35

environment and decides when (and if) the workflow as a whole can execute.
Acceptor and Offeror agents manage workflow inputs and outputs, respectively.

A workflow’s behaviour is divided into a finite number of distinct phases,
each of which defines the current “macro-step” being performed (e.g. fulfilling
preconditions, executing). Two main clock classes (indicated in the outer frame
of Fig. 3) are used to distinguish the workflow phases, σw

n for normal activ-
ity and ρw

n for exception handling (where n ∈ N∗ is the phase number). The
Governor and Schedulers share these clocks to observe the current phase of the
workflow, and normally do not otherwise communicate. Each performance also
has a collection of clocks associated with it which the scheduler and compen-
sation scheduler share to detect its current phase. Each workflow pattern uses
schedulers supporting different execution strategies for their respective perfor-
mances. For example, Seq schedulers engage in a token passing game – only the
scheduler holding the token can execute its performance and once complete the
token is passed onto the next scheduler (if one exists).

The workflow in Fig. 3 also has a Sentinel agent. This is only present if
the workflow is directly within a transaction and manages compensation within
the block. If a performance raises an exception, the Sentinel first waits for all
sub-threads to cease. This process is mostly handled by maximal progress, but
the Sentinel will also broadcast yield commands to any threads willing to re-
ceive them, causing them to halt. Once all activity has stopped the Sentinel
will invoke the topmost compensation schedulers. Naturally the compensation
schedulers follow the reverse strategy to regular schedulers where appropriate,
for example in Seq the last performance to execute is the first to compensate
and the token is passed back in the opposite direction. The actual compensa-
tions are managed by Compensator agents which are composed with compensable
performances and install their respective compensations upon the forward per-
formance’s completion.

σw
1 r e

rcρw
1ecρw

2

σw
2

σw
33

σw
1r

e
ρw
1

ρw
2

3σp
2

ρw
1

σw
3

σp
1 σw

2

ρw
1

σp
1 σp

2

z

ρw
1

ρp
1

ρw
1

ec

rc

ρp
2

ρw
2ρw

2ρw
1

Fig. 4. Governor and Schedulers for Par pattern
(a is input, a is output, σ and ρ are clocks. Clocks mentioned in the graphs are

blocked in all states unless they explicitly have outgoing transitions)

Fig. 4 shows the governor, scheduler and compensation scheduler, respec-
tively, for Par. They use the following channels:

– r signals a component has fulfilled its preconditions and is ready to execute;
– e is used to order a component to e1xecute;
– ✓ is used to signal that a component completed successfully;
– z is used to signal completion of the enclosing transaction.

Initially all schedulers wait for their associated performances to become ready
by waiting for a signal on channel r (this is the condition of readiness for the

36 Simon D. Foster

workflow). Once all schedulers have received this signal the workflow can enter
the first phase via the ticking of σw

1 . The governor then asks the environment for
permission to execute via r, and receives it back via e. The execution phase then
begins (σw

2) where the actual performances move into their execution phase via
the first clock (σp

1) and permission to execute is likewise signalled via e.
Each performance can then signal success by outputting ✓, or failure by

simply halting. Compensation is governed by the two ρw which drive the com-
pensations schedulers. Alternatively, if execution was successful, the performance
phase is advanced (σp

2) and then either the workflow as a whole can complete
(indicated by σw

3) or it can fail indicated by ρw
1 (if a sibling performance failed).

Error handling completion is indicated by ρw
2 . It should be noted that, since even

after successful completion a workflow may need to compensate, the scheduler’s
initial state permits a ρw

1 tick (otherwise compensation would be blocked).
The governor recognises the need to initiate compensation in the workflow

by being able to send a request to compensate before the workflow signals suc-
cess via σw

3 (the environment will not allow this unless the Sentinel has initiated
compensation from above). Thereafter it allows a ρw

1 tick to initiate compensa-
tion. For a compensation scheduler to invoke compensation it must first detect
completion of its performance via the performance clocks (σp

1,2) during workflow
execution, otherwise it will just idle over the error handling phase (since no work
has been done). If it does detect that the performance has run and thus needs
compensation, it will follow basically the same pattern as the regular scheduler,
using analogous rc and ec channels to invoke compensation in its performance.

With the above framework in place, implementing the actual compensa-
tions handled by Compensator agents is straightforward. Each Compensator (not
shown) is composed with both a forward and compensation performance. Upon
detecting successful completion of the associated forward performance via ✓,
the compensation performance is “installed”, meaning subsequent compensation
commands on rc and ec will be forwarded to it. Prior to this such commands are
simply forwarded on to the compensation schedulers in the forward performance
(with the assumption that compensation is handled elsewhere).

If a transaction block successfully completes (i.e. the top-level workflow com-
pletes) the Sentinel broadcasts a signal on z to all compensation schedulers and
Compensator agents, ordering them to reset or uninstall their compensations
respectively.

4 Conclusion

We have outlined a method for modelling compensation using timed process
algebra. Using general process algebraic operators we can model many variations
of compensation and workflow, in a similar way to how Petri Nets have been
applied to modelling different variations of the workflow patterns [6], though
with the benefit of having compositionality as a core concept.

Our aim for the future is the expansion of the existing equivalence theory
based on temporal weak bisimulation to the new calculus. Due to lack of space

Modelling Compensation with Timed Process Algebra 37

many of technical details have been omitted, for example how interruption is
handled, which requires an extension to the preemption scheme of CaSE [9].
A full operational semantics for Cashew-S will also be derived, with associated
theory derived from the process algebra. Cashew-S should ultimately be suffi-
ciently expressive to represent a useful class of WS-BPEL processes, specifically
those with compensation and the single instance fragment of the workflow pat-
terns. However questions remain, such as how should looping be modelled in the
presence of compensation and what theory can be derived from the operational
semantics. We also anticipate an elegant implementation of the semantics in the
functional programming language Haskell, in which we already have a concise
implementation of CaSE.

Acknowledgements

Many thanks to Mike Stannett, Barry Norton, Andrew Hughes and Ramsay
Taylor for their valuable feedback on this paper. We would also like to thanks the
anonymous reviewers for their feedback on this paper. Due to space constraints
further expansion has been limited, though remaining suggestions will be dealt
with in the forthcoming longer submissions.

This research is supported by EPSRC DTA EP/P501717/1.

References

1. Garcia-Molina, H., Salem, K.: Sagas. In: Proc. of the 1987 ACM SIGMOD Intl.
Conference on Management of Data (SIGMOD ’87), ACM Press (1987) 249–259

2. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: Proc. 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’05), ACM Press (2005) 209–220

3. Butler, M., Ripon, S.: Executable semantics for compensating CSP. In: Proc. 2nd
Intl. Workshop on Web Services and Formal Methods (WS-FM 2005). Volume 3670
of LNCS., Springer (September 2005) 243–256

4. Norton, B., Lüttgen, G., Mendler, M.: A compositional semantic theory for syn-
chronous component-based design. In: 14th Intl. Conference on Concurrency Theory
(CONCUR ’03). Volume 2761 of LNCS., Springer (2003)

5. Norton, B., Foster, S., Hughes, A.: A compositional operational semantics for OWL-
S. In: Proc. 2nd Intl. Workshop on Web Services and Formal Methods (WS-FM
2005). Volume 3670 of LNCS., Springer (September 2005) 303–317

6. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-
terns. Distributed and Parallel Databases 14(1) (2003) 5–51

7. Norton, B., Fairtlough, M.: Reactive types for dataflow-oriented software archi-
tectures. In: Proc. 4th Working IEEE/IFIP Conference on Software Architecture
(WICSA2004). Volume P2172., IEEE Computer Society Press (2004) 211–220

8. Martin, D., ed.: OWL-S : Semantic Markup for Web Services. OWL-S Coalition,
http://www.daml.org/services/owl-s/1.1/overview/ (2004)

9. Foster, S.: A timed process calculus with localised interruption. Technical Report
CS-07-07, University of Sheffield (2007)

Service and Protection Level Agreements

for Business Processes ?

Ganna Frankova and Artsiom Yautsiukhin

Dept. of Information and Communication Technology - University of Trento
email: {frankova,evtiukhi}@dit.unitn.it

Abstract. The issue of business process design for a complex web ser-
vice provision is gaining attention and has been addressed in a number
of recent works. We argue that calculation of global quality of service
and protection, which then is negotiated with a client as service and
protection level agreements, for complex web services must be based on
business process.
The quality of service in web service compositions plays a vital role and
has opened a wide spectrum of challenges. Therefore, the orchestrator
should design its business process aggregating web services in such a way
as to make it more efficient from the quality of service and protection
point of view. In this work we propose a methodology that identifies the
concrete business process providing the highest quality of service and
protection among all possible design alternatives.

1 Introduction

One of the most thought provoking issues in web services is that of building
a business process to provide a complex added-value service. A Business Pro-
cess (BP) in a web services context is a set of interrelated services and the
flow of data between them that leads to the outcomes associated with a busi-
ness activity. The research on business processes is well under way. There are
many works focusing both on functional properties, primary goals, e.g., [7], and
non-functional properties, quality of service, of web services and web services
composition, e.g., [10]. However, the works do not take into account the concept
of business process for web service composition. The works on security for web
services are mainly restricted to protection of communication links [8] and access
control [2]. There are only a few approaches covering security requirements for
web services as a whole [3, 6].

The Quality of Service (QoS), e.g., execution time and availability, and Qual-
ity of Protection (QoP), e.g., time to recover after an attack and the percentage
of successful virus attacks are of paramount importance for the success of web
services. Web services should satisfy not only functional requirements but also
be QoS/QoP driven. The problem becomes even more complex if we deal with
composite web services.

To design a BP first we specify an abstract BP which fulfils the desired
functional requirements at the high level. Various design alternatives that do

? This work has been partly supported by the IST-FP6-IP-SERENITY and IST-FP6-
IP-SENSORIA projects.

Service and Protection Level Agreements for Business Processes 39

not affect the functionality of abstract business process but allow configuring
the workflow in different ways exist (e.g., one alternative provides faster pro-
cessing, another one is more reliable). These design alternatives lead to several
concrete BPs (refinements of the abstract BP) that precisely define all its steps
at the low level and provide all the functionalities. Then, the most efficient con-
crete BP from the QoS and QoP point of view is selected. Furthermore, an
orchestrator may trust one service provider more than another one on provision
of a service that is a part of a concrete BP.

In this work, we propose a methodology that identifies the concrete business
process providing the most fruitful qualities among all possible design alterna-
tives for the given abstract business process. Moreover, the methodology takes
into account the level of trust of service providers and adjusts the expected
quality value correspondingly. The methodology is supported by a reasoning al-
gorithm that allows easy recalculation of computed metrics if some changes in
BP design occur, that is typical for highly dynamic environment such as web
services.

2 Service and Protection Level Agreements: Background

The stake-holders involved in a BP are:

Definition 1 Service Customer (customer) is an entity that interacts with a
complete, self-contained BP. Service Orchestrator (orchestrator) is an entity
which manages a BP and agrees to satisfy the customer’s requirements for
the BP. Service Provider (provider) is an entity that has a task assignment,
i.e., web service, that is a part of a higher-level BP, received from an orchestra-
tor.

The involved partners should come to a formal agreement before the usage
of web service. The agreement is defined as a contract between the provider
and the orchestrator specifying the functionality of the outsourced service, qual-
ity and protection requirements. The requirements for complex web service the
orchestrator manages are specified in a contract with a customer.

Here we assume that services provide desired functionality and we focus on
non-functional requirements. We found it useful to divide the agreement into the
following parts:

Definition 2 Service Level Agreement (SLA) is a contractual version of the
Quality of Service (QoS) which specifies the performance criteria a provider
promises to meet while delivering a service. Protection Level Agreement (PLA) is
a contractual version of the Quality of Protection (QoP) which specifies security
criteria, a provider promises to meet while delivering a service.

We argue that security requirements should be considered since client’s data may
be corrupted while under the control of the provider. On the one hand, there are
plenty of works on QoS [9, 5], on the other hand, very little attention is devoted
to QoP while identification and aggregation of security metrics useful for QoP
is not a trivial task [6].

40 Ganna Frankova and Artsiom Yautsiukhin

3 Business process hypergraph

The cornerstone of web services success lies in the ability to compose web ser-
vices in order to build complex added-value services. Dealing with quality aware
web service composition requires studying and finding the global SLA/PLA of
complex web services according to the BP. In the proposed methodology, we
use hypergraphs [1] to capture the structure of BP. We introduce the notion of
business process hypergraphs as follows.

Definition 3 A business process hypergraph (BPH) B is a pair 〈S,D〉
where S is a set of service requirements and D is a set of hyperarcs. A hy-

perarc is an ordered pair 〈N, t〉 from an arbitrary nonempty set N ⊆ S (source
set) to a single node t ∈ N (target node). Each hyperarc is associated with a
weight ω〈N,t〉 and a function ϕ〈N,t〉 which calculates value of a target node taking
as arguments source nodes and the weight ω〈N,t〉.

Since in our case each source node contributes differently to a target one,
we use dummy nodes between source and target nodes, one for a hyperarc. The
weights are assigned to the hyperarcs that connect source and dummy nodes and
the weights for the hyperarcs between the dummy and target nodes are always 1.
We do not depict the nodes to avoid unnecessary complexity.

We assume that there are more then one ways to implement an abstract BP.
Each solution is given by the hyperpath defined as follows.

Definition 4 Let B = 〈S,D〉 be a BPH, X ⊆ S be a non-empty subset of
services, and y be a service in S. A hyperpath DX,y from X to y in B is a set
of hyperarcs such that either y ⊆ X or there exists a hyperarc 〈Z, y〉 ∈ D and
there are hyperpaths from X to each service zi ∈ Z.

As there are several ways to refine an abstract BP into the concrete BP,
several hyperpaths exist. The global SLA/PLA of each hyperpath is different.
Hence, the key issue is to determine the “minimal” hyperpath through a quan-
titative evaluation of BPH.

4 SLA and PLA for Business Processes: Methodology

The proposed methodology helps a service orchestrator to select the optimal
concrete BP with the preferred QoS/QoP from several alternatives based on the
abstract BP 1.

We made the following assumptions about a BP our methodology deals with:
(i) BP is defined in a hierarchical way. A top level BP (BPt) is based on services
aggregated by one of structural activities such as a sequence, a loop, a choice or
a parallel execution. Then, for each non-atomic service Si a BP (BPSi

) is de-
termined and the decomposition continues until atomic, i.e, non-decomposing,
services are reached. (ii) An orchestrator which does not trust a provider on

1 For the notions of abstract business processes we refer to Web Services Business
Process Execution Language Version 2.0, August 2006.

Service and Protection Level Agreements for Business Processes 41

achievement of some requirements may use the level of trust to adjust corre-
sponding metrics in such a way that after the modification the trust relation is
established.

The methodology includes three phases, namely, (1) business process hy-
pergraph construction, (2) aggregation functions design and (3) reasoning in
business process hypergraph.

global
QoS
/QoP
Rec
.

Begin
 End

or

P

1

Flow
 Choice

S10

P

2
 P

3

S1
 S2
 S3

S8

S9

S11
S7
S6

S4

S5

P
1

P
2

P
3

P
4

or

P

4

N
1

N
3
N
2

Fig. 1. Business process hypergraph construction.

Phase 1. Business Process Hypergraph Construction. The first phase
of the methodology is devoted to BPH construction based on the various imple-
mentation of abstract BP designing by an orchestrator. The BPH construction
process is presented as an algorithm in Figure 2.

Figure 1 shows the top level BPt based on three services S1, S2, and S3. Each
service of the top level BPt is associated with the node N1, N2, and N3. The
nodes are connected by one hyperarc with the top node, that means that the
services all together contribute to satisfaction of the global requirements. Then,
the services are decomposed. Since two alternative BPs exist for service S1, two
distinct hyperarcs and corresponding source nodes are added in the hypergraph.
This means that each alternative business process contributes to the satisfaction
of the target requirements separately. The services are executed by the same
partner that runs BPt. Service S2 is delegated to provider P1 (shown as a node
in the BPH) and then decomposed. Service S3 may be fulfilled by provider P4

or may be decomposed into a business process whose activities are outsourced
to P2 and P3.

Phase 2. Aggregation Functions Design. The second phase of the method-
ology is devoted to the aggregation functions. Each hyperarc is assigned with
a set of weights that shows contribution of a source node to the target one.
Weights of hyperarcs connecting providers with a target node denote the level of
trust between the delegator and the delegatee. Each leaf node is assigned with a
QoS/QoP value that can be achieved. The value corresponds to the QoS/QoP
of atomic service.

Each hyperarc is assigned with an aggregation function ϕ〈N,t〉 (one for each
structural activity) which calculates the value of a target node taking as argu-

42 Ganna Frankova and Artsiom Yautsiukhin

ments the source nodes and the set of weights ω〈N,t〉. Examples of the aggregation
functions for QoS could be found in [5]. The authors provide aggregation func-
tions for such numerical QoS metrics as cost, execution time, etc. In our work
we take into account the level of trust of providers and propose an additional
function to change the expected metrics according to the level of trust.

Algorithm Business Process Hypergraph Construction
begin

specify the global QoS/QoP requirements for BP
associate the global QoS/QoP requirements for BP with the top node of BPH
while there are services with the corresponding decomposing BPs

if service is outsourced then

for each provider that has a task assignment
add a node for provider in the BPH
add a hyperarc from the added node to the target node

else

for each design alternative
for each service of the alternative

add a node in the BPH
add a hyperarc from the added nodes to the target node

end-while

end

Fig. 2. Business Process Hypergraph Construction

To the best of our knowledge there is no similar approach for security metrics
and we propose the preliminary aggregation functions for number of attacks per
month in the following table.

Structural activities Weight Function

parallel probability of service execution2 ϕ =
∑

xi
ωi ∗ xi

sequence probability of service execution2 ϕ =
∑

xi
ωi ∗ xi

choice probability of service execution2 ϕ =
∑

xi
ωi ∗ xi

loop ω = 1 ϕ = ϕ1

trust level of trust ϕ = ω1 ∗ ϕ1

Phase 3. Reasoning in Business Process Hypergraph. The third phase
of the methodology is devoted to a reasoning algorithm that proceeds several
concrete BPs calculating their QoS/QoP. We evaluate each requirement sepa-
rately finding the “best” BP for each requirement rather than for all of them
together.

The aggregation functions proposed by Jaeger [5] are superior. This allows us
to apply one of already proposed algorithms for effective calculation of hyperpath
in BPH [1, 4]. Quantitative evaluation of hyperpaths in BPH from leaf nodes to
the top one determines the optimal concrete BP.

We note that QoP metrics are more complex than QoS ones and aggregation
functions for QoP metrics design is not a trivial task. We developed and proved

2 probability to find a source service to be executed if the target service is proceeding.

Service and Protection Level Agreements for Business Processes 43

an algorithm for calculation of an optimal hyperpath that works with monotone
aggregation functions. Due to lack of space we do not present it in this work.

5 Concluding Remarks
We have proposed a methodology that during design time helps a service orches-
trator to determine the optimal concrete BP from several alternatives according
to the preferred QoS/QoP. The methodology also allows the orchestrator to
easily recalculate computed metrics if some changes in the BP occur (i.e., BP
re-design). Furthermore, we are planning to adopt the approach for automatic
composition of BP (i.e. automatic BP design) to support a business process
planning tool in choosing the best concrete business process on the fly.

In the future, we will investigate the multi-requirement analysis, which re-
quires the identification of a decision-making function that chooses the more
preferable set of attributes (e.g. a weighted function). We also will define and
validate the aggregation functions for more QoS/QoP requirements. Further-
more, to make the discussion more concrete, we will justify that the aggregation
functions are appropriate using the e-business banking case study, a working sce-
nario of the IST-FP6-IP-SERENITY project. In addition, we plan to elaborate
the issue of trust to determine how it affects the expected qualities.

6 Acknowledgments

We thank Fabio Massacci for support in conducting this research. We acknowl-
edge Marco Aiello for his constructive suggestions for improving the quality of
the paper.

References

1. G. Ausiello, G. F. Italiano, and U. Nanni. Optimal Traversal of Directed Hyper-
graphs. Technical Report TR-92-073, International Computer Science Institute,
Berkeley, CA, 1992.

2. E. Bertino, J. Crampton, and F. Paci. Access Control and Authorization Con-
straints for WS-BPEL. In Proceedings of IEEE ICWS., 2006.

3. V. Casola, A. Mazzeo, N. Mazzocca, and M. Rak. A SLA Evaluation Methodology
in Service Oriented Architectures. In Proceedings of QoP Workshop., 2005.

4. G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed Hypergraphs and
Applications. Discrete Applied Mathematics, 42(2-3):177–201, 1993.

5. M.C. Jaeger, G. Rojec-Goldmann and G. Mühl. QoS Aggregation in Web Service
Compositions. In Proceedings of IEEE EEE., 2005.

6. Y. Karabulut, F. Kerschbaum, P. Robinson, F. Massacci, and A. Yautsiukhin.
Security and Trust in IT Business Outsourcing: a Manifesto. In Proceedings of
STM Workshop, 2006.

7. N. Milanovic and M. Malek Current Solutions for Web Service Composition. IEEE
Internet Computing, 8(6):51–59, November/December 2004.

8. OASIS Web Services Security: SOAP Message Security 1.1, February 2006.
9. T. Yu and K.-J. Lin. A Broker-Based Framework for QoS-Aware Web Service

Composition. In Proceedings of the IEEE EEE, 2005.
10. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng. Quality

Driven Web Services Composition. In Proceedings of WWW, 2003.

A Model for exploring the Service-oriented
Software Engineering (SOSE) challenges

Qing Gu and Patricia Lago

Department of Computer Science
VU University Amsterdam, The Netherlands

Abstract. Service-oriented software engineering (SOSE) aims to design,
develop and maintain service oriented applications in a systematic ap-
proach. Due to the complexity that is introduced when software pro-
grams as services can be discovered, composed, instantiated, executed at
runtime, SOSE poses new challenges in the way software is engineered
as opposed to traditional software systems. In order for service-oriented
systems to succeed, a well focused SOSE research agenda is needed. This
paper proposes a model that can help researchers to identify the novelty
of SOSE challenges and their research scope, and thus further helps to
build the SOSE research agenda. To give an example of how to apply the
proposed model, this paper explores the SOSE challenges that relate to
business benefits by presenting a worked out instance of the model.

1 Introduction

Service-oriented architecture (SOA [1]) is a software architecture style that sup-
ports the communication of a collection of services to perform tasks. Recently,
SOA draws enormous attention in the industry because systems that are built
based on SOA promise to bring business benefits to the customers and technolog-
ical benefits to the developers. In order for service-oriented systems to succeed,
principles known from traditional software engineering (SE) need to be tailored
to service-oriented development. Systematic approaches for designing, develop-
ing and maintaining service-oriented systems are needed. We generalize these
approaches as Service-oriented Software Engineering (SOSE).

In a service-oriented system, a service is an independent unit of functionality
delivered through a distributed network [2]. Additional complexity is introduced
when SOSE has to ensure that services can be discovered, composed, instanti-
ated, executed at runtime while complying with the requirements from all the
stakeholders of the system. Engineering services requires different approaches as
compared to traditional SE. Hence, SOSE poses more demanding and stimulat-
ing situations, which are called challenges in this paper, in the way services are
engineered as opposed to traditional software systems.

