
Policy-Based Service Selection

Helge Janicke and Monika Solanki
(heljanic@dmu.ac.uk / monika@doc.ic.ac.uk)

STRL, De Montfort University / DOC, Imperial College

YR-SOC 2007 11th June 2007 University of Leicester

Outline

1 Motivation

2 Service Architecture

3 Policy & Preferences

4 Example

5 Conclusion

Motivation
The Why Policy-Based? Question

Quality of Service (QoS) is an ill-defined term.

Service Level Agreements (SLA) define the QoS that a
provider is expected to deliver.

SLAs are legally binding, however it may or may not be
feasible to take action.

Some providers may guarantee less, but in fact provide
“more” (or vice versa).

Static SLA negotiation may not be useful if the system is
characterised by: uncertainty, failure and frequent
re-configuration.

Instead: Best effort approach based on dynamic QoS
attributes. QoS becomes subjective.

How can we support this subjective QoS?

Motivation
The Why Policy-Based? Question

Quality of Service (QoS) is an ill-defined term.

Service Level Agreements (SLA) define the QoS that a
provider is expected to deliver.

SLAs are legally binding, however it may or may not be
feasible to take action.

Some providers may guarantee less, but in fact provide
“more” (or vice versa).

Static SLA negotiation may not be useful if the system is
characterised by: uncertainty, failure and frequent
re-configuration.

Instead: Best effort approach based on dynamic QoS
attributes. QoS becomes subjective.

How can we support this subjective QoS?

Motivation
The Why Policy-Based? Question

Quality of Service (QoS) is a defined term.

Service Level Agreements (SLA) define the QoS that a
provider is expected to deliver.

SLAs are legally binding, however it may or may not be
feasible to take action.

Some providers may guarantee less, but in fact provide
“more” (or vice versa).

Static SLA negotiation may not be useful if the system is
characterised by: uncertainty, failure and frequent
re-configuration.

Instead: Best effort approach based on dynamic QoS
attributes. QoS becomes subjective.

How can we support this subjective QoS?

Motivation
The Why Policy-Based? Question

Quality of Service (QoS) is a defined term.

Service Level Agreements (SLA) define the QoS that a
provider is expected to deliver.

SLAs are legally binding, however it may or may not be
feasible to take action.

Some providers may guarantee less, but in fact provide
“more” (or vice versa).

Static SLA negotiation may not be useful if the system is
characterised by: uncertainty, failure and frequent
re-configuration.

Instead: Best effort approach based on dynamic QoS
attributes. QoS becomes subjective.

How can we support this subjective QoS?

Motivation
The Why Policy-Based? Question

Quality of Service (QoS) is a defined term.

Service Level Agreements (SLA) define the QoS that a
provider is expected to deliver.

SLAs are legally binding, however it may or may not be
feasible to take action.

Some providers may guarantee less, but in fact provide
“more” (or vice versa).

Static SLA negotiation may not be useful if the system is
characterised by: uncertainty, failure and frequent
re-configuration.

Instead: Best effort approach based on dynamic QoS
attributes. QoS becomes subjective.

How can we support this subjective QoS?

Motivation
The Why Policy-Based? Question

Quality of Service (QoS) is a defined term.

Service Level Agreements (SLA) define the QoS that a
provider is expected to deliver.

SLAs are legally binding, however it may or may not be
feasible to take action.

Some providers may guarantee less, but in fact provide
“more” (or vice versa).

Static SLA negotiation may not be useful if the system is
characterised by: uncertainty, failure and frequent
re-configuration.

Instead: Best effort approach based on dynamic QoS
attributes. QoS becomes subjective.

How can we support this subjective QoS?

Motivation
The Why Policy-Based? Question

Quality of Service (QoS) is a defined term.

Service Level Agreements (SLA) define the QoS that a
provider is expected to deliver.

SLAs are legally binding, however it may or may not be
feasible to take action.

Some providers may guarantee less, but in fact provide
“more” (or vice versa).

Static SLA negotiation may not be useful if the system is
characterised by: uncertainty, failure and frequent
re-configuration.