Currently, the SOSE research challenges presented in the literature are very
broad and cover a wide range of topics, from design principles to business mod-
els. We believe that a well focused agenda would better guide researches to
define research topics and their scope. By understanding and prioritizing the

A Model for exploring the SOSE challenges 45

challenges from the current literature, researchers could come to a more focused
SOSE research agenda. Furthermore, during our work, we observed that not all
the challenges that have been proposed in the literature are really innovative.
Since challenges with different novelty need different attentions, we suggest to
categorize these challenges before creating the research agenda.

Due to the fact that the current proposed challenges cover a wide range of
topics and the connections between the challenges are often ignored, a model
that can well classify the challenges and can well indicate the inter-dependencies
between the challenges seems useful. Based on this inspiration, we propose a
model to assist researchers to explore the SOSE challenges because so far there
is no commonly agreed model that formalizes these issues. This model guides
researchers to focus on a subset of the challenges and helps to categorize these
challenges based on their novelty by comparing with the ones in another SE
discipline. In our experience, this categorization can further help researchers to
determine the research priorities.

An instance of the model is presented to demonstrate useful applications of
the model. This instance regards a subset of the challenges that are related to
business benefits and chooses component based software engineering (CBSE),
the ancestor of SOSE, as the benchmark. Through comparison, we categorize
the challenges to a) false challenge, b) challenges that require tuning, and c)
innovative challenges.

The paper is structured as follows. Section 2 presents the proposed model
and an instance of the model is demonstrated in Section 3. Section 4 summarizes
our contribution, conclusions and some directions for future work.

2 The proposed model for exploring SOSE challenges

A lot of work, such as research roadmaps [3], methodologies [4], and blueprints
of service engineering [5], have been proposed by researchers to investigate SOSE
challenges. In particular, [6] points out collaborative issues and problems caused
by the dynamic nature of service-oriented system. An overview of the difference
between traditional SE and SOSE is given in [7]. The research agenda proposed
by NESSI [8] addresses eight high level research areas. In isolation, these works
address part of the SOSE challenges. All together, these works propose a broad
range of challenges. The lack of investigation on the relationship between the
challenges hinders the researchers to decompose the research areas into specific
research topics and impedes the cooperation between the researchers.

Moreover, we observed that not all the challenges that have been proposed
in the literature are really innovative. Some of the proposed challenges have al-
ready been extensively investigated and validated in other SE disciplines (for
instance, information hiding coming from object-oriented development). Since
these challenges have been studied thoroughly, researchers need to understand
better on how to apply the existing knowledge to SOSE. On the other hand,
some challenges, such as dynamic composition, introduce different levels of in-
novation. These innovative challenges require more attention because they open

46 Qing Gu and Patricia Lago

new research areas. These observations inspired us not to look at the challenges
in isolation, but to compare them with other SE disciplines. In this way, by
looking at the similarities and differences, we are able to determine whether one
is intrinsically an innovative challenge.

In order to set research priorities, a model to categorize SOSE challenges
would prove to be useful. This paper proposes such a model to explore SOSE
challenges. It gives researcher a structured way of analyzing these challenges. By
studying the inter-dependencies of the challenges and by comparing the chal-
lenges with the ones in other SE disciplines, researchers can use this model to
conclude the novelty of the studied challenges.

Fig. 1. A model for exploring SOSE challenges

The model presented in Figure 1 consists Goals, Attributes, Risks and SOSE
concerns. Each of the tiers contains one or more elements. The tier Goals refers
to one or more purposes that all the selected challenge should share. Examples
of the goals can be increasing flexibility, business benefits, technological bene-
fits, etc. The tier Attributes contains the challenges that have an impact on the
attainment of the goals. The tier Risks refers to the challenges that do not have
mature technical solutions in order to be directly applicable. This lack of ma-
turity hinders the achievement of the goals, and even obstructs service-oriented
systems to be fully industrially exploited. The tier SOSE concerns indicates some
SOSE activities (such as requirements engineering, testing, etc) that might be
influenced by the attributes or the risks or both.

We found it is neither effective to analyze a challenge individually nor possible
to analyze all the challenges at the same time. By selecting the challenges that
share the same common purposes, we can focus on a subset of the challenges.
That is the reason why we first need to decide on the elements in the tier Goals.
Intuitively, after the goals are determined, we are seeking the challenges that have
positive impact or negative impact on the selected purposes. The challenges, such
as design principles, engineering techniques, characteristics, that encourage the
attainment of the purposes can be put in as the elements in the tier Attributes.
At the same time, we might notice that some state-of-the-art challenges still do
not have solutions. These challenges might cause problems when service-oriented
systems will be widely applied. We can put them in the tier Risks. By looking at

A Model for exploring the SOSE challenges 47

all the selected challenges in the model and relating them to the SE activities,
we might notice that some of the SE activities have to be adapted and some
additional activities have to be added due to the changes that the challenges
introduce in SOSE. We include these activities in the tier SOSE concerns and
they are also regarded as SOSE challenges in the model.

After all the elements have been filled in the model, we can further study the
inter-dependencies between the challenges. Our motivation to do so is, firstly,
because we need these inter-dependencies to define the research scope. Secondly,
it is because these inter-dependencies are one of the reasoning evidences for
determining the novelty of the challenges. In the end, we can choose another
SE discipline as the benchmark. By comparing the challenges and the inter-
dependencies in the model with the ones in the other SE discipline, we can
categorize these challenges based on their novelty.

3 An instance of the model

The conceptual model presented in Section 2 might at this point look very ab-
stract. For demonstration purposes, we present an instance of the model by
choosing ‘business benefits’ as the goals and CBSE as the benchmark.

The motivation for targeting on the ‘business benefits’ is that we believe
service orientation will reach success only if a) companies adopt SOA as (part
of) their IT portfolio and b) companies developing and maintaining services
can gain the appropriate returns on their investments. Therefore, how much the
customer and the vendor companies can benefit from SOSE is critical to whether
it can be widely accepted in practice. Since business benefits comprise a large
variety of sub-benefits, we need to further identify several aspects of the business
benefits that we would like to focus on. In this example, we specifically analyze
four, namely flexibility, quick time to market, scalability and low cost. These
four are also the key business benefits that major vendors advocate [9]. They are
represented by four elements in the central tier Business benefits of Figure 2.

In the next step, we can decide on elements in the tier Attributes, Risks and
SOSE concerns based on the business benefits. These elements are the challenges
that we are going to explore. In order to categorize them by their novelty, we
choose CBSE as the benchmark being this often regarded as the ancestor of
SOSE. Both paradigms share a number of common properties. By comparing
the SOSE challenges and their inter-dependencies with the ones in CBSE, we
can discriminate the novelty of these challenges. We define the challenges that
do not exist in CBSE or challenges that are applied differently in CBSE and
SOSE as innovative challenges, the challenges that are applied in the same way
in CBSE and SOSE as false challenges, and the challenges that are applied in the
similar way but with different inter-dependencies as challenges needing tuning.

In order to give a concrete example of how this instance works for categoriza-
tion, we use the challenge dynamically discoverable & composable for explanation.
The capability of discovery & composition is a challenge that requires turning
due to the different focuses CBSE and SOSE addressed. For instance, services can

48 Qing Gu and Patricia Lago

Fig. 2. Instance for Business benefits, with challenges wrt. CBSE

be selected at execution time while components are building blocks assembled
during design time. However, adding dynamism to the capability of discovery
& composition brings new challenges requiring additional research investigation,
such as how to increase loose coupling, how to enrich the service contract and
how to optimize testing procedures, etc. Therefore, we suggest regard Dynamically

discoverable & composable as an innovative challenge.
Through this classification, we can further determine which research chal-

lenges require the highest priority. One could argue that the challenges that
require tuning should require the highest priority because 1) mature research
results could be achieved effectively thanks to existing experience in CBSE; 2)
mature research results from SOSE can also spark new developments in CBSE.
One could also argue that innovative challenges require the highest priority be-
cause it is novel and solutions are needed urgently. The purpose of the model is
to help researchers to identify the novelty of the challenges. We leave researchers
free to determine the research priorities according to their research context.

By creating the instance, we are able to analyze the causes and effects among
the selected challenges and their inter-dependencies. This instance not only can
help us determine the novelty of the challenges but also can facilitate us to scope
our research area. For instance, let us suppose we decide to study dynamically

discoverable & composable. We should keep in mind that the relevant challenges
that have inter-dependency relationship with, such as service contract and loose

coupling presented in the created instance, should also be studied accordingly.

4 Conclusions and future work

As a new development paradigm, SOSE promises to bring a number of benefits
to IT companies and their clients. Due to the complexity of the service-oriented
landscape, a well focused SOSE research agenda is required.

This paper proposes a model that can be used to analyze the inter-dependencies
of SOSE challenges and to identify the novelty of these challenges. For demon-

A Model for exploring the SOSE challenges 49

stration purposes, we also present an instance of the model which focuses on the
SOSE challenges related to the business benefits.

Through establishing the model and creating its instance, we have learned
that the advantages of the model are threefold. Firstly, we can better rationalize
which are the relevant challenges to serve predefined purposes (such as business
benefits). Secondly, by using another SE discipline (such as CBSE) as the key for
comparison, we can further determine the novelty (such as innovative, false or
requiring tuning) of SOSE research challenges. Such a classification enables us to
realize to what extent the challenges that are currently claimed in the literature
require more scientific explanation. Thirdly, by tuning the results coming from
other disciplines to solve SE challenges, SOSE can also spark new developments
in these other disciplines.

As future work, we aim to mature the instance by refining and completing the
inter-dependencies between the challenges that are identified so far. For instance,
we would not only consider the positive impact that the SOA attributes have
on the business benefits, but also their side effects. Thus, trade-off relationships
need to be studied. After that, we will create more instances of the model by
investigating other benefits and comparing the challenges to other SE disciplines.
In this way, we are able to rationalize the results by providing more scientific
evidence. Once the instances are complete and mature, we envision using these
instances as tools for professionals too, to decide on SOSE investments and to
measure their impact.

References

1. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall (2005)

2. Michael N. Huhns, M.P.S.: Service-oriented computing: Key concepts and principles.
IEEE Internet Computing 9(1) (2005) 75–81

3. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting research roadmap (2006)

4. Papazoglou, M.P., Yang, J.: Design Methodology for Web Services and Business
Processes. In: Proceedings of the Third International Workshop on Technologies for
E-Services (TES 2002). Volume LNCS; Vol. 2444., Springer-Verlag (2002) 5464

5. Zirpins, C., Baier, T., Lamersdorf, W.: A Blueprint of Service Engineering. In: First
European Workshop on Object Orientation and Web Service (EOOWS), Darm-
stadt,Germany (2003)

6. Tsai, W.T.: Service-oriented system engineering: A new paradigm. In: Service-
Oriented System Engineering, 2005. SOSE 2005. IEEE International Workshop,
Beijing, China (2005) 3– 6

7. Tsai, W.T., Wei, X., Paul, R., Chung, J.Y., Huang, Q., Chen, Y.: Service-oriented
system engineering (sose) and its applications to embedded system development.
Service Oriented Computing and Applications (2007) 3–17

8. NESSI: Nessi strategic research agenda (vol. 3.fp7-1). (2006)
9. Stevens, M.: The benefits of a service-oriented architecture. Online at

www.developer.com (2002)

Methodology for a Precise Development Process
of Service Oriented Applications ?

László Gönczy

Department of Measurement and Information Systems
Budapest University of Technology and Economics

Budapest, Magyar tudósok krt. 2. H-1117, Budapest- Hungary
gonczy@mit.bme.hu

Abstract. This paper aims at presenting an engineering process which
bridges precisely defined service configurations and standard deployment
techniques. Service models are described in a well-founded manner using
the SRML language, developed in the SENSORIA FP6 project. These
models are then basis of i)an ontology-based validation and ii)deployment
of services in the emerging industrial service configuration specification
SCA. Reasoning systems allow the developer to validate the consistency
of model instances. In the SOA context, e.g. architectural compatibility
of the model and the specification can be validated and possible infeasi-
bilities of the metamodel can be identified. The design of an Eclipse-based
framework is presented in which most of the MDA-conform development
tasks are executed in a (semi-)automated way.
Keywords: Model-Driven Deployment, SCA, Ontology-based Valida-
tion, SRML, Development Process

1 Introduction

As there is an increasing number of technical implementations of Service Ori-
ented Configurations available, common model-based analysis, development and
deployment mechanisms are needed. Therefore, one of the current research trends
is to use standard visual modeling languages and derive formal analysis models.
This paper introduces a method for analyzing service configuration descriptions
and develop configurations with the possibility of a precise analysis. Service
Component Architectures (SCA) [15] is used as an industrial modeling and de-
ployment technology. Sensoria Reference Markup Language [7] aims at building
a formal framework for service description.

Service Component Architectures (which is now getting on the way of becom-
ing an OASIS standard) is a specification for defining services by their interface
description. The power of this specification is given by its technological hetero-
geneity; it allows the usage of Java, BPEL, PHP and standard Web services
technologies (WSDL), with some other technical options being under develop-
ment. However, current SCA-compliant tools do not support validation of SCA
? This work was partially supported by the SENSORIA European FP6 project (IST-

3-016004).

Methodology for a Precise Development Process 51

models. Therefore, in the Sensoria project the aim is to build a chain to process
different types of SRML/UML/SCA/BPEL models and perform formal analysis
and generate SCA-conform configuration descriptors from high level models.

2 SOA modeling techniques

This section briefly introduces SCA (an industrial specification for service as-
sembly) and SRML, which is developed in a research project for support a formal
framework for service development.

SCA - an Industrial Specification for SOA Description Service Component Ar-
chitecture is an industrial specification to define service oriented applications
above the middleware layer, therefore making the design independent from tech-
nical details. The main goals of SCA are (based on [15]) simplifying development,
assembly and deployment of services and separating the core business logic from
middleware-related decisions.

Main elements of SCA are components representing individual business ser-
vices. Components which are deployed together are called modules which can
be organized to subsystems. Modules have entry points and can rely on external
services. Technical details of accessing these are described by bindings. Interfaces
can be connected by wires.

From the technical point of view, modules can be implemented in Java,
BPEL, PHP or as Web services. Each technology has its own implementation
model. Abstract intents can be attached to components to specify policies, such
as interaction mechanisms, messaging requirements, security or transactional-
ity attributes of a given service. SCA modules and interfaces are described in
specific XML schema files. During my work, I use IBM WebSphere Integration
Developer ([12]) which supports parts of the SCA specification.

Precise Definition of Services Using SRML SRML-P (referred here as SRML)
was developed in the Sensoria EU project at the University of Leicester and
University of Lisbon [7, 6]. The aim of this language is to describe the definition
of services and their compositions in a middleware-independent way. The main
advantage of using SRML is that it can be considered as a bridge from high-level
service specifications to formal methods. Further languages of the SRML family,
such as SRML-F [3] will extend the service definitions with configuration man-
agement description, so that the model can be run on a service execution engine
which supports negotiation, SLA management, etc. The formal foundation of
such an engine is given by process algebraic semantics. Herein I concentrate on
the description of process modules, but in the near future I also plan to inte-
grate SRML extensions (or further language constructs) with industrial stan-
dards (such as WS-Security, WS-Transactions, WS-RM, WS-Reliability, etc.).

52 László Gönczy

3 A Development Framework

This section proposes a framework to support the development of service oriented
applications.

3.1 General Approach

As scientific results can be communicated by using some industrial technologies
to present their benefits, the framework should concentrate on widely known
modeling and deployment techniques. This approach is shown in Fig. 1.

Fig. 1. Model-based development framework for services

As stated above (and also in [7]), SRML has some common goals with SCA.
However, currently there is no available runtime support for applications written
in SRML. For design time support, in [11] an initial mapping from WSDL and
(parts of) BPEL is described. An EMF-based SRML editor will also be devel-
oped, but creating complex systems directly in SRML may require additional
skills from developers. While SRML is a powerful as the basis of a formal analysis,

Methodology for a Precise Development Process 53

service configurations should be generated for an industrial language. Therefore,
using SCA as an implementation platform (or, more precisely, implementations
of SCA specification) was an obvious decision.

Therefore, we aim at BUTE at generating

– SRML models from high level descriptions
– SCA configurations from SRML models and
– deployment descriptors to standard platforms from SRML-like models.

According to the service-driven approach of Sensoria, we considered development
and analysis tools as services. Of course, currently only a subset of model trans-
formations (denoted by a T in a hexagon) are fully implemented. SRML and
SCA have corresponding metamodels and basic connections (reference model
and transformation) in VIATRA; the basis for their definitions were [7], [15] and
[16]. As SRML contains some elements which cannot be directly connected to
SCA-compliant solutions (e.g., the Types of Interactions), the step of generat-
ing SCA elements from SRML obviously causes loss of information, the level of
which is determined by the target implementation platform.

Analysis of service configurations can be executed by ontology-based valida-
tion using the RACER [10] tool. This allows the developer to find infeasabili-
ties of the model and answer questions about (i) the consistency of the model
and (ii) domain specific requirements against service configurations. Examples
include questions like ”Are all protocol definitions compatible?” and ”Do secu-
rity specifications of all composite services meet user requirements?”. Automatic
derivation of such questions for the reasoning tool is part of future work.

3.2 Model Transformations in VIATRA2

VIATRA2 is a modular, Eclipse-based model transformation framework, devel-
oped at BUTE [19]. It is a general purpose model transformation tool, with
built-in support for parsing high level models such as UML and BPM. Parsers
for additional languages can be written as Eclipse plugins (e.g., there is a BPEL
parser implemented). In the framework, models are stored as typed, directed
graphs. Alternatively, models can be created by the textual editor of the tool,
however, in an engineering process this serves only testing purposes. The role of
model transformations during the development is to generate models of different
description levels and to derive analysis models of the system. Previously, the
tool was successfully used in design and analysis of embedded systems, workflow
descriptions, etc.

The formalism behind model transformations is graph pattern matching with
negative application conditions, described for instance in [4]. To ease the de-
velopment of complex transformations, in addition to the declarative pattern
matching mechanism, VIATRA allows the user to define a control structure of
transformation steps using Abstract State Machine instructions.

54 László Gönczy

3.3 Contributions

The main contribution of the current work will be that it bridges an industrial
standard modeling technique to a formally defined language (using SCA2SRML
transformation), and then descriptors to an industrial deployment platform from
formal models (by transformation SRML2SCA), therefore it extends the engi-
neering cycle with precise formal analysis possibilities.

4 Related Work

There are several frameworks in the literature for model-based development of
web service systems, just a few examples: [13] also uses high level modeling of
web services and their connections as a starting point for deployment.

A framework for automated generation of WSDL files from UML models
is described in [18]. A similar problem is addressed in [8]. A previous work at
BUTE [9] aims at defining a framework for model-driven development of services
taking the model of [2] as a basis for system description. A lot of work deal
with extension of existing Web services technologies in order to provide some
additional functionality (e.g., [1]), but these works usually do not have a precise
metamodel in the background, moreover, they require modifications of existing
proxies, clients, etc.

Finally, Service Availability Forum is an industrial specification for combin-
ing services to increase the availability of the overall system [14]. SAF as a
deployment platform is also targeted by the research at BUTE.

5 Conclusions and Future Work

In this paper a framework for combining the power of a formal description lan-
guage and industrial standards/specifications was described. The main benefits
and novelties of this framework are that on the one hand it uses industrial tech-
nologies for runtime management of services and on the other hand combines
service modeling with the formal analysis power of SRML.

Nevertheless, there are many future research directions from which the deriva-
tion of non(or extra)-functional attributes form SRML languages and inclusion of
additional development platforms (such as BPEL) will be the next steps. As the
full support of EMF based models in VIATRA is planned for early 2007, SRML
models will be directly read from the visual editor (which is also to be completed
in a few months) and their VIATRA representations will be synchronized with
the design model.

Development processes for domain specific services (which are described in
details in Sensoria Case Studies) can also be described in SRML, where services
will correspond to development and analysis tools and the ”composite service”
will represent the development of a concrete application service, which itself is
a composite service. The coordination of analysis and deployment steps in such
an application can be described in SMRL-P as well. Such an SRML process
corresponds to the development of (classes of) domain-oriented applications.

Methodology for a Precise Development Process 55

Acknowledgements I would like to say thanks to Daniel Varro for his valuable
advice, to Zsolt Deri for feedback about the specifications and to all ”Sensorians”
for discussions.

References

1. Alwagait, E., and Ghandeharizadeh, S.:DeW: A Dependable Web Services Frame-
work. In Journal RIDE, IEEE Computer Society, 2004. pp. 111-118.

2. Baresi, L., R. Heckel, S. Thöne and D. Varró: Style-Based Modeling and Refinement
of Service-Oriented Architectures. Journal of Software and Systems Modelling, Vol.
5(2), pp. 187–207, June 2006.

3. Bocchi, L., J.L. Fiadeiro and A. Lopes: The SENSORIA Reference Modelling Lan-
guage, Primitives for Configuration Description(SRML-F,v.1.0). SENSORIA Re-
search Report, 2007.

4. Ehrig, H., R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner, and A. Corra-
dini:Algebraic approaches to graph transformation. In Handbook of Graph Gram-
mars and Computing by Graph Transformation, volume I: Foundations, pp. 247–
312. World Scientific, 1997.

5. Eclipse Modeling Framework, URL: http://www.eclipse.org/modeling/
6. Fiadeiro, J.L., A. Lopes and L. Bocchi:A Formal Approach to Service Component

Architecture. In Proc. of WS-FM 2006, LNCS 4184, pp. 193 213, 2006.
7. Fiadeiro,J.L., A. Lopes and L. Bocchi: The SENSORIA Reference Modelling Lan-

guage, Primitives for Service Description (v.1.3). SENSORIA Research Report,
2006.

8. Gronmo, R., D. Skogan, I. Solheim and J. Oldevik: Model-driven Web Services
Development. Presented at the 2004 IEEE Intl. Conf. on e-Technology, e-Commerce
and e-Service (EEE-04), Taipei, Taiwan.

9. Gönczy, L., J. Ávéd and D. Varró: Model-based deployment of web services to
standards-compliant middleware. In Proc. of ICWI2006, Iadis Press, 2006.

10. Haarslev, V., R. Moller and M. Wessel: RACER User’s Guide and Reference Man-
ual Version 1.7.19.

11. Hong, Y.:WSDL and BPEL to SRML-P language transformation. MSc Thesis,
University of Leicester, 2006.

12. IBM WebSphere Integration Developer.
http://www-306.ibm.com/software/integration/wid/

13. Manolescu, I., S. Ceri, S. Comai and P. Fraternali: Model-driven design and de-
ployment of service-enabled web applications. ACM Trans. Inter. Tech., Vol. 5 ,
N.3 (August 2005), pp. 439 - 479

14. SA Forum: Application Interface Specification. http://www.saforum.org.
15. SCA Consortium. Building Systems using a Service Oriented Architecture. Version

0.9, 2005.
16. SCA Consortium. Service Component Architecture – Assembly Model Specifica-

tion, Version 0.9, 2005.
17. Software Engineering for Service-Oriented Overlay Computers (SENSORIA) Eu-

ropean project IST-3-016004. http://sensoria.fast.de
18. Vara, J.M., V. de Castro and E. Marcos: 2005. WSDL Automatic Generation from

UML Models in a MDA Framework. In International Journal of Web Services
Practices, Vol.1, No.1-2, pp. 1-12.

19. VIATRA2 Framework, An Eclipse GMT Subproject,
URL: http://www.eclipse.org/gmt/.

Policy-Based Service Selection

Helge Janicke1 and Monika Solanki2

1 heljanic@dmu.ac.uk

Software Technology Research Laboratory,
Gateway House, De Montfort University,

Leicester LE1 9BH
2 monika@doc.ic.ac.uk

Department of Computing
Huxley Building, Imperial College,

London SW7 2AZ

Abstract. Conventional means of selecting a service are predominantly
based on the results returned from service discovery. Typically most ap-
proaches employ a matchmaker which works in tandem with a service
registry and user preferences based on the functionality of services. Non-
functional attributes of services, such as reliability, timeliness and other
quality of service criteria are typically not addressed or only in the static
form of a contract that is made between the provider and the consumer
of a service. In this paper we propose an extended architecture that al-
lows consumers to specify additional policies for service selection based
on their preferences for the non-functional service requirements. Policies
are enforced by a policy-engine and are based on past requests made by
the consumer.

1 Introduction

With the proliferation of Web Services as a business solution to enterprise ap-
plication integration, the Quality-of-Service (QoS) offered by Web Services is
becoming the utmost priority for service providers and consumers. This means
constant availability, connectivity, and high responsiveness are key to keeping a
business competitive and viable. Due to the dynamic and unpredictable nature
of networks over which services are deployed, providing the acceptable QoS is
a challenging task. It is important to accurately estimate the levels of service
from the perspective of both clients and web service providers. QoS metrics for
a service include several dimensions such as time, cost, performance, reliabil-
ity, accessibility, throughput, availability, interoperability and security. In most
existing approaches for the management of QoS, either quality is described as
ad-hoc properties or a generic (agnostic) approach to quality description is taken,
with quality description based on external definitions. In this paper we propose
to augment the standard service oriented architecture with the notion of an ob-
server and a policy engine. The former enabling the observation of dynamic QoS
attributes, the latter to provide a policy-based approach to address the problem
of QoS-based service selection from a set of already discovered services while

Policy-Based Service Selection 57

maintaining the integrity of their respective QoS properties and the QoS of any
service composition.

During Web service compositions, the providers and consumers define bind-
ing service level agreements (SLAs) also referred to as a policy or contract that
specifies various dimensions of the service such as delivery deadlines, quality of
the product being traded, production standards to be adhered to and cost of
the delivered product. The SLA is a legally binding document and specifies the
contractual obligations of the service provider with respect to the guaranteed
level of service and the penalties associated with failure to comply with the
contract. Such an agreement collectively defines the “quality-of-service”(QoS)
that is expected to be delivered by the service provider. Whether offered within
an organisation or as a part of a paid service across organisational boundaries,
QoS aspects of services are important in a service-oriented computing environ-
ment. While managing QoS in distributed systems is not a novel problem, a
number of additional issues arise in the context of a service-oriented computing
environment.

– In traditional distributed systems, the network and system resources are
within the control of one organisation and its partners. In the domain of
Web services, the consumers and providers can rapidly change, making the
nature of networks unpredictable.

– In the case of composite services, the QoS properties of individual services
in the composition contribute to the overall QoS. Composition of composite
services may often yield aggregated QoS properties that may not be directly
derived from those of the individual services. An important question that
arises here, is how can the provider of a composite service ensure adherence
to the overall QoS requirements.

The monitoring and control of QoS properties for a service has several advan-
tages such as ensuring correct behaviour of the service, maintaining or surpass-
ing QoS levels expected by consumers, identifying and addressing problems and
timely response to change. Publication of QoS properties for a service, along
with its capabilities can help service consumers in selection between provider
Web services with the same or similar functionality.

2 Architecture

In current service based systems, services descriptions are published in the reg-
istry, where all service specifications are stored. These specifications can be dis-
covered by other agents that require the execution of a specific service. Alter-
natively to leaving the task of service discovery to the application level, the
infrastructure can provide dedicated match-making services to lift the burden of
the application programmer. However, match-making does typically only take
into account the service specification as advertised in the registry and the service
properties that have been requested by the consumer application. The result is
a set of matching services, from which the application must choose according to

58 Helge Janicke and Monika Solanki

some preference. Typically these preferences are dependent on the actual QoS,
that in most cases is not directly observable by the application itself.

Our proposed architecture, depicted in Figure 1, assists service consumers in
this selection process to find the most suitable provider. This choice can depend
on various factors such as the actual QoS that is provided or the provider’s
interactions within the system. We propose that a consumer registers a policy
with a policy-engine that is part of the infrastructure. The policy represents
its preferences with respect to service selection. As every consumer can submit
its own policy, the selection is highly customised and tailored to the individual
needs. From the policy we can determine which information is relevant [1] to
obtain preferences and deploy or adjust mechanisms that observe the interaction
between providers and consumers. We term as observers dedicated components
that observe the interaction between services at the message passing level or by
means of invasive or non-invasive instrumentation.

preferred services
5. provides list of

policy
1. defines

Policy−EngineMatch−MakerRegistry

feeds back to

3. queries 4. queries

uses data of

Observer

observes interactions

Messaging

Service Interface publishes service description

Service
provides

2. requests service Service

Infrastructure

Network

Fig. 1. Service Architecture

The consumer initially registers a preference policy with the policy engine,
before requesting a service from the matchmaker. The match-maker then queries
the registry to discover suitable services and subsequently selects according to
dynamic QoS attribute, by ordering them according to preferences provided by
the policy engine. The policy engine constantly evaluates the policies against
the information that is provided by the observers and adjusts the individual
preferences of providers accordingly. In case the service is making a request, the
matchmaker orders the discovered services according to the preferences of the
consumer. Policies can also define obligations, viz. actions that the policy engine

Policy-Based Service Selection 59

must perform under specific conditions. For example, if priorities for service
provision change then the policy engine must notify the service of this change.
This potentially leads to a re-binding to a more preferable service. In case the
change of preference occurs during a transaction it is at the discretion of the
service to either immediately terminate the transaction or to rebind after the
transaction completed. This choice is highly domain-dependent.

The advantage of this approach is that dynamic QoS attributes that are
otherwise not observable by the application itself can be taken into account.
One example is the provider’s interactions with others. Also the burden of an
explicit preference management is lifted from the application programmer as
this is delegated to the policy engine in form of a preference policy. Of course
preference policies are domain dependent and policy engine may not be able to
evaluate all policies, for example if the policy references observations which the
infrastructure is incapable of providing. However this can be analysed and fed
back to the service.

3 Preference Policies

The preferences that underlie the provider selection are defined in the form of
preference policies. These policies are written from the service consumer’s per-
spective and are enforced by the policy engine. Preference policies are expressed
in the form of condition-action rules. They are based on a policy model that has
been introduced in previous work e.g. [2]. The condition of a rule represents a set
of behaviours that triggers the action. The model has a sound formal semantics
in ITL [3], and therefore lends itself for applications that require a high level
of assurance. Due to space limitations we do not introduce the model here and
refer the reader to our previous work e.g. [2]. Rules are of the form:

when b [increase | decrease] preference in s [little | medium | strong]

where b is the specification of a set of behaviours and s is the name of a service.
Here the increase or decrease in preference is modelled as an atomic action that
assigns a new preference value. The concrete effect of these actions is dependent
on the underlying preference model. For the purposes of this paper we assume
a simple model where preference is modelled as a single integer. Higher values
denote a higher preference. We assume that initially there is no established
preference, viz. all preference values are 0. In this setting we define the meaning
of little, medium and strong to mean 1, 2 and 3.

3.1 A Stock-Quote service

We take the example of a stock-quote service, where the stakeholders are a cus-
tomer (C) and three different stock exchange services (SE1, SE2 and SE3) that
are discovered by the matchmaker. Initially the customer is undecided about
the preferences in these services. As none of the services provides guaranteed

60 Helge Janicke and Monika Solanki

response times as part of their service specification, the customer defines a pol-
icy that states that services that has always provided a response-time of less
than 2 sec over the last 10 interactions are preferred to those that at some point
exceeded 5 sec. Any service where the response-time exceeds 10 sec is strongly
not preferable. This is expressed using the following three policy rules.

scope (SE1,SE2,SE3) :
when 10: always responsetime(s) <= 2 sec increase preference in s medium

when 10: sometime responsetime(s) >= 5 sec decrease preference in s little

when 0: responsetime(s) >= 10 sec decrease preference in s strong

Here the preceding t : in the premises of the rules state that the behaviour of
s observed in the last t interactions is considered. Given these rules, the policy
engine determines the information that is needed for its enforcement. In this case
it is the response-time of services SE1, SE2 and SE3 over the last 10 interactions.
The observer will then start to record the response-time for these three services.
With every service invocation the policy engine will check the premise defined
by the rules to determine whether the rule fires. For example if response-times
for the following 12 service requests for SE1 were as depicted in the table below
then the enforcement of the preference policy would be as follows.

request: 1 2 3 4 5 6 7 8 9 10 11 12
response-time: 11sec 2sec 2sec 1sec 1sec 1sec 1sec 2sec 2sec 2sec 2sec 5sec

After the first request the last policy rule fires, as the response-time is longer
than 11 sec. This leads to a reduction of service SE1’s preference from 0 to
−3 (decrease ... strong). Following this none of the policy rules fire as the
interactions have a good response-time. Reaching request 11 the first policy rule
fires, as over the last 10 requests the response-time was indeed less or equal to
2 seconds. This increases the preference value from −3 to −1. With the last
request the response-time degrades again and fires the second rule decreasing
the preference to −2. Depending on interactions that have been observed with
the other potential providers a preference ordering can be established and C is
able to select the best provider given its stated preference policy.

4 Related Work

In the domain of Web services, several industrial standardisation efforts such
as HP’s Web Service Management Framework (WSMF) [4], IBM’s Web Service
Level Agreement (WSLA) [5,6], the Web Service Offering language (WSOL)
[7,8] and approaches based on Web service policies (WS-Policy) [9] define some
efforts to formalise the QoS dimensions. Ontologies for semantically described
Web services, such as OWL-S [10] and WSMO [11] consider very generic aspects
of QoS. Web services are described by functional and non-functional properties.
Cost, time, and reliability are the only dimensions analysed in the METEOR-S
Project [12] that proposes a framework for the annotation of Web Services.

Policy-Based Service Selection 61

Several approaches have been studied within the service-oriented comput-
ing domain that monitor behaviour of services, however they do not address
policies defined by individual parties. Li et al. [13] presents a framework for run-
time monitoring of interaction behaviour of services against pre-defined interac-
tion constraints specified using pattern and scope operators from the Property
Specification Pattern System. In the framework proposed by Baresi et al. [14]
assertions are specified on service compositions modelled as BPEL processes.
Assertions can be specified in CLIX as well as directly as code snippets within a
C# implementation in the .NET environment. A major limitation here is that
only pre and post conditions can be specified as assertions. Lazovik et al. [15]
propose an approach based on interleaving planning and execution where as-
sertions are specified in an XML based language. In [16] WS-Policy has been
used as a language for specifying non-functional constraints (i.e. security) to be
monitored. Constraints are specified using the Web service Constraint language
(WS-Col) which are embedded in a WS-Policy file for the service. Mahbub et
al. [17] proposes a framework for runtime monitoring of services composed in
BPEL4WS where monitoring requirements are specified in Event calculus.

5 Conclusion and Future Work

In this paper we extended the conventional service-oriented infrastructure with
the notion of a policy engine and the concept of observers. The policy engine
accepts preference policies and evaluates them on behalf of a service in the
light of available observations made of the behaviour of other services. This
is used to establish a preference ordering between potential services that have
been discovered by the matchmaker. The advantage of this approach is that the
selection of services can depend on dynamic attributes of these services and can
lead to a dynamic reconfiguration in case that the preference ordering of potential
service providers change over time. Furthermore by expressing preferences as
policies the burden of implementing the selection process at the application
level is reduced, as policies express these requirements at a much higher level
of abstraction. Enforcing policies centrally allows also for an extended set of
observations that can be made, e.g. taking into account the interactions of others
with these potential providers.

This of course also raises security concerns, as to what degree information
about the behaviour of other services can be deduced from preference orderings.
We aim to address this issue by allowing services to specify access control poli-
cies that clearly state which other services can or cannot observe measures on
interactions, enabling the users of such an infrastructure to control what traces
their interactions are observable by others. We also plan to address the issue of
contract validation within this framework. The policy engine for example could
enforce contractual agreements between services, for example policies that en-
force a penalty payment if a certain agreed QoS level is not maintained.

62 Helge Janicke and Monika Solanki

References

1. Janicke, H., Cau, A., Siewe, F., Zedan, H.: Deriving Enforcement Mechanisms
from Policies. In: to appear in Procceedings of POLICY2007, IEEE (2007)

2. Janicke, H., Cau, A., Siewe, F., Zedan, H., Jones, K.: A Compositional Event &
Time-based Policy Model. In: Procceedings of POLICY2006, London, Ontario,
Canada, IEEE (2006)

3. Cau, A., Moszkowski, B., Zedan, H.: The ITL homepage. online (2005)
4. Catania, N., Kumar, P., Murray, B., Pourhedari, H., Vambenepe, W., Wurster, K.:

Web service management framework, version 2. Technical report, HP Labs (2003)
5. Ludwig, H., Keller, A., Dan, A., King, R.: A service level agreement language for

dynamic electronic services. In: WECWIS ’02: Proceedings of the Fourth IEEE
International Workshop on Advanced Issues of E-Commerce and Web-Based Infor-
mation Systems (WECWIS’02), Washington, DC, USA, IEEE Computer Society
(2002) 25

6. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web service level agree-
ment (wsla) language specification, version 1.0. Technical report, IBM Corporation
(2003)

7. Tosic, V., Pagurek, B., Patel, K.: Wsol - a language for the formal specification of
classes of service for web services. In: ICWS. (2003) 375–381

8. Tosic, V., Patel, K., Pagurek, B.: Wsol - web service offerings language. In: CAiSE
’02/ WES ’02: Revised Papers from the International Workshop on Web Services,
E-Business, and the Semantic Web, London, UK, Springer-Verlag (2002) 57–67

9. Box, D., Curbera, F., Hondo, M., Kaler, C., Langworthy, D., Nadalin, A., Na-
garatnam, N., Nottingham, M., von Riegen, C., Shewchuk, J.: Web services policy
framework (ws-policy), version 1.1. (2003)

10. The OWL-S Coalition: OWL-S 1.1 Release. (2004)
http://www.daml.org/services/owl-s/1.0/.

11. ESSI WSMO working group: Web Service Modelling Ontology (2004)
http://www.wsmo.org.

12. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: Meteor-s web service anno-
tation framework. In: WWW ’04: Proceedings of the 13th international conference
on World Wide Web, New York, NY, USA, ACM Press (2004) 553–562

13. Li, Z., Jin, Y., Han, J.: A runtime monitoring and validation framework for web
service interactions. In: ASWEC ’06: Proceedings of the Australian Software Engi-
neering Conference (ASWEC’06), Washington, DC, USA, IEEE Computer Society
(2006) 70–79

14. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In:
ICSOC ’04: Proceedings of the 2nd international conference on Service oriented
computing, New York, NY, USA, ACM Press (2004) 193–202

15. Lazovik, A., Aiello, M., Papazoglou, M.: Associating assertions with business pro-
cesses and monitoring their execution. In: ICSOC ’04: Proceedings of the 2nd in-
ternational conference on Service oriented computing, New York, NY, USA, ACM
Press (2004) 94–104

16. Baresi, L., Guinea, S., Plebani, P.: Ws-policy for service monitoring. In: TES.
(2005) 72–83

17. Mahbub, K.; Spanoudakis, G.: Run-time monitoring of requirements for systems
composed of web-services: initial implementation and evaluation experience. In:
IEEE International Conference on Web Services. Volume 1., IEEE (2005) 257–265

Course Generation as a Web-Service (CGWS)

for E-Learning Systems ?

Tianxiang Lu, Carsten Ullrich, and Babara Grabowski

German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

{tianxiang.lu,carsten.ullrich}@dfki.de

Abstract. A course generator provides personalized learning experi-
ences by assembling structured sequences of learning objects that help
learners to achieve their learning goals. They can be stored in a multi-
tude of repositories and are selected by the course generator based on a
set of pedagogical methods that take into account the learners’ goals and
individual properties such as mastery. This pedagogical knowledge needs
to be elicited from pedagogical experts and hence is rather expensive to
assess. Therefore, once a course generator has been developed, it makes
sense to make course generation available as a web-service for web-based
e-learning environments in order to reuse the pedagogical knowledge. In
this paper, we present the web-service we developed for the course gen-
erator of the LeActiveMath system. We describe the service oriented
architecture during the design and the suitability via the application.

1 Introduction

Traditional web-based e-learning environments like Moodle offer access to learn-
ing resources using courses authored by humans. These courses are mostly static,
hence each learner is presented with the same sequence of learning object, re-
gardless of his individual needs. In contrast, course generation [2] allows the au-
tomatic generation of a structured sequence of learning objects that is adapted
to the learners’ competencies, individual variables, and learning goals. A course
generator implements human expert knowledge, which is hard and expensive to
assess. The contribution of this paper is to use web-service standards for pro-
viding a Course Generator as Web Service (CGWS). In contract to very broad
approaches that define complete frameworks for educational services (e.g., [7]),
this work focuses on a specific service, namely how to access the course gen-
eration knowledge in an (mostly) automatic matter. This papers presents the
implementation of the CGWS (the master thesis of the first author); the un-
derlying research is presented in [5, 6, 4]. In order to assess the potential interest
and requirements of third-parties in a CGWS, we performed a survey contain-
ing several questions about potential use cases, e.g., general interest in course

? This publication was generated in the LeActiveMath project, funded under the
6th Framework Programme of the European Community (Contract Nr. IST-2003-
507826). The authors are solely responsible for its content.

64 Tianxiang Lu and Carsten Ullrich

generation, but also technical questions, e.g, the learner models used, etc. The
results of the survey served as the basis of the requirements analysis of the
CGWS. Based on the requirements, we designed a loosely coupled architecture
for CGWS, whose basic components we will describe in the next section. Fol-
lowing a top-down approach, in § 2 we define the interfaces between the server
(CGWS) and the client (external web-based e-learning environments). We then
illustrate the interactions between them. In the final section, we present examples
of applications of the CGWS, encountered difficulties and lessons learned.

2 Design

The basic components needed for course generator are content repositories and
learner models. The content repositories store the learning objects that are used
by the course generator to assemble courses. However, most repositories use their
own metadata schema and storage technology. Integrating data from different
repositories is a well-known problem and is typically tackled by a mediator,
which provides a uniform interface for accessing multiple heterogeneous data
stores (e.g. file systems and different databases) [8]. In case of the web-service
world, it is necessary that repositories can be added and removed without human
intervention from the mediator side: a service should be able to register its
repositories automatically. A solution to this problem is described in § 2.1.

A learner model [1] stores information about the learner (e.g. properties,
preferences and the degree to which he has mastered the content) and hence
provides information that is necessary for the personalized generation of courses.
A CGWS requires that client can register its learner model, so that the CGWS

can access it during course generation. The challenge for such an interface is that
it has to cope with various types of learner models, but also the fact that some
web-based e-learning environments do not even have a learner model.

A course generator uses the information provided by the above components
and assembles learning objects from one or many repositories into a personal-
ized course with respect to a pedagogical learning goal (a task, [6]). Tasks are
fundamental concepts in course generation. A pedagogical task represents the
learning goal of a user and consists of a pedagogical objective and of a set of

learning objects that specifies the course’s target concepts. An example is the
task (discover (def slope)), which represents the learning goal of a learner who
wants to discover and understand the mathematical definition of the “slope”. A
different learning goal is, say, (train (def slope)). A course supporting the user
in reaching the former learning should contain all learning objects required by
this individual user to understand the goal concept.

2.1 Interfaces of the CGWS

The CGWS provides two main kinds of interfaces: the core interface and the
repository integration.

Course Generation as a Web-Service for Learning Environments 65

The core interface consists of the following methods: getTaskDefinitions()

is used to retrieve the pedagogical tasks which the course generator can pro-
cess (described in XML format); generateCourse(objective, learning object Ids,

learnerId) starts the course generation on the given educational objective, iden-
tifiers of learning objects and the identifier of learner (or LearnerKnowledgeMap,
see § 2.3). The result of the course generator is a structured sequence of learning
objects. The format of the result complies to IMS-CP, an established standard
for the exchange of courses between different web-based e-learning environments.

The interface for repository registration consists of the following methods:
getMetadataOntology() provides the client with a description of the metadata
structure used in server. The description is provided as an ontology that describes
the pedagogical types and relationships of learning objects [5].

The method registerRepository(name, rep url, ontology url, ontology map url,

testLO) registers the repository that the web-based e-learning environments
client wants the course generator to use. Since different repositories often use
different metadata for describing the learning objects they store, the client needs
to provide information to the CGWS that helps to “understand” the metadata.
Therefore, the clients specifies the URL of the ontology describing the metadata
structure used in the repository and in addition an URL of an ontology mapping
between the two ontologies. This way, the mediator can translate between the
metadata used in the server and in the client.

The method unregisterRepository(rep url) unregisters the given repository.

2.2 Client Interfaces

A web-based e-learning environments client needs to provide the following inter-
faces: the ContentAPI needs to be able to answer queries coming from mediator
that ask for (a) the type of the given learning object; (b) all the learning ob-
jects that are connected to a given learning object by a given relation; (c) all
properties the given learning object has [4].

The LearnerPropertyAPI makes the learners’ properties accessible to the
CGWS in case the client contains a learner model and wants the course generator
to use it. In the current implementation, this interface is not yet implemented.
It would require a mediator architecture similar to the one used for repository
integration.

2.3 Interaction between Client and Server

In this section we describe the communication between client and server. We
will focus on the most relevant interactions.

Repository Registration The registration phrase happens as follows: In
a first step, the client retrieves the metadata ontology used in the CGWS.
The ontology is then used to generate a mapping between the metadata used
on the server and the one on the client. In the current system, the existing
mappings were manually authored. Then, the repository is registered using the

66 Tianxiang Lu and Carsten Ullrich

method registerRepository(). The repository is added to the list of available
repositories and made known to the mediator. Subsequently, the mediator fetches
the ontology mapping from the client and generates a wrapper for querying the
contentAPI of the client.

�����������	�
�� ��
�
	����� ���	� �

�	����������� �	
������
�� ���

� �������
����
���
��
� !�"� �	# ����$�� �

�	%�
'&�()*# � ���+�

, ������� -�+� ��# ����$	
�
������ ���	� �

. �	� ����� /�� ��� �0�	����/�� � ��� $�� �1��	� ����� /�� �	� ��������/�� � ��� $	� �

Fig. 1. web-based e-learning environments client registers its repository into CGWS

The most important step in the registration and the contribution of this
work is the automated generating of a wrapper (adapter or proxy), which takes
charge of binding and querying the contentAPI during the course generation.
The contentAPI should be provided as a web-service, so that the communication
can be performed automatically. In this way, a repository can be registered
automatically during run-time, without human implementation work required
for the wrapper.

Generating a course A client starts the course generation using the service
method generateCourse(). During the generation, the course generator queries
the mediator for the learning objects needed for the course but also the learner
model for information about the learner. After the course was generated, the
course generator will return an internal data structure that represents the struc-
ture of the course. This structure is transformed to an IMS manifest, packaged
in a SOAP message and send to the client.