Instead: Best effort approach based on dynamic QoS
attributes. QoS becomes subjective.

How can we support this subjective QoS?

Motivation
The Why Policy-Based? Question

Quality of Service (QoS) is a subjectively defined term.

Service Level Agreements (SLA) define the QoS that a
provider is expected to deliver.

SLAs are legally binding, however it may or may not be
feasible to take action.

Some providers may guarantee less, but in fact provide
“more” (or vice versa).

Static SLA negotiation may not be useful if the system is
characterised by: uncertainty, failure and frequent
re-configuration.

Instead: Best effort approach based on dynamic QoS
attributes. QoS becomes subjective.

How can we support this subjective QoS?

Motivation
The Why Policy-Based? Question

Quality of Service (QoS) is a subjectively defined term.

Service Level Agreements (SLA) define the QoS that a
provider is expected to deliver.

SLAs are legally binding, however it may or may not be
feasible to take action.

Some providers may guarantee less, but in fact provide
“more” (or vice versa).

Static SLA negotiation may not be useful if the system is
characterised by: uncertainty, failure and frequent
re-configuration.

Instead: Best effort approach based on dynamic QoS
attributes. QoS becomes subjective.

How can we support this subjective QoS?

Subjective QoS Assessment
Subjective QoS is based on experiences.

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 0

Subjective QoS Assessment
Subjective QoS is based on experiences.

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 1

Subjective QoS Assessment
Subjective QoS is based on experiences.

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 2

Subjective QoS Assessment
Subjective QoS is based on experiences.

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 3

Subjective QoS Assessment
Subjective QoS is based on experiences.

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 4

Subjective QoS Assessment
Subjective QoS is based on experiences.

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 5

Subjective QoS Assessment
Subjective QoS is based on experiences.

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 6

Subjective QoS Assessment
Subjective QoS is based on experiences.

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 7

Subjective QoS Assessment
Subjective QoS is based on experiences.

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 8

Subjective QoS Assessment
Subjective QoS is based on experiences.

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

A B

P Q R

Consumer

Provider

QoS

subjective

Time = 9

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

Registry

Infrastructure

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

queries

requests service

preferred services

provides list of

Match−Maker

Service

Registry

Infrastructure

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

Policy−Engine

Observer

Match−Maker

Service

Registry

Infrastructure

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

defines

policy

Infrastructure

Policy−Engine

Observer

Match−Maker

Service

Registry

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

uses data of

defines

policy

Infrastructure

Policy−Engine

Observer

Match−Maker

Service

Registry

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

observes interactions

uses data of

defines

policy

Infrastructure

Policy−Engine

Observer

Match−Maker

Service

Registry

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

observes interactions

uses data of

requests service

defines

policy

Infrastructure

Policy−Engine

Observer

Match−Maker

Service

Registry

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

observes interactions

uses data of

queries

requests service

defines

policy

Infrastructure

Policy−Engine

Observer

Match−Maker

Service

Registry

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

observes interactions

uses data of

queriesqueries

requests service

defines

policy

Infrastructure

Policy−Engine

Observer

Match−Maker

Service

Registry

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

observes interactions

uses data of

queriesqueries

requests service

preferred services

provides list of defines

policy

Infrastructure

Policy−Engine

Observer

Match−Maker

Service

Registry

Network

Service

provides

publishes service descriptionService Interface

Messaging

Service Architecture
What components are required to base Service Selection on Dynamic QoS?

feeds back to

observes interactions

uses data of

queriesqueries

requests service

preferred services

provides list of defines

policy

Infrastructure

Policy−Engine

Observer

Match−Maker

Service

Registry

Network

Service

provides

publishes service descriptionService Interface

Messaging

Policy & Preferences
How can we define subjective preferences as policy?

Previous work on access control policies:

expressed in terms of rules.
rules map from observed behaviours to access decisions.
rules are composed into policies.
policies can change dynamically over time/ with events.

This was extended with the notion of:

mutable attributes (Park 2004 [2])
pre, post and ongoing update actions (Sandhu 2004 [1])

We express a preference rule as:

when b [increase | decrease] preference
in s [little | medium | strong]

Policy & Preferences
How can we define subjective preferences as policy?