Often, web-based e-learning environments do not have a learner model, but
still want to generate adaptive courses for their users. For these cases, the
course generator allows to define a temporary learner model, which consists
of property-value pairs that represent the current knowledge of the user. This
model is called LearnerKnowledgeMap. For instance, a first year university stu-
dent who masters Differential Calculus can have the following LearnerKnowl-

edgeMap: ((”‘Definition of Differential Calculus, good”’), (”‘Educational level,
University, 1. Semester”’)). A client can use a LearnerKnowledgeMap by calling
the service method generateCourseWithLearnerKnowledgeMap(). If the course
generator requires the value of a property not stored in the map, a default value
is used.

Course Generation as a Web-Service for Learning Environments 67

3 Applications

The design was implemented using Java and Axis2. The logic part on the server
side is implemented as Java packages, which call the course generator directly
using Java-API or using XML-RPC if the server is distributed. Axis2 is respon-
sible to facilitate the web-service details, which includes the WSDL generation
and the hot deployment of web-service. SOAP is used for message exchange.

The course generator described in this paper was developed in the FP6
project LeActiveMath, in a joint cooperation between AI and pedagogical ex-
perts. Figure 2 contains a screenshot of a course generated in LeActiveMath.

Fig. 2. A generated book in ActiveMath

An external client of course generator was developed at the University of
Applied Sciences Saarland. The MathCoach system is a web-based e-learning
environments tool especially designed for exercises and experiments within a
mathematical context [3]. Using the mechanisms described above (e.g., an ontol-
ogy mapping), it was possible to make the functionalities of the course generator
available to MathCoach.

A third use case of remote access to the course generator was done in the
teal project, which targets e-learning in office environments. This illustrates the
general applicability of our work. Currently we are working on an integration of
the CGWS into the web-based e-learning environments of the distant university
of Shanghai Jiao Tong University.

During the application we encountered several difficulties: (a) while the me-
diator architecture allows an easy technical integration, it is still a challenge

68 Tianxiang Lu and Carsten Ullrich

to design the ontology mapping, especially in the often occurring case of poor
metadata; (b) for technically unexperienced clients the usage of Web services is
still challenging despite being a standardized technique today.

4 Conclusion and outlook

In this paper we described a service oriented architecture for course generator
implemented as a web-service. This allows external clients to access the services
provided by the course generator, a component that substantially relies on ped-
agogical knowledge and therefore is expensive to design. This work is the first
approach to provide such a course generator as web-service (CGWS) to external
web-based e-learning environments, which improves the remote communication
between systems or machines and enables a cooperated environment of develop-
ing web-based e-learning environments. Additional research needs to be invested
regarding the generic integration of learner models. In the near future, we will
provide an official web-service access point for CGWS so that other web-based
e-learning environments can reuse the course generator.

References

1. Peter Brusilovsky and Eva Millán. User models for adaptive hypermedia and adap-
tive educational systems. The Adaptive Web: Methods and Strategies of Web Per-
sonalization, 2007.

2. Peter Brusilovsky and Julita Vassileva. Course sequencing techniques for large-scale
webbased education. International Journal of Continuing Engineering Education
and Lifelong Learning, 13(1/2):75–94, 2003.

3. Barbara Grabowski, Susanne Gäng, Jörg Herter, and Thomas Köppen. MathCoach
and LaplaceScript: Advanced Exercise Programming for Mathematics with Dynamic
Help Generation. In International Conference on Interactive Computer Aided Learn-
ing ICL, Vilach, Austria, 2005.

4. Philipp Kärger, Carsten Ullrich, and Erica Melis. Integrating learning object repos-
itories using a mediator architecture. In Proceedings of the First European Con-
ference on Technology Enhanced Learning, pages 185–197, Heraklion, Greece, oct
2006. Springer.

5. C. Ullrich. Description of an Instructional Ontology and its Application in Web
Services for Education. In Proceedings of Workshop on Applications of Semantic
Web Technologies for E-learning, SW-EL’04, pages 17–23, Hiroshima, Japan, 2004.

6. C. Ullrich. Course generation based on HTN Planning. In A. Jedlitschka and
B. Brandherm, editors, Proceedings of 13th Annual Workshop of the SIG Adaptivity
and User Modeling in Interactive Systems, pages 74–79, 2005.

7. Peter Westerkamp. Flexible Elearning Platforms: A Service-Oriented Approach.
Logos Verlag, Berlin, 2005.

8. G. Wiederhold. Mediators in the Architecture of Future Information Systems. The
IEEE Computer Magazine, 1992.

Automated Web Service Composition in Practice:
from Composition Requirements Specification to Process Run.

Annapaola Marconi, Marco Pistore, and Paolo Traverso

ITC-irst,
via Sommarive 18, Trento, Italy

{marconi,pistore,traverso}@itc.it

Abstract. Several works address the problem of the automated composition of stateful services,
e.g., specified in WS-BPEL. However, the key problem of their practical applicability in real
composition scenarios is still open. Addressing this problem requires to provide an easy and
affordable way to specify behaviours of component services and complex composition require-
ments, as well as composition techniques that are powerful enough to scale to scenarios of realis-
tic size. In this paper we present our approach for the specification of composition requirements,
we briefly explain how it can be integrated within an existing automated composition framework
and show the feasibility and efficiency of the automated composition task on a real scenario that
entails a high level of complexity: the Amazon E-Commerce Services and an e-payment service
offered by an important Italian bank.

1 Introduction
Service composition is one of the fundamental ideas underlying service-oriented applications: in or-
der to achieve, a given business goal, complex services are obtained by combine existing services
published on the Web. The ability to automatically compose web services is an essential step to sub-
stantially decrease time and costs in the development, integration, and maintenance of web services.
To be used in practice, automated composition should handle the complexity of real world component
web services and being able to generate an executable, ready to run and possibly easy re�ning new
web process.

Several works address the problem of the composition of stateful services, see, e.g., [8, 4, 5, 12, 11,
10]. However, the key problem of the practical applicability of these approaches in real composition
scenarios is still open. Addressing this problem requires to answer questions such as how to specify
the stateful behavior of the component services, how to specify the business requirements that de�ne
the goal of the composition, and whether the composition techniques are powerful enough to scale to
scenarios of realistic size.

In the paper we show that the features offered by our composition framework � in particular
the possibility to de�ne complex, structured business requirements for the composition and the very
ef�cient underlying composition techniques � are adequate to handle complex industrial composition
scenario. The considered scenario requires the composition of two real services, namely the Amazon
E-Commerce Services [1] and the e-payment service offered by an important Italian bank. The goal of
the composition is to generate an e-Bookstore application that allows to order books and buy them via
a secure credit card payment transaction. This composition scenario is particularly challenging since
all component services export complex interaction protocols and handle structured data in messages.
As a consequence, developing by hand the composite service that orchestrates the components, e.g.,
in terms of a WS-BPEL process, is a complex, time consuming and error prone task.

We show that the approach reduces dramatically the effort for the composition task by automat-
ically generating a complex executable WS-BPEL process in few minutes starting from composition
requirements that can be easily speci�ed and that have an intuitive graphical notation. This result pro-
vides a �rst positive answer to the question of the practical applicability of automated composition
techniques.

The rest of the paper is structured as follows. In Section 2 we present our e-Bookstore compo-
sition scenario. In Section 3 we describe how the composition requirements for this scenario can be
expressed in our framework, while in Section 4 we brie�y present our automated composition ap-
proach and show how it works on the e-Bookstore scenario. Finally, Section 5 concludes the paper
with some concluding remarks and a discussion on future work.

2 The e-Bookstore Composition Domain
In this section we brie�y introduce the e-Bookstore (eBS) case study. The idea is to automatically
synthesize a composite process that allows potential customers to search for books, add them to a

70 Annapaola Marconi et al.

virtual cart, checkout the order and monitor the credit card payment process. To accomplish its task,
the eBS interacts with three separate, independent, and existing services: a service that allows to
search books on Amazon.com catalog, a service that handles virtual carts, and a credit card payment
service. We suppose that the behavior of each component service is speci�ed through its WSDL [6]
and abstract WS-BPEL [3] descriptions.

Amazon E-Commerce Service (ECS) exposes Amazon’s product data and e-commerce function-
ality: from retrieving information about products in the Amazon.com catalog, to handling customer
shopping cart, to inspecting content from customers and vendors. ECS publishes a WSDL document [2]
that de�nes all the available ECS operations, their messages, and the data structure of each message.
Together with the WSDL description, Amazon provides several documents (see e.g. [1]) describing in
details how to submit requests to ECS and the data that is returned by the service, as well as how to
handle errors. As one can see from its WSDL description, all ECS operations are synchronous atomic
(request-response) web service invocations. However, in order to actually work, these operations must
be invoked in a precise sequence of steps. In practice, they belong to speci�c business work�ows. In
the Amazon ECS Developer Guide [1] these work�ows are described informally. In order to make the
work�ow explicit and formally de�ned, we modeled the abstract WS-BPEL speci�cation of the Ama-
zon Book-Search (ABS) and the Amazon Virtual-Cart (AVC) services starting from the descriptions in
[1].

In the following example we show the obtained abstract WS-BPEL speci�cations of the AVC and
ABS services.

Example 1 (The Amazon Book Search and Virtual Cart interfaces). Figure 1 contains the compact
representation of the abstract WS-BPEL speci�cation of the AVC and ABS services1. When the AVC
receives a request to create a new cart and the operation is successful, the client can start to add
items and eventually checkout its shopping cart. If the checkout is successful, the client can either
clear the cart or keep its content for future use. In all these interactions if something goes wrong
the AVC sends an error message describing the reason of the fault. It is important to notice that each
message part (e.g. part body of message cartCreate in Figure 1) has a complex structure. The
precise de�nition of each complex data type can be found in the ECS WSDL speci�cation (see [2]).

The ABS protocol is pretty simple: the client sends its identi�cation information through the
login request and, if the authentication is successful, he can repeatedly send search requests or
logout from the service. In the ABS, as well as for the AVC, the data type of each message part is a
complex XML Schema type and its de�nition can be found in [2].

customerId

itemSearchRequest

login

body

itemSearchResponse body

itemSearchError error

body

cartCreateErr error

cartCreateResponse

body

cartAddErr error

cartAddResponse

body

cartGetErr error

cartGetResponse

Amazon Virtual Cart
INPUT

MSG PART

ACTION MSG PART
OUTPUT

ACTION

!cartAddResponse
!cartAddErr

?cartAdd

cartAdd

cartCreate body

body

?clear ?nop

?cartGet

!cartGetErr !cartGetResponse

?cartCreate

!cartCreateErr !cartCreateResponse

CREATE_ERR

GET_ERR

NOT_EMPTYSUCC

STARTINPUT
MSG PART

ACTION MSG PART
OUTPUT

ACTION

Amazon Book Search

!itemSearchResponse

?login

!loginAck

?logout

?itemSearchRequest

!itemSearchErr

!loginErr

START

FAIL

SUCC

Fig. 1. The Amazon Book Search and Virtual Cart services

The Virtual Point of Sale service (VPOS) models a real on-line payment procedure offered by an
Italian bank. The next example describes the interaction protocol that the VPOS expects online shops
to follow when using the service.

Example 2 (The Virtual POS interface). When the VPOS receives the request to start a new payment
procedure, it checks the correctness of the request (identity of the online shop) and either sends an

1 Labels of input transitions start with a “?”, labels of output transitions start with a ”!”. Moreover the final states
of the protocols are marked either as successful (symbol X) or as failing (symbol ×) states. These minimal
“semantic” annotations are necessary to distinguish those executions that lead to a successful completion of
the interaction from those that are failed.

Automated Web Service Composition in Practice 71

ACTION MSG PART
INPUT

MPS Virtual POS

startTrans amount

shopEmail
shopID

ACTION MSG PART
OUTPUT

requestSubmitted

requestNotAvail

confirmAck
transTime
transAuthorization

errorDesc

startTransAck

startTransErr errorDesc

paymentURL

transID

errorDesc

transDate

confirmErr

?startTrans

!confirmErr !confirmAck

!requestSubmitted!requestNotAvail

?cancel?confirm

!startTransErr !startTransAck

SUCC

DATA_ERR

CUSTOMER_ERR

CANCELED

COMMIT_ERR

START

Fig. 2. The Virtual POS service

customerIdlogin

keyword
author
publisher
title

search

ASIN
quantity

add

transDate
transTime
transAuthorization

sent

subTotal
paymentURL

checkoutAck

confirmErr error

?login

!loginAck
!loginErr

!searchErr
!searchResult ?search

?add

!addErr
!addAck

!checkoutAck !checkoutErr

?requestSubmitted

!confirmErr !sent

?logout

?checkout

e−Bookstore Client
INPUT

MSG PARTACTION

ACTION MSG PART
OUTPUT

searchResult

addErr

addAck

checkoutErr

searchErr error

error

numItems
ASIN
detailPageURL
author
title
publisher
ISBN
price

subTotal

error

LOGIN_ERR

LOGOUT

PAY_ERR

CHECKOUT_ERR

SUCC

Fig. 3. The customer interface

error message or a message carrying the information about the URL (part paymentURL of message
startTransactionAck) that the shop must communicate to its customer. This information will
be used by the customer to communicate its payment data (identi�cation information and credit card
number) directly to the bank. Notice that this protocol is such that the online shop never has direct
information on the customer sensitive data. Once the interaction between the bank and the customer
has occurred, the VPOS noti�es the online shop the outcome. At this point, the online shop can either
confirm or cancel the payment transaction. If con�rmed, the transaction is executed by the bank
and the outcome (carrying all transaction details if successful) is sent to the online shop.

In addition to the descriptions of the two Amazon services and of the MPS service, we need to de�ne
as input to the composition problem the interaction protocol that the eBS exposes to its customers.

Example 3 (The e-Bookstore customer interface). As a �rst step (see Figure 3), the customer is re-
quired to login using its unique identi�cation code. Once his identity has been veri�ed, he can start
interacting with the eBS searching for book offers and adding them to his virtual cart. When the
customer checkouts its cart to conclude the order and attests the payment by sending the transaction
information (transID), the e-Bookstore can either send a con�rmation of the order, carrying all the
details of the payment transaction, or an error message.

3 Composition Requirements
Given the description (i.e. the WSDL and abstract WS-BPEL) of the component services (ABS, AVC,
and VPOS) and of the customer interface (eBS), the next step is the formal speci�cation of the com-
position requirements. As we will see in the rest of this section we propose a simple way for the
developer to express requirements that de�ne complex conditions, both for what concerns the control
�ow and for the data exchanged with the component services.

3.1 Control Flow Requirements
The eBS service main goal is to �sell books�. This means we want the eBS to reach a situation where
the customer has �lled his virtual cart, con�rmed the order and payed through the online payment
procedure. However, it may be the case that there are no available books satisfying the customer
search, or that the customer doesn’t conclude the order, or that the payment transaction fails. We cannot
avoid these situations, therefore we cannot ask the composite service to guarantee this requirement. In
case this requirement cannot be satis�ed, we do not want the eBS to con�rm order of books without
being sure that our customer accepted the offer and that the payment procedure was successful, as
well as we do not want displeased customers that have payed books that are not available. Thus,
our global termination requirement must take into account the transactionality of each component
service within the overall composition. The control-�ow requirement should be something like: do
whatever is possible to �sell books� and if something goes wrong guarantee that there are �no single
commitments�.

The following example describes the control-�ow requirements speci�cation for the eBS compo-
sition problem.

Example 4 (e-Bookstore control-flow requirements). In the speci�cation of each service interaction
protocol (see Figures 1, 2, and 3) some states are marked as successful (symbol X) and others as failing

72 Annapaola Marconi et al.

a b forwarder: simply forwards data received on the input node to the output node

f
ca

b function: upon receiving data on all input nodes, computes the function result and forwards it to the output node
a

c
b

fork: forwards data received on the input node to all the output nodes
ca

b merge: forwards data received on some input node to the output node, preserving temporal order
a b+ cloner: forwards, one or more times, data received from the input node to the output node
a b? filter: receives data on the input node and either forwards it to the output node or discards it
a

c
b

X xor: forwards data received on the input node to (exactly) one of the output nodes

Table 1. Basic elements of the data-flow requirements specification language.

(symbol ×). These annotations are used to specify the transactional requirements of the composition
problem. In particular, if we consider the eBS scenario, the speci�cation is the following:

eBS ABS AVC VPOS

Primary X X X X

Secondary × X/× × ×

The speci�cation distinguishes two different requirements: a primary and a secondary one. The pri-
mary requirement is to reach a situation where all the component services are in a successfull state (in
our case it models the condition �sell books�). The secondary requirement (modeling the condition
�no single commitments�) is to reach a situation where all the component services are in a failing
state. Notice that in the secondary requirement the ABS can either be in a successful or failing state,
this depends on the fact that such a service, unlike credit card payment or cart handling, doesn’t need
transactionality: we do not care whether the search is successfull in case of failure of the other services.

Our approach thus provides the developer with the ability to specify with a simple tabular notation
control-�ow requirements that are then translated into a formal internal notation that is hidden to the
developer and allows for the automation of the composition task (see Section 4).

3.2 Data Flow Requirements
The termination requirement presented in the previous section is only a partial speci�cation of the
constraints that the composition should satisfy. Indeed, we need to specify also requirements on the
data �ow. In order to provide consistent information, the eBS service needs to exchange data with the
components and its customer in an appropriate way (e.g. every time the customer sends a search re-
quest, the eBSmust use the book search information to prepare the itemSearchRequestmessage
for the ABS service).

createSearchResult C.searchResult

createItemSearch

getError2

getError3

getError

C.add.quantity

C.add.ASIN

X

X

ABC.cartCreate.body

ABC.cartAdd.body

createCartCreate

createCartAdd

C.addAck.subTotal

C.addError.error

? C.checkoutAck.subTotal

B.startTransaction.amount?

B.startTransaction.shopIDgetShopID

B.startTransaction.shopEmailgetShopEmail

getSubTotal3ABC.cartGetResponse.body

getError4

B.startTransactionErr.errorDesc

C.checkoutAck.paymentURL?B.startTransactionAck.paymentURL

? C.checkoutError.error

C.confirmError.error

B.requestNotAvail.errorDesc

B.confirmErr.errorDesc

ABC.cartGetErr.error

B.requestSubmitted.transIDC.requestSubmitted.transID

C.sent.transAuthorizationB.confirmAck.transAuthorization

C.sent.transDateB.confirmAck.transDate

C.sent.transTimeB.confirmAck.transTime

ASTROBookStore DATA NET

ABS.login.customerIdC.login.customerId

ABS.itemSearchResponse.body

ABS.itemSearchRequest.bodyC.search

ABS.itemSearchErr.error

ABC.cartCreateErr.error

ABC.cartAddErr.error

C.searchError.error

getSubTotal2

getSubTotal
ABC.cartCreateResponse.body

ABC.cartAddResponse.body

Fig. 4. The data flow requirements for the e-Bookstore composition problem

The aim of the data �ow modeling language presented in [9] is to allow the speci�cation of com-
plex requirements concerning data manipulation and exchange by means of an intuitive and easy-to-
de�ne graphical notation. In particular, data �ow requirements specify explicitly how output messages

Automated Web Service Composition in Practice 73

(messages sent to component services) must be obtained from input messages (messages received
from component services). All these requirements are collected in a diagram called data net (see
Figure 4), whose nodes are sources of input messages, consumers of output messages, or internal vari-
ables for temporary storage of data, and whose arcs represent �ow or manipulation of data. Data nets
are able to represent a variety of constraints on the �ow of data, including whether an input message
can be used several times or just once, how several input messages must be combined to obtain an
output message, whether all messages received must be processed and sent, and so on. In Table 1 we
brie�y describe the basic elements of a data net. Refer to [9] for a complete and formal description of
the language.

The speci�cation of the data net for the e-Bookstore example is presented in Figure 4, which we
will (partially) explain in the following example.

Example 5 (e-Bookstore data-flow requirements). When the eBS receives a login request from the
customer, it must forward the customerId information to the ABS service. To obtain the body
to be sent in the itemSearchRequest to the ABS, the eBS must apply its internal function
createItemSearch to manipulate the data received in the search message from the customer.
The eBS must obtain the error information that it sends in the searchError message to the
customer by computing its internal function getError on the body of the itemSearchError
message received from the ABS. The quantity and ASIN information received in the add message
from the customer can either be used to prepare the cartCreate message (through the
createCartCreate operation) or to prepare the cartAdd message (through the
createCartAdd operation) to be sent to the AVC. The eBS exploits the internal functions
getShopId to obtain the shopId information in the startTransaction message to be sent
to the VPOS (and similarly for the shopEmail data). And so on.

Each operation arc in the datanet in Figure 4 refers to an internal function that the new composite
service uses to manipulate data. Since our aim is to automatically generate the executable WS-BPEL
code implementing the composite service, we require that the speci�cation of each internal function is
given as a user de�ned XML Path Language (XPath) expression, which is the standard language used
in WS-BPEL assignments.

4 The Automated Composition Approach
In this section we discuss how, given the (WSDL and abstract WS-BPEL) description of the compo-
nent services and the speci�cation of the composition requirements, we can automatically obtain the
executable WS-BPEL de�nition of the composite service, namely of the eBS service.

The approach we apply is described in detail in [12, 9]. In this approach, the WS-BPEL processes
de�ning the component services are modeled as state transition systems (STS) 2. Similarly, the data net
is encoded as a STS constraining the operations that the composite service can perform to manipulate
messages (refer to [9] for all the encoding details). Together, the STSs of the component services and
that of the data net de�ne the composition domain, i.e., they encode the constraints on the behavior
of the composite service imposed by component processes and by the additional constraints on the
management of data represented in the data net. The formal speci�cation of the composition control-
�ow requirements (as shown in 3.1) is used as control goal. The automated generation of the composite
service consists in generating a controller, i.e., an STS that interacts with the services encoded in the
composition domain by exchanging messages with them, guaranteeing the satisfaction of the control
goal. The work in [11] shows how to generate the controller using the �Planning as Model Checking�
approach, which is able to deal with large domains and with complex control �ow requirements.
This approach exploit powerful BDD-based techniques developed for Symbolic Model Checking to
ef�ciently explore domains of large size.

Once the STS codifying the controller has been generated, it is translated into executable WS-BPEL
to obtain the new process which implements the required composition. The translation is conceptually
simple; intuitively, input/output actions in the controller model an interaction of the composite service
with one of the component services, while �synchronizations� with actions in the STS modeling the
data net correspond to manipulations of data by means of XPath expressions and assignments.

The presented approach has been implemented within the ASTRO toolset
(http://astroproject.org) that has been designed as an extension of ActiveBPEL Designer [7],
a commercial software for designing and developing WS-BPEL processes which is based on the
Eclipse platform. The ASTRO toolset supports all the phases of web service automated composi-
tion: from the speci�cation of control-�ow and data-�ow requirements (by means of graphical tools

2 The translation is restricted to all WS-BPEL basic and structured activities. We do not support yet fault, excep-
tion and compensation handlers.

74 Annapaola Marconi et al.

for drawing data net diagrams and specifying control-�ow requirements) to the deployment and exe-
cution of the new composite service on the Active BPEL engine.

The following table shows the results of the eBookstore automated composition problem 3.

Time (sec.) BPEL
model composition complex

construction & emission activities
E-BOOKSTORE 2.7 605.2 177

We distinguish between model construction time and composition time. The former is the time re-
quired to to translate the WS-BPEL component services into STS and to encode the composition goal.
The latter is the time required to synthesize the controller and to emit the corresponding eBS exe-
cutable WS-BPEL process.

We have asked one of our experienced programmers to develop manually the WS-BPEL program
for the e-Bookstore case. The task of manually encoding and testing the composition required more or
less 20 hours. While, assuming to have the abstract WS-BPEL speci�cation of the component services,
the speci�cation of the composition requirements took no more than one hour. The complexity of the
composition problem derives from several aspects. First of all this scenario requires a high degree of
interleaving between components. Moreover, when developing the composite service, the developer
must take into account both the control-�ow requirements and the requirements on data manipulation
and exchange, which in this case are really elaborate. Thus, another advantage of our approach is a
clear separation between the data-�ow and control-�ow aspects. The complexity of the composition
task can also be deduced from the size of the new composite WS-BPEL process, which in the e-
Bookstore scenario consists of 177 activities.

Another important aspect is the quality of the generated WS-BPEL processes. To evaluate this
aspect, we compared the automatically generated and the hand-written solutions. As a result, we dis-
covered that the two solutions implement the same strategy and have a similar structure.

5 Conclusions and Future Works
The work presented in this paper is a �rst step towards addressing the key problem of the practical
applicability of automated composition techniques in real composition scenarios. Future work will
include the possibility to automatically derive (part of) the data net speci�cation starting from the
semantic of the data used in the component services, and to detect failures or changes in the compo-
nent services, check the realizability according to the composition requirements, and re-con�gure the
composite process.

References

1. Amazon Services. Amazon E-Commerce Service - Developer Guide.
http://developer.amazonwebservices.com/.

2. Amazon Services. AWSECommerceService WSDL Specification. http://aws.amazon.com/.
3. T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,

I. Trickovic, and S. Weeravarana. Bpel4ws (version 1.1), 2003.
4. D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella. Composition of Services with Nondeterministic

Observable Behaviour. In Proc. ICSOC’05, 2005.
5. A. Brogi and R. Popescu. Towards Semi-automated Workflow-Based Aggregation of Web Services. In Proc.

ICSOC’05, 2005.
6. E. Christensen, F. Curbera, G Meredith, and S. Weerawarana. Web Services Description Language (WSDL)

1.1, 2001. W3C.
7. ActiveBPEL Designer. The Active Endpoints BPEL Designer - http://www.active-endpoints.com.
8. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look Behind the Curtain. In Proc.

PODS’03, 2003.
9. A. Marconi, M. Pistore, and P. Traverso. Specifying Data-Flow Requirements for the Automated Composi-

tion of Web Services. In Proc. SEFM’06, 2006.
10. M. Pistore, A. Marconi, P. Traverso, and P. Bertoli. Automated Composition of Web Services by Planning at

the Knowledge Level. In Proc. IJCAI’05, 2005.
11. M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Services by Planning in Asyn-

chronous Domains. In Proc. ICAPS’05, 2005.
12. M. Pistore, P. Traverso, P. Bertoli, and A.Marconi. Automated Synthesis of Composite BPEL4WS Web

Services. In Proc. ICWS’05, 2005.

3 The composition times have been obtained on a Pentium Centrino 1.6 GHz with 512 Mb RAM of memory
running Linux

A Survey of Service Oriented Development
Methodologies

Ervin Ramollari1, Dimitris Dranidis1, and Anthony J. H. Simons2

1 South East European Research Centre (SEERC)
17 Mitropoleos Str., 54624 Thessaloniki, Greece

{erramollari, ddranidis}@seerc.org
2 Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello Street,
Sheffield, S1 4DP, UK

a.simons@dcs.shef.ac.uk

Abstract. Service orientation is a new software engineering paradigm
that introduces opportunities as well as challenges. Although existing
processes and practices can be reused for service oriented development,
novel techniques are required to address unique SOA requirements. Work
in this area is quite active and only recently is producing some initial
results. The aim of this paper is to present a state-of-the-art survey
on current service oriented development approaches. The characteristics
that distinguish between these approaches are discussed and a number
of actual methodologies that have emerged or are still emerging are de-
scribed and compared.

Key words: SOA, service oriented software engineering, methodologies,
survey

1 Introduction

Service-Oriented Computing represents a paradigm shift in software engineer-
ing, where the key abstraction is that of services, utilized to support rapid and
low-cost application development through service composition. While technol-
ogy and standards, such as Web services, are important to achieve SOA, it has
been widely recognized that they are not sufficient on their own. Just by apply-
ing a Web service layer on top of legacy applications or components does not
guarantee true SOA properties, such as business alignment, flexibility, loose cou-
pling, and reusability. Instead, a systematic and comprehensive approach is of
critical importance, taking into account the business requirements and following
recommended practices. As Gartner [1] had predicted, “by 2007, 70 percent of
SOA and Web services engagements will require a cohesive, end-to-end service
delivery methodology and tool set”.

A number of preliminary methodologies have emerged to address the huge de-
mand for process guidance and proven best practices in SOA projects. However,
a survey on these methodologies and an analysis of their properties is currently

76 Ervin Ramollari et al.

lacking. Related work mainly treats service-oriented methodologies from a gen-
eral point of view without referring to specific proposed ones. Arsanjani from
IBM [2] broadly classifies SOA approaches under six categories: business pro-
cess driven, tool-based MDA, wrap legacy, componentize legacy, data-driven, and
message-driven. Papazoglou et al [3] provide a research roadmap, where among
other things, they briefly explore the state of the art and some grand challenges
in service oriented engineering. Zimmermann et al [4] discuss about analysis and
design techniques for service-oriented development and integration, with IBM
SOMA method as an example.

This paper goes into more depth by surveying actual approaches and method-
ologies. The characteristics and criteria that are used for comparison are dis-
cussed first, and then the actual methodologies are presented and compared
using these characteristics.

2 Characteristics of SOA Development Methodologies

Below we present the criteria that we use to evaluate and compare SOA devel-
opment approaches:
Delivery strategy: There exist three common strategies in delivering a SOA,
depending on the amount of front-end analysis of the business domain and the
treatment of existing legacy systems [12]. The top-down strategy is closely tied
to an organizations’ existing business logic, from which required services are
derived. The bottom-up strategy is the opposite in that it focuses on legacy
systems, and Web services are built on an as-needed basis. The meet-in-the-
middle (agile) strategy finds a balance between incorporating service-oriented
design principles into business analysis environments without having to wait
before integrating Web services technologies into technical environments [12].
Lifecycle coverage: Some proposed approaches aim to support the full SOA
lifecycle, including planning, analysis and design, construction, testing, deploy-
ment, and governance activities, while others limit their scope to a subset of
these phases, such as analysis and design.
Degree of prescription: SOA methodologies range from the most prescriptive
ones that specify phases, disciplines, tasks, and deliverables for each of them,
while others provide less detail, by purpose or not, leaving room for more flexi-
bility and tailoring of the approach depending on the project context.
Availability: A number of methodologies proposed by industry players such as
IBM, Sun, Microsoft, and others, are proprietary and the detailed specifications
are not openly available. In contrast to open methodologies whose documenta-
tion is available to the interested public, for the proprietary methodologies it is
difficult to fully analyze their capabilities and to make comparisons.
Process agility: A number of methodologies suggest an agile approach to Ser-
vice Oriented development in order to address risks and add flexibility to change.
Yet, some others follow a more rigid approach in the process lifecycle, or do not
address the issue of agility at all.

A Survey of Service Oriented Development Methodologies 77

Adoption of existing processes/techniques/notation: A large number of
SOA methodologies propose reusing proven existing processes like XP and RUP,
and techniques like OOAD, CBD, and BPM, seeing service-oriented development
as an evolutionary rather than revolutionary step in software engineering. Also
standardized notations, such as UML and BPMN, are being adopted to visually
model various artefacts.
Industrial application: It is important that a methodology be validated in
proof-of-concept case studies to show that it has practical applicability and to
refine it based on feedback from the case studies. Unfortunately, most of the
existing SOA methodologies are at an early stage and have not been applied yet
in industrial projects.
Supported role(s): A service-oriented methodology may support the provider
view, the consumer view, or both the provider and consumer views in an in-
tegrated framework. In the consumer’s view, development is declarative and
business process oriented through service composition, while in the provider’s
view it is programmatic and component oriented.

3 Analysis of Existing Methodologies

IBM Service-Oriented Analysis and Design (SOAD) [5]: SOAD proposes
elements that should be part of a service-oriented analysis and design methodol-
ogy, hence it is an abstract famework rather than a holistic methodology. SOAD
builds upon existing, proven techniques, such as OOAD, CBD, and BPM. It
also introduces SOA-specific techniques, such as service conceptualisation, ser-
vice categorization and aggregation, policies and aspects, meet-in-the-middle
process, semantic brokering, and service harvesting.
IBM Service Oriented Modeling and Architecture (SOMA) [6] SOMA
is a full-blown modeling methodology by IBM consisting of three steps: identi-
fication, specification, and realization of services, flows (business processes), and
components realizing services. The process is highly iterative and incremental.
However, because SOMA is proprietary to IBM, its full specification is not avail-
able. It has been recently announced that the Rational Unified Process has been
combined with SOMA to result in what is called IBM RUP for SOMA [15].
SOA Repeatable Quality (RQ) [7]: SOA RQ is a proprietary methodology
by Sun Microsystems that is based on a RUP-like iterative and incremental pro-
cess consisting of five phases: inception, elaboration, construction, transition,
and conception. UML compliant artefacts are used for documenting various de-
liverables of these phases.
CBDI-SAE Process [8]: The CBDI Forum is currently developing a SOA
methodology as part of its CBDI-SAE SOA Reference Framework (RF). The
four key discipline areas of the process are: consume, provide, manage, and en-
able. Each area groups similar disciplines that are further broken down to process
units and then to tasks. This methodology aims business-IT integration through
top-down analysis of business requirements as well as bottom-up legacy sys-

78 Ervin Ramollari et al.

tem integration. The CBDI-SAE process aims to cover the whole SOA lifecycle,
including deployment, monitoring, and governance activities.
Service Oriented Architecture Framework (SOAF) [9]: SOAF consists of
five main phases: information elicitation, service identification, service definition,
service realization, and roadmap and planning. It is concurrently based on two
types of modeling activities: “To-be” modeling, which is the top-down business
oriented approach describing the required business processes, and “As-is” mod-
eling, which is the bottom-up approach describing current business processes as
they are shaped by the existing applications.
Service Oriented Unified Process (SOUP) [10]: As the name suggests, this
approach by K. Mittal is primarily based on the Rational Unified Process. Its life-
cycle consists of six phases: incept, define, design, construct, deploy, and support.
However, SOUP lacks detailed documentation and leaves room for adaptation.
It is used in two slightly different variations: one adopting RUP for initial SOA
projects and the other adopting a mix of RUP and XP for the maintenance of
existing SOA rollouts.
Methodology by [11]: In their paper, Papazoglou et al examine a service
development methodology from the point of view of both providers and con-
sumers, which attempts to cover the full SOA lifecycle. It is partly based on
well-established development models, such as the RUP, CBD, and BPM. The
methodology utilizes an iterative and incremental process that comprises one
preparatory and eight distinct main phases.
Thomas Erl’s [12]: The service oriented analysis and design methodology doc-
umented in Thomas Erl’s book [16] is considered the first vendor-agnostic one
to be published . This methodology is a step by step guide through the two
main phases: analysis and design. The activities in the analysis phase take a
top-down business view where service candidates are identified. These serve as
input for the next phase, service oriented design, where the service candidates
are specified in detail and later realized as Web services.
BPMN to BPEL [13]: In this approach the business process is expressed in
an abstract model (Business Process Modeling Notation or BPMN) and accord-
ing to transformation rules it is automatically mapped to an execution language
(Business Process Execution Language or BPEL) that can be executed by a
process engine. The authors in [13] coined the term business process oriented
programming to refer to an evolutionary step in software engineering where pro-
gramming power is given to the business analyst.
Steve Jones’ Service Architectures [14]: The scope of this top-down method-
ology consists of the first steps in a project necessary to ensure that true SOA
properties are satisfied in the final delivery. It is technology agnostic and takes a
top-down business view reaching up to the point of service candidate discovery
(i.e. identification). The methodology adopts a broadly four-step process (What,
Who, Why, and How), of which the first three are covered in preparation for the
fourth step.

Comparison of the listed methodologies according to the identified charac-
teristics is summarized in the table below.

A Survey of Service Oriented Development Methodologies 79

IBM SOAD IBM SOMA SOA RQ CBDI-SAE SOAF
Delivery strategy M M M M M
Lifecycle coverage A&D A&D complete complete A&D and planning next

phases
Prescriptive 1 4 3 4 3
Proprietary yes yes yes no no
Agile n/a 3 4 2 2
Existing process no RUP (recently) RUP ? no
Existing techniques OOAD, BPM ? ? ? no
UML yes ? yes ? ?
Applied in industry yes extensively extensively not yet a case study
Consumer view yes yes yes yes yes
Provider view yes yes yes yes yes

SOUP Papaz. Erl’s BPMN to BPEL Jones’ SA
Delivery strategy M M T T T
Lifecycle coverage complete complete A&D A& D and Impl. Initial planning
Prescriptive 1 2 4 2 1
Proprietary no no no no no
Agile 5 3 1 n/a n/a
Existing process RUP, XP RUP no no no
Existing techniques no CBD, BPM BPM BPM no
UML no no no no no
Applied in industry not yet not yet not yet not yet not yet
Consumer view yes yes yes yes yes
Provider view yes yes yes no no

Table 1. Comparison of SOA development methodologies. (A relative quantitative
scale 1-5 is used for some criteria. Also, M = Meet-in-the-Middle, T = Top-Down, B
= Bottom-Up, and ? = No Data)

4 Conclusions

In this paper we presented a state of the art survey of the current service oriented
engineering approaches and methodologies. One interesting point is that current
SOA methodologies build upon existing, proven techniques, such as OOAD, EA,
and BPM. Also, agile processes like XP and RUP are being employed successfully
in SOA projects. However, the service paradigm introduces unique requirements
that should be addressed by innovative techniques. Another interesting point is
that most of the surveyed SOA methodologies propose the meet-in-the middle
strategy, where both business requirements and existing legacy applications are
taken into account to derive services. Although top-down analysis of the business
domain produces services of high quality and long-term value, reality constraints
require existing investment on IT infrastructure to be incorporated as well.

Generally, the service oriented development methodologies that have emerged
are quite new and do not yet offer the required level of maturity. It is too early to
determine whether any one of these methodologies is more appropriate than the
others, or even to consider unifying some of them into a widely acceptable stan-
dard, as has been the case with the Rational Unified Process and the UML for
object orientation. Therefore, we could say that this is a time of “methods war”
for service oriented engineering that will eventually result in well-established and
standardized methodologies.

80 Ervin Ramollari et al.

References

1. M. Cantara, “Common features of external service providers’ SOA frameworks and
offerings”, Gartner, September 2005.

2. A. Arsanjani, “Toward a pattern language for Service-Oriented Architec-
ture and Integration, Part 1: Build a service eco-system”, IBM Corpora-
tion, available from http://www-128.ibm.com/developerworks/webservices/

library/ws-soa-soi/, July 2005.
3. M. P. Papazoglou et al, “Roadmap of Service Oriented Computing”, March 2006,

available from http://infolab.uvt.nl/pub/papazogloump-2006-96.pdf.
4. O. Zimmermann et al, “Analysis and design techniques for Service-

Oriented Development and Integration”, available from http://www.

perspectivesonwebservices.de/download/INF05-ServiceModelingv11.pdf.
5. O. Zimmermann et al, “Elements of Service-Oriented Analysis and Design”, IBM

Corporation, available from http://www-128.ibm.com/developerworks/library/

wssoad1/, June 2004.
6. A. Arsanjani, “Service-oriented modeling and architecture”, IBM Corpora-

tion, available from http://www-128.ibm.com/developerworks/webservices/

library/ws-soa-design1/, November 2004.
7. SUN Microsystems, “SOA RQ methodology - A pragmatic approach”, available

from http://www.sun.com/products/soa/soa_methodology.pdf.
8. P. Allen, “The service oriented process”, in CBDi Journal, February 2007,

http://www.cbdiforum.com/report_summary.php3?page=/secure/interact/

2007-02/service_oriented_process.php&area=silver.
9. A. Erradi et al, “SOAF: An architectural framework for service definition and re-

alization”, in Proceedings of the IEEE International Conference on Services Com-
puting, pp 151-158, Chicago, USA, September 2006.

10. K. Mittal, “Service Oriented Unified Process (SOUP)”, available from http://

www.kunalmittal.com/html/soup.shtml, 2006.
11. M. P. Papazoglou and W. J. van den Heuvel, “Service-oriented design and devel-

opment methodology”, International Journal of Web Engineering and Technology
(IJWET), 2006.

12. T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design, Upper
Saddle River: Prentice Hall PTR, 2005.

13. C. Emig et al, “Development of SOA-based software systems - and evolutionary
programming approach”, in Advanced International Conference on Telecommuni-
cations and International Conference on Internet and Web Applications and Ser-
vices, p 182, Guadeloupe, French Caribbean, February 2006.

14. S. Jones, “A Methodology for Service Architectures”, Capgemini UK plc,
available from http://www.oasis-open.org/committees/download.php/15071/

A%20methodology%20for%20Service%20Architectures%201%202%204%20-%

20OASIS%20Contribution.pdf, August 2005.
15. Ali Arsanjani, “IBM’s SOA method: SOMA, Service-Oriented Modeling and

Architecture”, IBM Corporation, available from http://www-03.ibm.com/

developerworks/blogs/page/AliArsanjani?entry=soma_service_oriented_

modeling_and&ca=drs-bl, December 2006.
16. “SOA-Glossary”, Cambridge Technology Enterprises, available from http://www.

ctepl.com/soaterms.shtml.

Verifying Business Process Compatibility

Peter Y. H. Wong and Jeremy Gibbons

Computing Laboratory, University of Oxford, United Kingdom
{peter.wong,jeremy.gibbons}@comlab.ox.ac.uk

Abstract. Business Process Modelling Notation (BPMN), developed by
the Business Process Management Initiative (BPMI), intends to bridge
the gap between business process design and implementation. In this
paper we describe a process-algebraic approach to verifying process in-
teractions for business collaboration described in BPMN. We first de-
scribe briefly a process semantics for BPMN in Communicating Sequen-
tial Processes; we then use a simple example of business collaboration to
demonstrate how our semantic model may be used to verify compatibility
between business participants in a collaboration.

1 Introduction

Modelling of business processes and workflows is an important area in software
engineering. Business Process Modelling Notation (BPMN) allows developers to
take a process-oriented approach to modelling of systems. There are currently
around forty implementations of the notation, but the notation specification
adopted by the Object Management Group (OMG) [9] does not have a formal
behavioural semantics, which we believe is crucial in behavioural specification
and verification activities.

In our previous work [12] we have given a process semantics to a subset
of BPMN in the language of CSP [10]. In this paper we show how this se-
mantics allows formal reasoning about business-to-business collaboration where
there are multiple business processes under consideration. Consider, for instance,
the simple example of an airline ticket reservation shown in Figure 1. The fig-
ure depicts the message flows between two participants, the traveller and the
travel agent, which are independent business processes and may be assumed to
have constructed separately during the development process. Clearly a neces-
sary behavioural property for a successful collaboration is compatibility between
the participants: the assumptions each makes about their interaction are mu-
tually consistent. For example, from the traveller participant’s perspective the
behaviour of interest is the ability to cancel an itinerary by sending a message
to the travel agent participant prior making her ticket reservation, while from
the travel agent participant’s perspective such sequence of tasks might not be
allowed. By applying our semantic model, this property can be verified or dis-
proved automatically.

In the remaining sections we describe briefly our semantic model and revisit
the example to show how the semantics may be used to verify compatibility be-
tween collaboration participants and how such a property can also be specified

82 Peter Wong and Jeremy Gibbons

Fig. 1. A business collaboration of an airline ticket reservation.

in BPMN. We conclude this paper with a comparison with related work. A more
detail description of the example can be found in our longer paper [13]. The
formal definition of our semantic model may be found in our earlier papers [12].

2 Syntax and Semantics of BPMN

States in our subset of BPMN can either be pools, tasks, subprocesses, multiple
instances or control gateways; they are linked by sequence, exception or message
flows; sequence flows can be either incoming to or outgoing from a state and
have associated guards; an exception flow from a state represents an occurrence
of error within the state. Message flows represent unidirectional communication
between states of different pools where each pool forms a container for some
business processes.

We use Z [14] to define the BPMN’s abstract syntax and semantic func-
tion, following Bolton and Davies’ work on UML activity graphs [2]. In the
remaining section we summarize our syntactic description and semantic model
of BPMN, full details can be found in our earlier paper [12]. Our semantics
permits automatic translation, requiring no user interaction. According to the
specification [3], each BPMN state type has associated attributes describing its
properties and our syntactic definition has included some of these attributes. For
example, we define each type of state with the free type Type, a partial definition
of which is given by :

Type ::= agate | start | end〈〈N〉〉 | task〈〈Task〉〉 | miseq〈〈Task × N〉〉

Verifying Business Process Compatibility 83

Note the number of loops of a sequence multiple instance state type is recorded
by the integer in the constructor function miseq. We describe each state by
recording its content type and its sets of transitions and message flows.

Each BPMN diagram encapsulated by a pool represents an individual busi-
ness participant in a collaboration, built up from a well-configured finite set of
well-formed states [12]. While we associate each BPMN diagram with its diagram
name, a business collaboration hence is built up from a finite set of names, each
associate with its BPMN diagram and we associate each business collaboration
with its collaboration name.

We define a semantic function which takes a syntactic description of a BPMN
collaboration diagram, identified by its collaboration name and returns the CSP
process that models the behaviour of that diagram. That is, the function takes
one or more pool states, each encapsulating a separate BPMN diagram repre-
senting an individual participant within a business collaboration, identified by its
collaboration and returns a parallel composition of processes each corresponding
to an individual participant. We may apply our semantic function to transform
the syntax of the diagram shown in Figure 1 mechanically into a parallel com-
position of processes, each corresponding to a business participant. We denote
the processes corresponding to the traveller and the travel agent participants
by the names Tr and Ag respectively. We define set I to index the processes
corresponding to the states of the traveller participant.

I = { start , order , change, xs, cancel , reserve, end , abort }

We use channels init .a to denote transitions to states of participant a and starts.a

to denote initiation of its tasks or subprocesses. We write msg .t .x to denote
communication of message x during task or subprocess t . We use compound
events fin.i and abt .i where i ranges over N to denote successful termination and
abortion of the business process. The process Tr mechanically obtained by the
translation we have described above is as follows:

Tr = let X = 2 i : (αY \ {fin.1, abt .1 }) • (i → X 2 fin.1 → Skip 2 abt .1 → Stop)

Y = (‖ i : I • αP(i) ◦ P(i))

within (Y |[αY]| X) \ {|init |}

where for each i in I , the process P(i) is as defined below. We use N , ranging
over N, to denote the number of instances of the task change, as specified by the
second argument to constructor function miseq. We write αQ to denote the set
of possible events performed by process Q .

P(start) = init .tr .order → Skip o
9 fin.1 → Skip

P(order) = (init .tr .order → Skip o
9

starts.tr .order → Skip o
9 msg .order !x : { in, last } → Skip o

9

msg .order .out → Skip o
9

init .tr .mchange → Skip o
9 P(order)) 2 fin.1 → Skip

P(xs) = (init .tr .xs → Skip o
9 (init .tr .cancel → Skip 2 init .tr .reserve → Skip) o

9

84 Peter Wong and Jeremy Gibbons

P(xs.3)) 2 fin.1 → Skip

P(cancel) = (init .tr .cancel → Skip o
9

starts.tr .cancel → msg .cancel !x : { in, last } → Skip o
9

msg .cancel .out → Skip o
9 init .tr .abort → Skip o

9

P(cancelit)) 2 fin.1 → Skip

P(abort) = (init .tr .abort → Skip o
9 abt .tr .1 → Stop) 2 fin.1 → Skip

P(reserve) = (init .tr .reserve → Skip o
9 starts.tr .reserve → Skip o

9

msg .reserve!x : { in, last } → Skip o
9 msg .reserve.out → Skip o

9

init .tr .end → Skip o
9 P(reserve)) 2 fin.1 → Skip

P(end) = init .tr .end → Skip o
9 fin.1 → Skip

P(change) =

let A(i) = i > 0 &

(init .tr .change → Skip o
9

starts.tr .change → Skip o
9 msg .change!x : { in, last } → Skip o

9

msg .change.out → Skip o
9

init .tr .xs1 → Skip o
9 A(i − 1)) 2 init .tr .xs → Skip

X (n) = (init .tr .mchange → Skip 2 init .tr .xs1 → Skip) o
9

(n > 0 & (init .tr .change → (msg .change.in → X (n − 1)

2 msg .change.last → init .tr .xs1 → init .tr .xs → Skip))

2 n = 1 & (init .tr .change → msg .change.last →

init .tr .xs1 → init .tr .xs → Skip)

2 n = N & msg .change.end → init .tr .xs → Skip)

within

((A(N) |[{msg .change.in,msg .change.last , init .tr .xs }]| X (N)) o
9

P(change)) 2 fin.tr .1 → Skip

The process Ag can be defined similarly using the semantic function. Their col-
laboration hence is the parallel composition of processes Tr and Ag.

Collab = (Tr |[αTr || αAg]| Ag) \ {|msg |}

3 Verifying Compatibility

The CSP behaviour models traces (T), stable failures (F) and failures-divergences
(N) admit refinement orderings based upon reverse containment [10]. This means
that a CSP process can be a specification as well as a model of an implementa-
tion; hence it is possible to design and compare specifications using BPMN. To
check if the traveller participant is compatible with the travel agent participant
we use the stable failures refinement to compare Spec with Collab where Spec

is the CSP process corresponding to the traveller participant without message
flows, which can be derived mechanically:

Spec vF (Collab \ (αCollab \ αSpec)) (1)

Verifying Business Process Compatibility 85

We have chosen F to reason about our semantics of BPMN since T allows the
deadlock process Stop as a refinement all specifications, which is inadequate,
while divergences can be avoided via syntactic restriction. This refinement checks
whether the collaboration behaves as specified by the traveller participant; in or-
der for this to happen the travel agent needs to be compatible with the traveller
participant. We have specifically defined our semantics to allow refinement as-
sertions such as this one to be automatically checked by a model checker like
FDR [5]. In this particular example we find that refinement assertion (1) does
not hold; this means the participants in the collaboration described in Figure 1
are not compatible. When we ask FDR to verify assertion (1), the following
counterexample in the form of a failure [10] is given, where Σ denotes the set of
all event names.

(〈starts.tr .order , starts.tr .cancel〉, Σ)

This counterexample tells us that a deadlock has occurred while the traveller is
cancelling her itinerary. There are two ways to correct this collaboration, either
by changing the traveller’s or the travel agent’s internal process description. We
have chosen the latter; a compatible collaboration with an abstracted view of the
traveller and a modified travel agent participant is shown in Figure 2. Note the
change in the travel agent participant allowing the task state Cancel Itinerary

to be triggered before the subprocess state Receive Reservation.

Fig. 2. A BPMN diagram describing a compatible business collaboration of an airline
ticket reservation.

By applying our semantic function to the syntax of this diagram we obtain the
following parallel composition of processes, each corresponding to a participant.

Collab2 = (Tr |[αTr || αAg2]| Ag2) \ Msg

To check for compatibility we ask FDR to verify the refinement assertion (2).
This time, the verification is successful.

Spec vF (Collab2 \ (αCollab2 \ αSpec)) (2)

86 Peter Wong and Jeremy Gibbons

4 Related Work

To the best of our knowledge, no work has been done towards the compatibility
verification of business collaborations described in a graphical modelling notation
like BPMN; other approaches have mainly focused on the compatibility prob-
lem of web services choreographies described by XML-based languages such as
WS-BPEL [1, 6], WSCI [11, 4] and WSCDL [8, 7]. While they focus on compati-
bility at the implementation level, we have moved it forward to the design level,
allowing collaboration to be verified and agreed upon before implementation.
While our earlier work [12] described the application of a process semantics and
refinement in verifying consistency between BPMN diagrams each with a dif-
ferent level of abstraction, our modelling approach in compatibility verification
described in this paper utilizes the extended semantics described in the extended
version of our earlier paper to verify collaboration compatibility between BPMN
diagrams participating in a business collaboration.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services version 1.1, May 2003.

2. C. Bolton and J. Davies. Activity Graphs and Processes. In IFM ’00: Proceedings
of the Second International Conference on Integrated Formal Methods, volume 1945
of LNCS, pages 77–96, 2000.

3. Business Process Modeling Notation Specification, Feb. 2006. www.bpmn.org.
4. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing Web Services

Choreographies. In Electronic Notes in Theoretical Computer Science 105, pages
73–94, 2004.

5. Formal Systems (Europe) Ltd. FDR2 User Manual, 1998. www.fsel.com.
6. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification for web

service choreography. In IEEE International Conference on Web Services, 2004.
7. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-Based Analysis of Obliga-

tions in Web Service Choreography. In IEEE International Conference on Internet
and Web Applications and Services, 2006.

8. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services
Choreography Description Language 1.0, 2005. W3C Candidate Recommendation.

9. Object Management Group. http://www.omg.org.
10. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
11. W3C. Web Service Choreography Interface 1.0, Nov. 2002. www.w3.org/TR/wsci.
12. P. Y. H. Wong and J. Gibbons. A Process Semantics for BPMN, 2007. Submit-

ted for publication. Extended version available at http://web.comlab.ox.ac.uk/
oucl/work/peter.wong/pub/bpmn-extended.pdf.

13. P. Y. H. Wong and J. Gibbons. Verifying Business Process Compatibility, 2007.
Submitted for publication.

14. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, 1996.

A modified Logic Scoring Preference method for
dynamic Web services evaluation and selection

Hong Qing Yu and Hernán Molina 1 2

1 Department of Computer Science, University of Leicester, UK
hqy1@mcs.le.ac.uk

2 Department of Informatics, School of Engineering, University of La Pampa, Argentina
hmolina@ing.unlpam.edu.ar

Abstract. The Logic Scoring Preference (LSP) method extends existing scoring
techniques and provides a means for the development of complex criterion
functions using continuous preference logic. It has been successfully used to
evaluate hardware system, software system and websites. However, the current
LSP method is not sufficient to help evaluating and selecting web services in
the context of dynamic service composition. This area depends not only on
static service functional and non-functional requirements (which are
traditionally considered in LSP applications), but also on run-time context such
as business policies and pre/succeeding service instances in workflow patterns.
Thus, we propose a modified LSP method to target the problem of dynamic
web service evaluation and selection.

1 Introduction

Web services technology is widely used by industry today. With increasing number of
web services available, there is in general more than one service to fulfill a given task.
Consequently, the biggest challenge is to choose the most appropriate service which
satisfies not only functional requirements but also non-functional, context related
requirements, such as policies, the business’ target market, QoS (Quality of Service)
and existing system workflow patterns.

In this paper, we propose a modified Logic Scoring Preference (LSP) [1] method to
achieve dynamic web service evaluation and selection. The remaining content is
structured as follows. We conclude the introduction with a motivating example. The
simple introduction of LSP method is described in section 2. Our modified LSP
method is introduced in section 3. A worked evaluation example and related work
comparing are shown in section 4. Section 5 concludes the paper and highlights
further work.

1.1 Motivating Example

Considering a scenario (shown in Fig. 1), where a business organization needs a
payment service to complete an online product selling business process, some context
aspects should be considered. Firstly, the market aspect, the target customers might be
at home or traveling. In the case that they are traveling, the customers could make use

88 Hong Qing Yu and Hernán Molina

of several devices, such as a laptop, PDA, landline, desktop or mobile phone.
Secondly, the workflow aspect requires that the protocols of the payment service are
suitable for integrating to existing online selling service. Thirdly, the QoS aspects,
such as security must be high; performance rate should be reasonable and privacy
should be respected. Fourthly, the policies include that customers are supposed to
understand one language out of English, Spanish and French. Moreover, the service
provider must be located in Europe and a lower transaction fee is better. Finally,
being able to accept more types of bank card such as Visa, MasterCard, Solo and
Switch is preferable. There are four services available which can functionally fulfill
the payment task shown in Fig. 1. Now the question is which one is the most suitable
for use.

Fig. 1: Motivating Example

2 The LSP method

LSP is a quantitative method based on scoring techniques and a continuous preference
logic [2]. Basically, the method allows establishing an evaluation criterion by specifying the
expected properties of a system. To each one of these properties a criterion function is assigned.
These functions transform specific domain values to a normalized scale indicating the degree of
satisfaction of the corresponding preference. Then, all preference values can be properly
grouped using a stepwise aggregation structure to yield a global preference. This can
be achieved by means of a preference aggregation function, called generalized
conjunction/disjunction or andor, combining weighted power means to obtain the
global preference e0 as in:

() 1...... /1
110 =W++W,eW++eW=e k1

rr
kk

r (1)

Where the power r can be suitably selected to obtain desired logical properties (see
[3, 2] for further details). The LSP decision method has been applied in the evaluation
and selection of hardware and software systems [3, 1], as well as in the evaluation and
comparison of web applications [4]. The strong drawback of these applications is that
they require the participation of human expert interactions, which is not suitable for
working in a dynamic environment as we discussed before.

A modified Logic Scoring Preference method for … 89

3 The modified LSP method (MLSPM)

3.1 Context model

The first step of our method is to model the dynamic context environment and gather
useful information such as preference elements and their values from a well defined
model (Context model). Defining a context model actually is an analysis process that
needs to understand the purposes, scales, background information and the activity
rules, etc. It is very difficult to build a unified model which includes all aspects and
their attributes. In this work, we use a context model which is just an expression
model for showing how our dynamic method works for our web service evaluation
and selection purpose (see Fig. A.1 in appendix A).

In this paper, we are not going to illustrate the detailed techniques of context
reasoning and mining addressed in the “inContext” project [5]. However, we assume
the model is implemented by XML technology and a well defined mediator can be
used to resolve mismatches between different terminologies (data level).

3.2 Specification of Type-based Unified evaluation methods

We can design different evaluation metrics based on the given context model types.
For example device elements may be described as value=“computer, PDA”,
type=“string set overlap”. In our current work, we have identified four different
evaluation functions to capture the variety of types. The four functions are: “exact
match” (equation 3), “set overlap” (equation 4), “level match” (equation 5) and
“specific value” (equation 6).

Typical usage is linked to the data type of the context aspect: if the context aspect
can be expressed by a Boolean, then exact match would be used; considering sets of
information, set overlap is useful; level match is useful for ordered discrete values
(such as low, medium and high); and finally specific value allows for complex
functions that calculate a numerical value (e.g. for distance functions). Because of the
link to the data type, it can be automatically determined which function should be
used. In addition, the weight 0<ω expresses the lower value is desired or 0≥ω means
higher value is respect. Thus the global preferences evaluation function is changed
from equation (1) to (2).

| | | | | | | | 1 1,0 with
1

/1
22110 =ωE)Eω++Eω+Eω(=e

n

=i
i

rr
nn

rr ∑≤≤… (2)

The respective formulas to compute values for these functions (E1 to En) are as
follows:

⎩
⎨
⎧

otherwise

metiscriterionif=E

0

1

 (3)

(ne++e+e=E n /...21) with being a score for each element of the set (4) ie

E=
i c

i where i is the number of levels and ci is the current level match (5)

90 Hong Qing Yu and Hernán Molina

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−

otherwise
vv

vv

ωiff
vv

vv
=E

minmax

max

minmax

max 01

(6)

vmin being the minimum value for all services, vmax the maximum value and
the value for the current service in (6). For the motivating example, we match
evaluation functions to each preference as in Table A.1 (see Appendix A).

v

3.3 Global aggregation

We need a global preference aggregation function))(ag,),(aL(g nn...11 to calculate all
aspects of preferences. The function itself must reflect specific requirements and logic
conditions, such as simultaneity, replaceability and others [2]. The function g is one of
the individual evaluation methods which were discussed in the previous section. We
use the conjunctive partial absorption function as global aggregation structure (see
Fig. 2) [3]. We separate preferences into a critical group (EPC

i) and a desired group
(EP D

j). The critical group presents all mandatory requirements; the desired group
takes all the other preferences.

CADAC

EPC
i

EPD
j

CWA
1

(DWA
j
)/2

DWB
0

GP

with CWA
1
 + ... + CWA

i
= 0.5

 DWA
1
 + ... + DWA

j
= 1

and DWB
0
= 0.5

 CWB
1
 = CWA

1
... CWB

i
 = CWA

i

where DAC is D-+ .. A .. GEO

CWA
i

(DWA
1
)/2

...

...

CWB
1

CWB
i

...

Fig. 2: The structure of the conjunctive partial absorption aggregation function

Behaviors of the conjunctive partial absorption function are such that the global
preference value (denoted by GP) will be 01 when any of the critical preferences are
not satisfied, in which case the service will be discarded. On the other hand, a web
service that satisfies all critical preferences will be valuated to a non-zero value, from
which the degree of satisfaction of the desired preferences can raise or reduce the
final global preference. The first function (denoted by a circle named DAC) is
dynamically selected by an automated calculate method (ACM) to reflect dynamic
preferences. The second function (denoted by a circle named CA) is always there to
achieve the desired absorption behaviors.

We design an automated calculate method (ACM) to find a logic correctness GCD
(Generalized Conjunction/disjunction) function based on Continuous Logic [6] for the
desired preferences without considering critical preferences. Thus, Fig. 2 shows that

1 In , When andrxxf =)(0<r 0=x , then an error occurs, we use 0 to express it.

A modified Logic Scoring Preference method for … 91

all weights of desired preference sum up to 1. The logic meaning can be reflected by
meaningful weights. We consider the value of the weight iω belongs to a
set)(AA, 0,1∈ . Then we have an ordered set W =)(,...1 nωω , and nωω ≥≥ ...1 . Based
on the meaning of or-ness in OWA decision making method [7], we can get the
following function:

∑
−

=

−
−

=
1

1

)(
1

1 n

i
iorness in

n
ωλ , iω is the place in set V (7) thi

Where V is reordered set of W, and the reorder algorithm firstly is to find the same
weights i++ 1,...,11 ωω value to 1ω . Put i++ 1,...,11 ωω to the tail of the set. Secondly, taking

i++ 212 ...ωω which have the same value of 2ω in the new set in front of

the ...in−ω nω . The rest of the refreshed set repeats second step until the last element
that has not been reordered before. For example, if W = {0.2, 0.2, 0.15, 0.15, 0.1, 0.1,
0.1}, then, V = {0.2, 0.15, 0.1, 0.15, 0.1, 0.1, 0.2} the valueλ presents the degree of
the “or-ness” by equation (7) calculated. The mapping table between the value λ and
the GCD operators is given in Table A.2 of Appendix A.

4 Worked example and related work

Applying our method to the motivating example, we can consider that the devices
preference (0.25), performance rate (0.5), privacy (0.01), cost (-0.04) and bank cards
(0.2) requirements are desired preferences. Communication protocol (0.1), security
(0.2), location (0.1) and language (0.1) are critical preferences. First we calculate the
“or-ness” position based on equation (7).

7985.0)04.0220.0325.045.0(
4
1

=+×+×+×=λ

Comparing to the appendix A, the result shows D-+ is a suitable GCD function to
be selected (power r = 3). According to equation function (2), we got following values
for the four competitive services:

0.2011 =e (S1), 0.1262 =e (S2), 0.1813 =e (S3) and 0.2764 =e (S4)
The next stage is to use the conjunctive partial absorption aggregation function to

determine which service is best to use. We take all critical evaluation values and
output values from last step of each service into the CA operator (power r = -0.72),
and then we get the final evaluation values by using function (2) again:

0.3331 =e , 02 =e , 03 =e and 493.04 =e the returned ranked list is {S4,S1}.
Comparing to related work [8] and [9], our method has 5 outstanding advantages.

(1) MLSPM combines evaluation and selection activities together contrast to [8] and
[9] which only address selection issues. (2) MLSPM can deal with all types of
preferences such as String and Boolean. However, the other works only focused on
numbering type. (3) Our method is more dynamic and easier. (4) The context model
we defined covers more evaluation aspects, such as policy rules, workflow
requirements beyond QoS. (5) The key feature of LSP method is considering the logic
relations between preferences rather than just simply using weight mechanism.

92 Hong Qing Yu and Hernán Molina

5 Conclusion and future work

In this paper we outlined a modified LSP method that allows us to dynamically
evaluate and select the most suitable web services considering large number of
available services, changing contexts and run-time service requests in a timely and
efficient manner. In addition, we gave an example scenario in which our LSP method
was well applied.

Future work will cover the definition of the meanings of weights used in this paper
from the perspective of user preferences, context mining and reasoning techniques
since their outcomes will be the inputs for web service evaluation and selection.
Additionally, implementation issues of the modified LSP method, as well as related
mechanisms will be addressed.

6 Acknowledgment

We thank Dr. Stephan Reiff-Marganiec and Dr. Luis Olsina for their comments and
suggestions. This work is also supported by inContext (Interaction and Context Based
Technologies for Collaborative Teams) project: IST IST-2006-034718 and WEE-NET
(Web Engineering Network of Excellence) project: ALFA II-0359-FA.

References:

1. S. Y. W. Su, J. Dujmovic, D. S. Batory, S. B. Navathe, R. Elnicki. A Cost-Benefit Decision Model:
Analysis, Comparison, and Selection of Data Management Systems. ACM Transactions on Database
Systems, Vol. 12, No. 3, September 1987, pp. 472-520.

2. Dujmovic, J.J., Continuous Preference Logic for System Evaluation. In Proceedings of Eurofuse 2005,
edited by B. De Baets, J. Fodor, and D. Radojevic, ISBN 86-7172-022-5, Institute “MihajloPupin”,
Belgrade, 2005, pp. 56-80.

3. Dujmovic, J.J., A Method for Evaluation and Selection of Complex Hardware and Software Systems. The
22nd International Conference for the Resource Management and Performance Evaluation of Enterprise
Computing Systems. CMG 96 Proceedings, Vol. 1, 1996, pp. 368-378.

4. Olsina L., Rossi G.: Measuring Web Application Quality with WebQEM. IEEE Multimedia, Vol. 9(4),
2002, pp. 20-29.

5. “inContext project”, http://www.in-context.eu/.
6. Levin V. I., Generalizations of the Continuous Logic. Automation and Remote Control, Vol. 62, No. 10,

2001, pp. 1743-1755.
7. Robert F., OWA operators in Decision Making. In C. Carlsson ed., Exploring the limits of Support

Systems, TUCS General Publications No. 3, Turku Centre for Computer Science, 1996, pp. 85-104.
8. Liu Y., Ngu A.H.H. and Zeng L., QoS Computation and Policing in Dynamic Web Service Selection,

WWW2004, May 17-22, 2004, ACM 1-58113-912-8/04/05.
9. Wang X., Vitvar T., Kerrigan M. and Toma I. A QoS-aware Selection Model for Semantic Web Services,

Digital Enterprise Research Institute, ICSOC 2006.

A modified Logic Scoring Preference method for … 93

Appendix A

Fig. A.1 context model

Desired preferences Evaluation methods Critical preferences Evaluation methods
Performance rate (6) Protocol (3)
Devices (4) Security (3)
Privacy (5) Location (3)
Cost (6) Language (4)
Bank cards (4)

Table A.1: Assigned evaluation methods to example

Value of y GCD Operator symbols Operation

3333.0<y GEO Geometric mean

3750.03333.0 <≤ y C- Weak QC

4375.03750.0 <≤ y C-- Weak QC (-)

5000.04375.0 <≤ y A Arithmetic mean

5625.05000.0 <≤ y D-- Weak QD (-)

6232.05625.0 <≤ y SQU Square mean

6250.06232.0 <≤ y D- Weak QD

y≤6250.0 D-+ Weak QD (+)

Table A.2: The range of selection GCD operators [3]

Modelling and Analysing an Identity Federation
Protocol: Federated Network Providers Scenario?

Maurice H. ter Beek1, Corrado Moiso2, and Marinella Petrocchi3

1 ISTI–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
2 Telecom Italia, Via Reiss Romoli 274, 10148 Torino, Italy

3 IIT–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

Abstract. We continue our work on modelling and analysing security
issues of an identity federation protocol for convergent networks. This
protocol was proposed by Telecom Italia as a solution to allow end users
access to services on the web through different access networks, with-
out explicitly providing any credentials, while the service providers can
trust the user’s identity information provided by the access networks and
access some user data. As an intermediate step towards a full-blown for-
mal security analysis of this protocol, we specify one specific user scenario
in the process algebra Crypto-CCS and verify its vulnerability w.r.t. a
man-in-the-middle attack with the model checker PaMoChSA.

1 Introduction

We continue work initiated in [1] by formally specifying one specific user scenario
of the identity federation protocol for convergent networks introduced in [2] and
by analysing the possibility of a man-in-the-middle attack. We use Crypto-CCS,
a CCS-like process algebra with cryptographic primitives [3, 4], in combination
with the Partial Model Checking Security Analyser PaMoChSA [5] developed
by the Security group of IIT–CNR.

The protocol proposed in [2] permits end users to access services through dif-
ferent access networks (e.g. mobile and fixed ones), without explicitly providing
any credentials, while the application level can trust the identity and authentica-
tion information provided by the access networks. As a result, service providers
(SPs) identify a user by using the authentication procedure performed by the
network provider. After identity federation, a single sign-on suffices for a user to
access all services belonging to the same “circle of trust” of SPs while keeping
personal data private. This is an advantage over introducing (and remembering)
one’s credentials time and again. The protocol may thus grant users anonymous
access to services and at the same time allow the application level to limit access
to authorised users. Moreover, without knowing who the user is, SPs can still
obtain her/his location or age or charge her/his account.

In Section 2 we sketch our scenario. We then describe our analysis approach in
Section 3, after which we formally specify our user scenario in Section 4. A small
security analysis is presented in Section 5. Section 6 contains our conclusions.
? This work has been partially funded by the EU project Sensoria (IST-2005-016004).

Modelling and Analysing an Identity Federation Protocol 95

2 The Case of Federated Network Providers

The protocol of [2] uses a token injector mechanism to translate the identity and
authentication information provided by a secure access network to the Internet
application level (of a lower security level). The token injector thus plays the
identity provider role described in the Liberty Alliance specifications [6].

We consider a user scenario with two network operators, a Mobile Operator
MO and a Fixed Operator FO, both of which have implemented the token injec-
tor mechanism and have established a trusted relation with a SP, for instance a
travel site. The user is a customer of both operators, has an active registration
on the travel site and has already federated her/his account on the travel site
with her/his profile on each of the operators (i.e. two federations have been ac-
tivated: one between the SP and the MO accounts and one between the SP and
the FO accounts). During the process of federation, the token injector generates
an opaque-id (or pseudonym) for the user and sends it to the SP. This opaque-id
is then stored on the repositories associated to the token injector and to the
SP and it is exchanged in all communication between the operators and the SP,
so as to identify the user in a secure way. Consequently, the user can access
the travel site by mobile phone (GPRS) or by PC (ADSL) without introducing
credentials. Instead, the network authentication is forwarded to the travel site,
which identifies the user. Even though the SP does not know the user’s mobile
phone number, the opaque-id enables it to use the operators service (as SMS
gateway) to nevertheless exchange or request information about the user. The
architecture of this federated network providers scenario is sketched in Figure 1.

Fig. 1. Federated network providers scenario in convergent networks.

3 Modelling and Analysis Approach

We adopt the approach of [4] based on the observation that a protocol under
analysis can be described as an open system in which some component has an
unspecified behaviour (not fixed in advance). One then assumes that, regardless
of this behaviour, the system works properly (i.e. satisfies a certain property).
In our scenario, one can imagine a hostile adversary trying to achieve some kind
of advantage w.r.t. the honest participants. Such an adversary is added to the
specification of the protocol in the next section as a component with a behaviour
defined only implicitly by the semantics of the specification language.

96 Maurice ter Beek et al.

We assume the adversary to act in Dolev-Yao fashion [7] by using a set of
message manipulating rules that model cryptographic functions. A message en-
crypted with the public key of one of the participants cannot be decrypted by
anyone but the person who knows the corresponding private key. As is com-
mon, we adopt a black-box view of cryptography by assuming all cryptographic
primitives involved in the network protocol to be perfect. To analyse whether a
system works properly, at a certain point the adversary’s knowledge is checked
against a security property. If the intruder has come to know information it was
not supposed to know, then the analysis has thus revealed an attack w.r.t. that
property, i.e. a sequence of actions of the adversary that invalidates the property.

First, we fix some notation related to the security primitives we deal with.
Sending message msg from sender A to receiver B over the ith communication
channel ci is denoted by ci A 7→ B : msg. We use the following security primitives:

pki, pk−1
i public and private key of agent i

{ }pk−1
i

message signed by agent i
{ }pki

message encrypted by public key of agent i
{ }KEY message encrypted by symmetric key KEY
ni

j nonce related to j generated by i

A nonce is a parameter that varies with time, e.g. a special marker intended
to prevent the unauthorised replay or reproduction of a message.

A model defined in Crypto-CCS consists of a set of sequential agents able
to communicate by exchanging messages. Inference systems model the possible
operations on messages and therefore consist of a set of rules of the form r =
m1 · · ·mn

m0
, with premises m1, . . . ,mn and conclusion m0. An instance of the

application of rule r to closed messages m1, . . . ,mn is denoted m1 · · ·mn `r m0.
The control part of the language consists of compound systems and its terms

are generated by the grammar (only constructs used below are presented):

S := S1 ‖ S2 | A compound systems
A := 0 | p.A | [m1 · · ·mn `r x]A;A1 sequential agents
p := c!m | c?x prefix constructs

where m1, . . . ,mn,m are closed messages or variables, x is a variable and c is a
channel. Informally, the Crypto-CCS semantics used below are:

– c!m: a message m sent over channel c;
– c?x: a message m received over channel c which replaces variable x;
– 0: a process that does nothing;
– p.A: a process that can perform an action p and then behave as A;
– [m1 · · ·mn `r x]A;A1 (the inference construct): if (by applying an instance

of rule r with premises m1, . . . ,mn) a message m can be inferred, then the
process behaves as A (where m replaces x), otherwise it behaves as A1.

– S1 ‖ S2: the parallel composition of S1 and S2, i.e. S1 ‖ S2 performs an
action if either S1 or S2 does. It may perform a synchronisation or internal
action, denoted by τ , whenever S1 and S2 can perform two complementary
send and receive actions over the same channel.

Modelling and Analysing an Identity Federation Protocol 97

The language is completely parameteric w.r.t. the inference system used. The
inference system that is used below to model our scenario is shown in Figure 2.

x y
Pair(x, y)

(pair)

Pair(x, y)
x (1st)

Pair(x, y)
y (2nd)

x pk−1
y

{x}
pk−1

y

(sign)

{x}
pk−1

y
pky

x (ver)

x KEY
{x}KEY

(enc)

{x}KEY KEY
x (dec)

x
x (check)

Fig. 2. Inference system for the federated network providers scenario.

6. IdP/TI creates SAML Assertion with <AuthnStatement>

Service
Provider

(SP)

Fixed
Operator

(FO)

Mobile
Operator

(MO)

User
Client
(U)

1. Request of registration+federation

2. Search repository for
 token associated to U

YES

NO

14. SP stores the received info

13. HTTP Request (POST)

12. U fills in the "form"

 which must be provided by the U, via a "form"

 directly accesses the service (step 15)
10. Case 1. SP needs no further info and the U

10. Case 2. SP needs specific profile info from the service,

15. HTTP Response (200−OK,access.jsp)

11. HTTP Response (200−OK,"form")

in the Request
"Inject" SAML <Response>

7. c. SAML Assertion may also contain <AttributeStatement>

 d. IdP/TI inserts SAML Assertion in SAML <Response>

8. HTTP Request (POST) http://www.SP.com/registerTravel.jsp + SAML <Response>

9. SP receives, in SAML <Response>, also the token

Local elaborations

4. Retrieve
 token and
 goto step 6

3. Token
 found?

4. a. Verify authentication of Client on basis of IP address
 b. IdP/TI generates token (opaque−id)

5. Send token

Store token

Fig. 3. Message sequence chart of federated network providers.

98 Maurice ter Beek et al.

Rule (pair) builds the pair of two messages x and y. Rules (1st) and (2nd)
return the components of a pair. Rule (sign) digitally signs a message x by
applying the secret key pk−1

y of agent y. Rule (ver) verifies a digital signature
{x}pk−1

y
by applying the public key pky of signer y. Rule (enc) encrypts a message

x by applying the symmetric key KEY. Rule (dec) decrypts a message {x}KEY

by applying the symmetric key KEY. Finally, rule (check) performs checks on
the correctness of authentication statements and on the freshness of nonces.

4 Specification of Federated Network Providers Scenario

The federated network providers scenario that we formalise involves a user U, a
service provider SP and two federated network providers: a fixed operator FO
and a mobile operator MO. Our starting point is when U initiates the process of
federated registration with SP through MO. From [2] we inherit the assumption
that all communication between FO and MO is secure: we consider them to
share a secret key KEYFM. The process is lined out in detail in Figure 3.

SAML [8] is an XML standard to exchange information on authentication
and authorisation data between security domains intended to implement mech-
anisms for single sign-ons. A SAML assertion declares a subject authenticated
by a particular means at a particular time. For our purposes, it contains a field
Subj with the token idU identifying U, a field Auth Stat with an authentication
statement asserting that U was authenticated (and the mechanism by which
s/he was), and a field Attr Stat = 〈attr list, nIdP

U 〉 with a list of attributes of U
related to her/his service accesses and a nonce to avoid replay attacks.

To avoid dealing twice with the same process of token generation, we propose
a formalisation that slightly enriches the procedure presented in [2, 6]: as soon
as one of the two network providers receives a request from U , it searches its
repository for a token already associated to U. If this token is found, then it is
retrieved and the procedure continues as in the federated registration scenario.
Otherwise it is generated and immediately sent to the other federated network
provider, where it is stored for subsequent interactions between U and SP :

c0 U 7→ MO : r
cMF MO 7→ FO : {idU,U}KEYFM

c1 MO 7→ SP : {r,SAML assertion}
K−1

MO

c2 SP 7→ U : {ok/ko}
K−1

SP

Next we specify this federated network providers scenario in Crypto-CCS.
This specification is more expressive than the one in standard notation given
above, because all operations and security checks on the various messages are
explicitly modelled. Each process is parameterised by the terms or variables it
has in its knowledge (from the beginning or because it received them earlier).
U0(r)

.= c0!r.c2?xsign. send request, receive signature,
[xsign KSP `ver xacc].0 verify signature and stop

SP0(0) .= c1?xm.SP1(xm) receive SAML assertion+ request and goto next state

Modelling and Analysing an Identity Federation Protocol 99

SP1(xm) .= [xm kIdP `ver xp] verify signature,
[xp `2nd xenc] extract encryption,
[xenc KEY `dec xdec] decrypt,
[xdec `1st xpair] extract pair: token + Auth Stat,
[xdec `2nd xnIdP

U
] extract nonce,

[xpair `1st xidU] extract token,
[xpair `2nd xauth] extract Auth Stat,
[xauth `check xauth] test correctness Auth Stat,
[xnIdP

U
`check xnIdP

U
] test freshness nonce,

[xidU
xnIdP

U
`pair (xidU

, xnIdP
U

)] build pair to store,
cS !(xidU

, xnIdP
U

) store token + nonce pair,
[access k−1

SP `sign xsign] prepare signature to
c2!xsign.0 grant access and stop

MO0(0, nMO
U , idU,KEYFM) .= c0?xr. receive request and

MO1(xr, n
MO
U , idU,KEYFM) goto next state

MO1(xr, n
MO
U , idU,KEYFM) .= [idU U `pair (idU,U)] create pair,

[(idU,U) KEYFM `enc {(idU,U)}KEYFM
] encrypt pair,

cMF!{(idU,U)}KEYFM . send token to FO,
[idU auth `pair (idU, auth)] create pair,
[(idU, auth) nMO

U `pair ((idU, auth), nMO
U)] create pair,

[((idU, auth), nMO
U) KEY `enc {((idU, auth), nMO

U)}KEY] encrypt pair,
[xr {((idU, auth), nMO

U)}KEY `pair (xr, {((idU, auth), nMO
U)}KEY)]create pair,

[(xr, {((idU, auth), nMO
U)}KEY) k−1

MO `sign xsign] sign pair,
c1!xsign.0 send SAML assertion + request and stop

FO0(KEYFM) .= cMF?xenc receive encryption,
[xenc KEYFM `dec xdec] retrieve decryption,
cS !xdec.0 store token + identity pair and stop

For the sake of readability, we did not fully spell out the digital signatures (i.e. we
just applied the private key to the message to be signed). Moreover, we assumed a
direct communication channel between SP and U in order to grant/deny access,
while in reality all communication passes through IdP. The whole process is
described by U0(r) ‖ MO0(0, nMO

U , idU,KEYFM) ‖ FO0(KEYFM) ‖ SP0(0).

5 Verification of a Security Property

As an intermediate step towards a full-blown security analysis of the protocol,
we verified the vulnerability of our federated network providers scenario w.r.t. a
man-in-the-middle attack. Such an attack is an adversary’s attempt to intercept
and modify messages between two trusted participants, in such a way that nei-
ther participant is able to find out that their communication channel has been
compromised. We used model checking to verify whether the specification of the
insecure channel between MO and SP can withstand such an attack. In [1] we
already verified that the insecure channel between IdP and SP can.

The analysis boils down to verifying the following property: whenever SP con-
cludes the protocol apparently with MO, it was indeed MO that executed it. To

100 Maurice ter Beek et al.

this aim, we introduced two special actions in the specification: commit(SP,MO)
and run(MO,SP). The former represents the fact that SP has indeed terminated
the protocol with MO, while the latter represents the fact that MO indeed
started communicating with SP. We then translated the property into requiring
run(MO,SP) to always precede commit(SP,MO). We did the same to test for pos-
sible misbehaviour or interceptions of communications between MO and FO, by
introducing the actions commit(FO,MO) and run(MO,FO) in the specification.

We used the model checker PaMoChSA v1.0 [5] to verify this. We considered
an adversary X and set its initial knowledge to the set of public messages that
it knows at the start of the protocol, i.e. the public keys of MO, FO and SP
and its own public and private key denoted by pkX and pk−1

X . With as input the
specification, the logic formula (commit(SP,MO) and (not run(MO,SP))) or
(commit(FO,MO) and (not run(MO,FO))) and the intruder’s initial knowledge
{pkX , pk−1

X , pkMO, pkFO, pkSP}, the result of the analysis was No attack found.
To verify the logic formula specified above, the tool set out to find a run of the

protocol with the following characteristic: At the end of the run, the adversary ei-
ther knows message commit(SP,MO), but it does not know message run(MO,SP)
(i.e. SP is convinced to have finished talking with MO, while in reality MO has
never started talking with SP), or it knows message commit(FO,MO), but it
does not know message run(MO,FO) (i.e. FO is convinced to have finished talk-
ing with MO, while in reality MO has never started talking with FO). Since
the tool did not find such a run we conclude that, at the conceptual level, the
network protocol is correct w.r.t. the analysed security property.

6 Conclusion

The result of the security analysis presented above, together with the one pre-
sented in [1], strengthens our confidence in the formal specifications of the sce-
narios presented in these two papers. In particular, it leads us to believe that we
correctly inserted digital signatures, encryption and nonces into the protocol.

References

1. ter Beek, M.H., Moiso, C., Petrocchi, M.: Towards Security Analyses of an Identity
Federation Protocol for Web Services in Convergent Networks. In: Proc. AICT’07,
IEEE Computer Society (2007)

2. Bonifati, M., De Lutiis, P., Moiso, C., Morello, E., Sarchi, L.: Identity Federation
for Services in Convergent Networks. In: Proc. ICIN’06. (2006) 109–114

3. Focardi, R., Martinelli, F.: A uniform approach for the definition of security prop-
erties. In: Proc. FM’99. Volume 1708 of LNCS., Springer (1999) 794–813

4. Martinelli, F.: Analysis of security protocols as open systems. Theoretical Computer
Science 290(1) (2003) 1057–1106

5. IIT–CNR: Partial Model Checking Security Analyzer PaMoChSA v1.0 (2007)
6. T. Wason et al.: Liberty ID-FF Architecture Overview v1.2 (2005)
7. Dolev, D., Yao, A.: On the Security of Public Key Protocols. IEEE Transactions

on Information Theory 29(2) (1983) 198–208
8. OASIS Security Services: Security Assertion Markup Language SAML v2.0 (2005)

Posters

Aspect Oriented Web Service Composition and
Choreography Analysis

Connie Haoying Bao and Nicolas Gold

King's College London, CREST,

Strand, London, WC2R 2LS.
{Haoying.Bao, Nicolas.Gold}@kcl.ac.uk

Abstract. In this paper we discuss a novel Aspect Oriented approach to the
analysis of Web Services Composition and Choreography. Recent development
on Web Services Business Process Execution Language (WS-BPEL) and Web
Service Choreography Description Language (WS-CDL) defined standards for
service orchestration and global integration. However, the standards have their
limitations, e.g. the lack of modularity and difficult to accommodate changes tat
run-time. The root of these problems is that the current standards do not specify
at process level. The contribution of this paper is to facilitate the composition
and maintenance of aggregated services by applying Aspect Orientated (A.O.)
techniques. In particular Query Based (Q.B) analysis that supports
modularization and service decomposition. Applying Q.B. techniques to service
composition problem is novel; this work explores and demonstrates its
effectiveness and how it addresses modularisation and decomposition at
process-level.

Keywords: Web services, composition, choreography, Aspect Oriented.

1 Introduction

Recent development on Business Process Execution Language for Web Services
(WS-BPEL), Web Services Description Language (WSDL) and Web Service
Choreography Description Language (WS-CDL) defined service orchestration and
choreography standards that would integrate services into composite processes and
processes into choreographed workflows. However, the standards have their
limitations; among them is the lack of modularity support, also known as separation
of concerns, where specifications and non-functional requirements are tangled [3].

The interactions in a business process are state-based interactions, however
interactions defined by WS-BPEL and WS-CDL are stateless message exchanges.
WS-BPEL defines such business processes using its formal descriptions of the
process’ message exchange protocols. It uses XML constructs to describe basic logic,
structural and concurrent activities, this description could be used to analyze the
process, and its interactions.
Consistency of object-oriented behavioural models, such as scenarios and state

104 Connie Haoying Bao and Nicolas Gold

machines, has already been extensively studied; for a WS-BPEL interaction four
types of incompatibilities were identified in [9] that may arise during a WS-BPEL
interoperation, among them are Structural incompatibilities that are mismatches in
XML types between sender and receiver; and Value incompatibilities feature
matching XML types, but an unexpected value within the message.

Our work attempt to first address the structural and value incompatibilities using A.O.
techniques, which performs static and dynamic analysis on BPEL and WS-CDL
descriptions, identifies and mediates over the incompatibilities. This approach also
forms an extra layer in the component based architecture that opens up opportunities
for A.O. to introduce an extra dimension in service composition. This work presents
some of concepts we are exploring, including A.O. approach to hot-fixes on long
running processes, performance monitoring and compliance monitoring in financial
services.

2 Applying AOP to WS Protocols

Several research projects recognized that services composition needs to be flexible
and dynamic. Among works on Adaptive Composition [4,5,6] AO4BPEL
implementation [3] using AOP techniques to increase flexibility and modularity, is
the most similar approach to the proposed work. AO4BPEL uses Aspect-aware
engine approach, implemented an A.O. BPEL engine; original BPEL process is
preserved, the engine checks for Aspects before and after each activity and execute
them. The engine implements the popular Joint Point & Point cut mechanism,
supporting dynamic composition of workflows.

Our work on applying Aspect Oriented method other than the Joint Point & Point cut
mechanism is a novel one. We propose to use the Process Transformation approach
[2] merging aspects and workflow process before deployment. We use the A.O.
mechanism demonstrated by JQuery [7], a light weight query browser implemented
using declarative configuration language. The prolog-like query language and
interface provides maximum flexibility and modularization power in analysing a
workflow. Despite the popularity and wide adaptation of AspectJ and other Joint
Point and Advice implementations, the paradigm suffers badly from serious
performance overhead [7,8], minor change could results in a major 256% increase in
compile time.

Subject to experimental results we would like to demonstrate with our approach with
the Query Based A.O. paradigm would prove to be more efficient performance wise.

Aspect Oriented Web Service Composition and Choreography Analysis 105

References

1. Khalaf, R., Leymann, F.: E Role-based Decomposition of Business Processes using BPEL.
ICWS, 2006, 770-780.

2. Eder, J. Gruber, W., Pichler, H.: Transforming Workflow Graphs. In Proceedings of the 1st
International Conference on Interoperability of Enterprise Software and Applications
(INTEROP-ESA), February 2005.

3. Charfi, A. and Mezini, M. “Hybrid Web Service Composition: Business Processes Meet
Business Rules”, In Proceedings of the 2nd International Conference on Service Oriented
Computing (ICSOC 2004). 2004.

4. Dynamic and adaptive composition of e-services, Inf. Syst., Elsevier Science Ltd., 2001,
26, 143-163

5. Jing-Fan Tang; Bo Zhou; Zhi-Jun He; Pompe, U. Adaptive workflow-oriented services
composition and allocation in distributed environment, Machine Learning and
Cybernetics, 2004. Proceedings of 2004 International Conference on, 26-29 Aug. 2004,
Volume 1,, Page(s): 599 - 603 vol.1

6. Q. Z. Sheng, Z. M. M. D. & Ngu, A. H. Enabling Personalized Composition and Adaptive
Provisioning of Web Services . In Proc. of the 16th International Conference on Advanced
Information Systems Engineering (CAiSE),, June . 2004 ., Springer Verlag . Riga, Latvia.

7. Janzen, D. & Volder, K. D. Navigating and querying code without getting lost
AOSD '03: Proceedings of the 2nd international conference on Aspect-oriented software
development, ACM Press, 2003, 178-187

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W. An Overview
of AspectJ. In Proc. Of ECOOP ’01, LNCS 2072, pp. 327-353, Springer, 2001

9. Shankar R. Ponnekanti and Armando Fox. Interoperability among independently evolving
web services. ACM/Usenix/IFIP Middleware '04, Toronto, Canada, October 2004.

http://www-cs-students.stanford.edu/%7Epshankar/mw.pdf
http://www-cs-students.stanford.edu/%7Epshankar/mw.pdf

WS-Engineer:
Tool Support for Engineering Web Service

Compositions and Choreography

Howard Foster

Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2BZ, UK

1 Introduction

This poster presents an engineering approach to designing, implementing and
maintaining web service behaviour specifications, covering some emerging stan-
dards in the current web service standards stack. We present a rigorous approach
to formally specifying, modelling, verifying and validating the behaviour of web
service compositions with the goal of simplifying the task of designing coordi-
nated distributed services and their interaction requirements. Through the use of
our Eclipse plug-in tool, known simply as WS-Engineer, Web Service standards
are used as an implementation example, with models generated from the XML of
BPEL4WS and WS-CDL, that represent web service orchestrations and choreog-
raphy respectively. Through the use of formal model verification techniques, the
behaviour specified in these XML documents can be checked for service interac-
tion violations between design and implementation, between processes (as service
conversations) and by the role of the processes. Obligations analysis considers
how each service either fulfills or falls short of providing sufficient interactions
in service choreography.

2 The Approach

Our approach is undertaken as follows. A designer, given a set of web service
requirements, specifies a series of Message Sequence Charts (MSCs) to describe
how the services will be used and to model how each service interacts (i.e. ser-
vice conversations) in a given service scenario. The resulting set of scenarios is
composed and synthesized to generate a design behavioral model, in the form of
the Finite State Process (FSP) algebra and then compiled in to a Labelled Tran-
sition System (LTS). Equally, WS-CDL specifications can also be constructed
to describe a multi-partner collaboration policy, and a similiar translation to
FSP model can be undertaken. The service implementation is undertaken by a
BPEL4WS engineer, who builds BPEL4WS processes directly from either spec-
ification or requirements. The BPEL4WS implementations are used to gener-
ate further behavioral models by a process of abstracting interactions from the

WS-Engineer 107

BPEL4WS process to yield a model of interaction based upon specified semantics
applied to BPEL4WS through the FSP algebra. Verification and validation con-
sists of comparing and observing traces of these transition systems. The approach
can assist in determining whether the implementation contains all the specified
scenarios of the design or policy and whether any additional scenarios exhibited
by the implementation are acceptable to the end-user. In addition, checks can be
made on the models with respect to desirable general global properties such as
absence of deadlock and liveness (using model-checking). Feedback to the users
is in the form of MSCs. Our approach currently supports analysing BPEL4WS,
WS-CDL and WSIF (as Invocation Logs), yet as other standards emerge these
can be incorporated in to the approach. Additionally we are working on gener-
ating templates of standards based implementations for both choreography and
service implementation.

3 The Tool

The tool, written as a plug-in to the Eclipse integrated development environment,
provides the service engineer with features to generate, enhance and analyse doc-
uments implementing the service process and the service policy. Building upon
a suite of analysis tools, the WS-Engineer plug-in extends an LTSA Eclipse
plug-in with support for translating BPEL4WS, WS-CDL and WSIF specifi-
cations to the Finite State Process (FSP) notation. As these are translated,
they can be compiled in to Labelled Transition Systems (LTS) for analysis.
The tool provides different views for graphically viewing models (as graphi-
cal LTS models), animating models and verifying models against a variety of
predefined properties. For example, a ”Service Compatibility View” allows the
engineer to compare orchestration, choreography and design models. One partic-
ularly interesting feature is to perform an ”Obligations Analysis”, where partic-
ular roles and their interactions are compared with that of implementation (as
BPEL4WS processes) or policy (in the form of WS-CDL). The tool is available
at: http://www.doc.ic.ac.uk/ltsa/eclipse.

4 Future Work

The main contribution in our work is to provide an approach, which when im-
plemented within the tool, provides a mechanical verification of properties of
interest to both designers and implementers of web service compositions. The
use of a formal, well defined, process algebra (in this case FSP) provided a se-
mantic mapping between the composition implementation (in the BPEL4WS
specification for web service compositions and WS-CDL for service choreogra-
phy policies). The approach provides an extendable framework in which further
specifications and properties can be defined and implemented to assist in an
efficient, mechanical service testing and analysis tool set.

Reengineering Systems for Multi Channel Access –

Systematic Literature Review Protocol

Clive Jefferies and Pearl Brereton

School of Computing and Mathematics,
Keele University, Keele, Staffs, United Kingdom,

red29@epsam.keele.ac.uk

Abstract

Many companies and institutions could benefit from adapting their software systems
to support multi channel access. This means that the software can be accessed by
heterogeneous devices such as mobile phones, PCs or PDAs. To completely replace
these systems may be expensive and time consuming [4]. Another way is to
reengineer the system as a service. There are two types of re-engineering that can be
used for service enablement: black box – where no knowledge of the program code is
needed or white box – where the program code itself is changed. Black box techniques
can be difficult if Business Logic is tied up with Presentation Logic [2]. Black box
approaches are also seen as a temporary solution rather than a permanent one and best
used as an interim solution [1].

A Systematic Literature Review (SLR) [3] enables a researcher or group of
researchers to gather information on a problem or research topic in a rigorous and non
biased way. I will be using a SLR to search for methodologies and the issues involved
in service enablement. Before conducting a SLR a Review Protocol must be created.
This protocol states what will be done during the review and who will do it.

The starting point of the SLR Protocol is the draft research questions. These form the
basis of the way in which the review will be formed and the purpose of the review.
An example research question from this review is: Have there been any proposed
solutions and frameworks to address reengineering systems as services?

Once the questions have been decided, these guide the generation of the search terms.
The terms must be decided along with any synonyms, abbreviations and alternative
spellings so that a comprehensive yet concise search string can be generated. Once the
search terms have been decided the resources used for the review are then selected
and documented. The resources that will be used in this study are ACM or the
IEEExplore digital libraries and Google search engine.

The next sections of the SLR Protocol are the inclusion and exclusion criteria. For the
inclusion criteria you are looking for aspects that would mean that the paper should be
included in the literature review. The exclusion criteria are used to say what explicitly
will not be included. These help filter the potentially large number of papers found in
the search. The next step in the SLR Protocol is to outline the data to be extracted. For

Reengineering Systems for Multi Channel Access 109

this procedure the researcher must create documentation which states exactly what
data is to be extracted from each paper during the review.

For the SLR Protocol the researcher must then say how the extracted data will be
synthesised for subsequent processing. In this study the synthesised data will be used
to choose a reengineering method for service enablement or to suggest a new method.
This method will then be applied to IBHIS, an existing service-based system [5] and
finally evaluated. The IBHIS system is a service-based broker that is used to query
multiple heterogeneous data sources. Although this system uses web services to
communicate between the broker and the data sources, the system itself is not
exposed as a service so therefore will be an ideal candidate for reengineering.

References

1. Anand S., Chatterjee A. M., Kumar V., Raut V. & Singh V. (2005). Towards Legacy
Enablement Using SOA and Web Services: Leverage legacy systems with SOA.
<http://webservices.sys-con.com/read/164558.htm> Accessed on 09.05.2007

2. Kousoukos G., Andrade L., Gouveia J. & El-Ramy M. (2006). Service Extraction.
<http://www.pst.ifi.lmu.de/projekte/Sensoria/del_12/D6.2.a.pdf> Accessed on 08.05.2007.

3. Kitchenham, B. (2004). Procedures for performing systematic reviews. Technical report
Software Engineering Group, Department of Computer Science, Keele University.

4. Newcomer E., Lomow G. (2005). Understanding SOA with Web Services. Addison Wesley.
ISBN 0-321-18086-0.

5. Turner M., Zhu, F., Kotsiopoulos, I., Russell, M., Budgen, D., Bennett. K., Brereton, P.,
Keane, J., Layzell, P. & Rigby, M. (2004). Using Web Services Technologies to create an
Information Broker: An Experience Report. Presented at 26th International Conference on
Software Engineering (ICSE 2004), Edinburgh, Scotland, 2004.

Using Enhanced Causal Paths based on Passive
Tracing in Determining a Web Service Topology

Marian Mohr and Nicolas Gold

King’s College London, CREST,
Department of Computer Science, London, United Kingdom

marian.mohr@kcl.ac.uk, nicolas.gold@kcl.ac.uk
http://www.dcs.kcl.ac.uk/pg/mohrmari,
http://www.dcs.kcl.ac.uk/staff/nicolas

Abstract. This paper describes an approach to understanding a sys-
tem’s behaviour and provides suggestions for improving currently avail-
able techniques with regards to causal paths.

1 Position

As distributed systems become more complex by the day, so does the crucial
task of understanding the actual works that underlie their operations. Vague
answers to questions such as: “what is the effect of X on Y?” – X oftentimes
being a system under development and Y being a set of production systems – are
commonplace. In [1], Moe and Sandahl describe a variety of issues that can be
addressed, simply by way of understanding of the effects of a particular system,
subsystem or even individual message on a system, including amongst others, the
discovery of hidden problems, bottlenecks and sources of exceptions. While the
overall research focus so far has been on general message flows, covering topics
such as SLA monitoring [2] [3] and execution tracing [4], and mature technolo-
gies such as CORBA, much less has been written with regards to tracing web
services, particularly the effects of service calls beyond the first point of contact.

We propose to explore this matter by reviewing core challenges in understand-
ing overall system behaviour, illustrating, comparing and contrasting current
approaches and ultimately proposing new approaches to enhancing “casual rea-
soning” by means of exploiting properties unique to service environments. Chal-
lenges that we consider critical in our review include the selection and gathering
of data that forms the base of any analysis, considering model-based, intrusive
and non-intrusive techniques as well as related performance implications, the
“location” of the analysis and other practical concerns such as a lack of a global
clock [5]. To support the review, we suggest a classification of approaches into
six classes:

1. program comprehension studies source code to derive a global interaction
model.

Using Enhanced Causal Paths based on Passive Tracing ... 111

2. intrusive tracing is a technique commonly found in the form of logging, which
requires active support by developers, who need to inform a certain entity
of the beginning and end of any communication that should be traceable.
A popular example is ARM [6]. Variants of this class, such as application
annotations as in the case of Pip [7] and proxies [8] are included in this class.

3. analysis of server-logs is a less intrusive approach, based on the availability
and correctness of logs from all servers and the post-execution analysis of
these logs to determine associations [9], however requires standardization
due to a large variety of application servers.

4. message identification suggests modifying each message by attaching a unique
identifier by means of which correlated messages can be identified [10]. Cur-
rently implementations are entirely proprietary.

5. model analysis makes use of high-level system descriptions, most commonly
found in the form of a design artefacts, such as BPEL orchestrations [11].

6. causal paths represents entirely passive, non-intrusive observation of network
traffic, for example by means of port mirroring, and inference of paths using
algorithms based on message characteristics or environment variables such as
time. Examples for this are nesting, convolution [12] and linking [4]. In con-
trast to other approaches, it can only provide probabilistic results, however
it is entirely independent of other systems.

We place particular emphasis on “causal paths”, as it is the least intrusive
approach and the quality of its results is subject exclusively to the quality of the
algorithms deployed. By way of focusing on web service interactions, it is possible
to exploit its key characteristics in improving these algorithms. We believe that
improvements can be achieved in the following:

1. data collection – demonstrating that by means of using filters that can be
applied to well-formed messages (e.g. SOAP) at data collection points, it
would be possible to reduce the overall overhead of collecting and routing
message information. This technique would not only reduce resource utiliza-
tion and correspondingly network congestion, but would also enable us to
highlight rare and therefore possibly more important messages.

2. focused data collection – suggesting the use of a technique known as message
replay based on semantic evaluation of method signatures. A technique well-
known in the area of wireless communication security could be applied, since
web services allow for thorough analysis thanks to its XML message format.

3. message pattern identification – making use of standards such as WS-Transaction
to facilitate the process of associating individual messages with a particular
message flow. Instead of attaching unique identifiers to messages, one could
use knowledge of messaging standards to improve the analysis process, pos-
sibly resulting in near-identifier algorithm performance.

4. design pattern identification – testing for common service patterns such as
RPC and publish/subscribe to identify message flows, the latter being es-
pecially important, as literature rarely discusses this scenario. Since certain
design patterns recur frequently, knowledge about them could be used in
improving analysis performance.

112 Marian Mohr and Nicolas Gold

This paper outlined an approach to the understanding of a system’s be-
haviour and has sketched out specific suggestions for improving currently avail-
able techniques with a focus on causal paths.

References

1. J. Moe and K. Sandahl. Using execution trace data to improve distributed systems.
In Proceedings of the International Conference on Software Maintenance, pages
640–648, 3-6 Oct. 2002.

2. Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Aad P. A. van Moorsel, and Fabio
Casati. Automated SLA Monitoring for Web Services. In Proceedings of the 13th
IFIP/IEEE International Workshop on Distributed Systems: Operations and Man-
agement: Management Technologies for E-Commerce and E-Business Applications,
volume 2506 of Lecture Notes In Computer Science, pages 28–41, London, UK,
2002. Springer-Verlag.

3. Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Moni-
toring Service Level Agreements for Web Services. Journal of Network and Systems
Management, 11(1):57–81, March 2003.

4. Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Marcos K. Aguilera, and
Amin Vahdat. WAP5: black-box performance debugging for wide-area systems. In
WWW ’06: Proceedings of the 15th International Conference on World Wide Web,
pages 347–356, New York, NY, USA, 2006. ACM Press.

5. Zoltán Ádám Mann. Tracing System-Level Communication in Object-Oriented
Distributed Systems. In Proceedings of the OMG Information Day, March 2001.
Budapest (Hungary).

6. Mark W. Johnson. Monitoring and Diagnosing Applications with ARM 4.0. White
paper, IBM Corporation, December 2004. Final.

7. Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Mehul A. Shah, Charles
Killian, and Amin Vahdat. Pip: Detecting the Unexpected in Distributed Systems.
In Proceedings of the 3rd ACM/USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 115–128, San Jose, CA, May 2006.

8. G. Carls, Ying Lu, and G. Aschemann. Validating interaction patterns of CORBA
based network management systems. In Network Operations and Management
Symposium, 2000. NOMS 2000. 2000 IEEE/IFIP, pages 31–44, 10-14 April 2000.

9. Wim De Pauw, Sophia Krasikov, and John F. Morar. Execution patterns for
visualizing web services. In SoftVis ’06: Proceedings of the 2006 ACM symposium
on Software visualization, pages 37–45, New York, NY, USA, 2006. ACM Press.

10. Mike Y. Chen, Anthony Accardi, Emre Kiciman, Dave Patterson, Armando Fox,
and Eric Brewer. Path-Based Failure and Evolution Management. In Proceedings
of the 1st ACM/USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 309–322, San Francisco, CA, March 2004.

11. M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and
Monitoring Web Service Composition. In Artificial Intelligence: Methodology, Sys-
tems, and Applications, volume 3192 of Lecture Notes in Computer Science, pages
106–115. Springer Berlin / Heidelberg, 2004.

12. Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance debugging for distributed systems of black
boxes. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 74–89, New York, NY, USA, 2003. ACM Press.

Typed Abstractions for Client-Service
Interactions in OSGi

Sven De Labey and Eric Steegmans
K.U.Leuven, Dept. Computer Science, 200A Celestijnenlaan, B-3000 Leuven, Belgium

{svendl, eric}@cs.kuleuven.be

1 Introduction

OSGi technology provides a service-oriented, component-based environment and
offers standardized ways to manage the software lifecycle. It subscribes to the
Service-Oriented Programming paradigm by providing a central service registry
which is used by providers to publish their services. These published services can
then be retrieved by clients using an LDAP-based query mechanism.

In this text, we briefly evaluate the OSGi service registration mechanism
based on three desired properties for service registries: static service properties,
dynamic service properties, and derived properties.

2 Client-Service Interactions in OSGi
During service registration in OSGi, the service provider may attach a dictionary
of service properties to the service being registered. Clients can assemble proper-
ties from this dictionary into LDAP-like queries (Lightweight Directory Access
Protocol) such as (&(objectClass=Printer)(ppm=20)) so as to fine-tune their
search. A search based on a key/value pair such as (ppm=20) is only valid when
the service provider has added the key ppm.
Evaluation Given our three desirable properties for service registries, we can
evaluate the OSGi registration mechanism:
– Static Service Properties. These properties never change during the life-

time of a service, so it is possible to include them as properties in a static
dictionary. Therefore, they can be handled well by the OSGi service regis-
tration protocol.

– Dynamic Service Properties. Properties such as the length of a queue are
dynamic. This information cannot be added when the service is registered, so
the OSGi registration mechanism cannot allow clients to conduct a search
based on dynamic service properties. This is a major limitation because
services are highly dynamic entities with frequently changing characteristics.

– Derived Properties. A search based on derived properties (e.g. calculating
the cost for printing a file), is not supported by the LDAP-based query
mechanism of OSGi. Therefore, the result of such derived properties can
only be computed when the client has obtained a reference to a service.
Thus, in OSGi, such derived properties can only be taken into account after
the client has retrieved all candidate services and after it has calculated the
required information by contacting each of these services. This approach is
inefficient and reduces the readability of the client code.

Another drawback of OSGI is that, by relying on LDAP as a query language,
it bypasses compile-time checks on service queries because these queries are
passed as strings. This leads to potential InvalidSyntaxExceptions at runtime.
Summarizing, OSGI uses a dynamically typed query language for describing
static service properties and what we need, is exactly the opposite.

114 Sven De Labey and Eric Steegmans

3 Typed Abstractions for OSGi

We are using ServiceJ, our Java extension for service interactions, to augment the
semantics of interactions between clients and the OSGi registration mechanism.
The idea underlying this extension is that service properties are modeled by
operations exported by the service API. In stead of defining a dictionary with a
key ppm, for example, we use methods such as getPagesPerMinute() provided by
the PrinterService interface. ServiceJ introduces special variables, called pool
variables, that can be used to program client-service interactions. When the client
declares a variable such as “pool Printer printer;”, the ServiceJ middleware
automatically contacts the OSGi service registry and retrieves an appropriate
service, which is then injected into the pool variable. This injection mechanism
can be fine-tuned using declarative operations. ServiceJ aims at realizing our
goals for service registries as follows:
Static and Dynamic Service Properties. ServiceJ introduces a where clause
that accepts a boolean expression as an argument. This boolean expression can
be used to query for both static and dynamic service properties because the
boolean expression is evaluated just-in-time (i.e. when an operation is invoked
on the pool variable). For example, retrieving a PrinterService with a queue
containing at most 3 other jobs is written as:

pool PrinterService ps where ps.getQueue().getLength()<=3;

Derived Properties. Because we use regular instance methods in stead of a
dictionary, it becomes possible to take into account derived properties. Informa-
tion is provided by the client using the actual parameters of a method invocation.
This information is used at the Service Registry to compute the resulting set of
services. For example, getting a printer that charges the user less than a prede-
fined maxCost for some fileInfo is written as:

pool PrinterService ps where ps.getCostFor(fileInfo)<maxCost;

Typed Abstractions. In contrast with OSGi, which uses a dynamically typed
query language for static service properties, ServiceJ enables us to use a stati-
cally typed language that takes into account both dynamic and derived service
properties. Being a statically typed language, ServiceJ does not force service
clients to catch InvalidSyntaxExceptions each time they interact with the
service registry because erroneous queries are signaled at compile time.

4 Status and Future Work

Currently, the extension of the OSGi registration mechanism has been imple-
mented and a case study is being developed. Future work includes the intro-
duction of a transaction mechanism based on ServiceJ session blocks, and the
development of a bridge between Jini and OSGi based on ServiceJ.

A Mapping BPEL4WS Processes into CSP

Tuvshintur Tserendorj

Institute AIFB
University of Karlsruhe (TH), Germany

tuvshintur.tserendorj@aifb.uni-karlsruhe.de

http://www.aifb.uni-karlsruhe.de

Abstract. We study the applicability of process algebraic language such
as CSP (Communicating Sequential Processes) and its verification tech-
nique for the emerging paradigm of Web Services. Furthermore, we present
an approach for faithfully translating BPEL4WS 1 processes to CSP. The
translator takes as input a BPEL4WS specification, automatically gen-
erates a CSP specification and enables the desired formal analysis such
as deadlock, livelock and refinement checking for business processes with
the model checker FDR2 [1].

Key words: Bpel4ws, ws-bpel, csp, model checker FDR2, verification

1 Introduction

Web services are rapidly emerging as a new communication paradigm for the ex-
ecution of business processes across and between organizations. If these processes
are unreliable, a failure in them can cause high economic losses. By using formal
techniques it is possible to find errors in specifications at design time, thus in-
creasing their reliability. In recent years various industrial standard specifications
towards specifying business processes and web services have been proposed. A
widely-accepted standard is the BPEL4WS specification. It provides a language
for the formal specification of business processes and business interaction proto-
cols. However, the language lacks formal semantics, and this hinders the formal
analysis2. Although some efforts report on using such as formal languages CCS
[2], π-calculus [3] and Petri nets [4] for defining formal semantics for BPEL4WS,
no interesting relation with them has really been proved for a practical usage.
We believe that this gap needs to be filled. We want to use the popular model
checker FDR2 for verifying business processes and web services. CSP is a mature
mathematical theory for specifying and reasoning about concurrent systems. It
models a system as a collection of processes which run concurrently, communi-
cate over unbuffered channels and synchronize on particular events. The reason
to choose CSP is to profit not only from its well-defined specification language,
but also from the analysis tools such as FDR2, etc. In addition, we believe that
the refinement checking of CSP can be an extremely valuable tool for match-
making of BPEL4WS processes and web services [2].
1 Business Process Execution Language for Web Services
2 deadlock, livelock and non-determinism

116 Tuvshintur Tserendorj

2 The Mapping

We have defined the formal semantics of BPEL4WS as a semantic translation
function Ψ : BPEL4WS → CSP. This is done inductively over the syntax of
BPEL4WS processes in such a way that the primitive activities such as receive,
reply and invoke have been handled as communications over channels. Further-
more, we have encoded the constructors sequence, flow, switch and while by
sequential, alphabetized parallel, guarded processes and so-called µ-recursion,
respectively. The fault and compensate handlers are described by individual
CSP processes whereas the scope is encoded as nested processes. Although the
constructors such as sequence and flow are straightforward to translate, we de-
fined further optimizations for generating CSP specifications. For instance, one
can define a BPEL4WS parallel process using the parallel constructor flow. If the
activities occurring in the flow process were totally ordered via links it wouldn’t
be optimal to generate a corresponding CSP parallel process. We take such cases
into account and generate optimized CSP processes so that the state space ex-
ploration problem can be avoided as far as possible. In particular for the above-
mentioned case we generate a sequential process, instead of a parallel process.
The feature links is encoded as synchonized-events. Our tool is implemented as
an Eclipse Plug-in that can be utilized in the BPEL visual environment of the
Eclipse Technology Project.

3 Open issues and future works

An approach for faithfully translating BPEL4WS processes to CSP is presented,
and this in turn has enabled the desired formal analysis such as deadlock, live-
lock and refinement checking for business processes with the model checker
FDR2. Our current implementation is relatively robust. There are some issues we
haven’t completely handled yet, but we are still working on it, namely the com-
pilation of the return value of the invoke and assign activities. We will extend
our implementation in the way so as to make a smooth integration with FDR2.
This extension should allow the BPEL designer to directly use the model checker
FDR2 in the BPEL visual environment. Furthermore, we study the possibility
of adopting a functional language as an in-built language for better handling of
the activities such as assign.

References

1. A. W. Roscoe The Theory and Practice of Concurrency, Prentice Hall Series in
Computer Science 1998.

2. Biplav Srivastava, Jana Koehler Web Service Composition - Current Solutions and
Open Problems

3. Manuel Mazzara and Roberto Lucchi A pi-calculus based semantics for WS-BPEL,
Journal of Logic and Algebraic Programming 2006

4. Karsten Schmidt and Christian Stahl. A Petri net semantic for BPEL4WS - vali-
dation and application, AWPN’04

Inference Security Threats in Service-Based Systems

Philip Woodall and Pearl Brereton

School of Computing & Mathematics, Keele University,

Keele, Staffordshire, ST5 5BG
p.m.woodall@cs.keele.ac.uk

Abstract

Existing access control models are not sufficient to prevent service-based information
brokers releasing sensitive information from autonomous, heterogeneous and
distributed data sources. Under certain conditions, an information broker can gather
information from multiple sources, which is non-sensitive in isolation, but is sensitive
when presented as a whole. Tools such as IBHIS, a service-based information broker
based on the healthcare domain, can collate information from data sources that expose
their data as a service [1]. Each data source manages its own separate security policy,
which is upheld by IBHIS using the S-DAC access control model thus preventing the
direct release of sensitive information [2]. However, consider the case where
anonymised healthcare data from one data source is linked with identifying data, such
as age, NHS Trust, or date of diagnosis from another data source. It may be possible
for users of IBHIS to infer the identity of a patient and obtain sensitive information
about a patient indirectly.

An analysis of the inference problems in service-based information brokers has been
conducted using the Systematic Literature Review (SLR) methodology. A SLR is a
structured, rigorous and auditable method used to obtain, extract and synthesise
information relevant to a particular research question [3]. The SLR methodology—
recently adopted by the Software Engineering community—was used to identify a set
of inference strategies from the existing literature. The term ‘inference strategy’ refers
to the method (series of processes) by which a user can obtain sensitive information
from a data source. From the results of the SLR, a taxonomy of inference strategies
has been developed by analysing and grouping the inference strategies according to
their processes (the stages required to complete the inference strategy).

Using the taxonomy, the processes for each group of inference strategy were
compared to the processes in a service-based information broker. The comparison
showed that the general processes performed by service-based information brokers,
when obtaining disparate information, are very similar to the majority of the processes
required to perform certain inference strategies. It is, therefore, not only important to
prevent users from attempting to infer sensitive information, but imperative to
implement measures to prevent service-based data integration tools, such as IBHIS,
from releasing sensitive information inadvertently to its users. Without these
measures, a system with the brokerage capabilities of IBHIS would pose a

118 Philip Woodall and Pearl Brereton

considerable threat to the confidentiality and privacy requirements of its underlying
data sources.

In order to address this problem we propose the Service-Based Inference Control
(SBIC) framework, which is suitable for detecting and preventing the inadvertent
release of sensitive information by information brokers such as IBHIS. The SBIC
framework shows how the existing detection and prevention techniques can be
combined with other components to avert this release of sensitive information.

References

1. Budgen, D., Turner, M., Kotsiopoulos, I., Zhu, F., Bennett, K., Brereton, P., Keane, J.,
Layzell, P., Russel, M., Rigby, M.: Managing Healthcare Information: The Role of the
Broker. From Grid to Healthgrid: Proceedings of HealthGrid 2005, IOS Press, (2005) 3-16

2. Turner, M., Brereton, P., Budgen, D.: Service-enabled Access Control for Distributed Data.
IEE Proceedings-Software, Vol. 153. No. 1 (2006) 24-30

3. Kitchenham, B.: Procedures for Undertaking Systematic Reviews. Technical Report,
TR/SE-0401, School of Computing and Mathematics, Keele University, Keele. (2004)

YR-SOC 2007 is sponsored by:

	papers.pdf
	56_janicke.pdf
	Policy-Based Service Selection
	Helge Janicke and Monika Solanki

	56_janicke.pdf
	Policy-Based Service Selection
	Helge Janicke and Monika Solanki