Previous work on access control policies:

expressed in terms of rules.
rules map from observed behaviours to access decisions.
rules are composed into policies.
policies can change dynamically over time/ with events.

This was extended with the notion of:

mutable attributes (Park 2004 [2])
pre, post and ongoing update actions (Sandhu 2004 [1])

We express a preference rule as:

when b [increase | decrease] preference
in s [little | medium | strong]

Policy & Preferences
How can we define subjective preferences as policy?

Previous work on access control policies:

expressed in terms of rules.
rules map from observed behaviours to access decisions.
rules are composed into policies.
policies can change dynamically over time/ with events.

This was extended with the notion of:

mutable attributes (Park 2004 [2])
pre, post and ongoing update actions (Sandhu 2004 [1])

We express a preference rule as:

when b [increase | decrease] preference
in s [little | medium | strong]

Example
A Stock-Quote Service

rqp

Customer

Provider
Stock−Exchange Service

query query query

a

Example
A Stock-Quote Service

rqp

Customer

Provider
Stock−Exchange Service

query query query

a

Customer a registers the following policy:

1 scope ([#a] , [#p ,#q ,#r] , [#query]) : {
2 new ConsumerPolicy ()
3 }

Example
Defining the policy

1 po l i c y ConsumerPolicy {
2 r equ i r e Function i n t rt (Subject , Object , Action)
3 de f i ne s t a t i c i n t little = 1 /∗ . . . ∗/
4 de f i ne S .O.A. pref = 0
5 de f i ne Update incr (i n t x , i n t y) { x := x + y }
6

7 perform incr (S .O.A. pref , medium)
8 once a f t e r (S ,O,A)
9 when 10 : (always rt (S ,O,A) <= 2)

10

11 perform decr (S .O.A. pref , little)
12 once a f t e r (S ,O,A)
13 when 10 : (sometime rt (S ,O,A) >= 5)
14

15 perform decr (S .O.A. pref , strong)
16 a f t e r (S ,O,A)
17 when 0 : (rt (S ,O,A) >= 10)
18 }

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

1 perform decr (S .O.A. pref , strong)
2 a f t e r (S ,O,A)
3 when 0 : (rt (S ,O,A) >= 10)

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

1 perform decr (S .O.A. pref , strong)
2 a f t e r (S ,O,A)
3 when 0 : (rt (S ,O,A) >= 10)

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

No policy rule fires

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

1 perform incr (S .O.A. pref , medium)
2 once a f t e r (S ,O,A)
3 when 10 : (always rt (S ,O,A) <= 2)

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

1 perform incr (S .O.A. pref , medium)
2 once a f t e r (S ,O,A)
3 when 10 : (always rt (S ,O,A) <= 2)

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

1 perform decr (S .O.A. pref , little)
2 once a f t e r (S ,O,A)
3 when 10 : (sometime rt (S ,O,A) >= 5)

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

1 perform decr (S .O.A. pref , little)
2 once a f t e r (S ,O,A)
3 when 10 : (sometime rt (S ,O,A) >= 5)

Example
A Stock-Quote Service – Evaluation of the Policy

For simplicity we only look at provider p:

request 1 2 3 4 5 6 7 8 9 10 11 12 ...
rt/sec 11 2 2 1 1 1 1 2 2 2 2 5 ...
#a.#p.pref 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2

Preferences are updated continuously based on experience.

Rules define:

The time/context of observations are defined.
The condition for updates as a behaviour of these observations.
The effect that an update has on policy attributes.

The policy attribute (e.g. #a.O.#query.pref) can be seen as
an ordering of service providers O ∈ [#p, #q, #r].

Conclusion
The nice ...

Architecture

Service Selection is made based on dynamic QoS attributes.
Support is provided at the infrastructure level, viz.

Observations can be made “objectively”.
More observations can be taken into account (if authorisation
constraints permit).
Policies are continuously evaluated.
Service Selection is transparent to the consumer.
Feedback to consumer on (significant) changes.

Policies

Formal semantics: Validation & Verification of properties.
Define QoS declaratively.
QoS is defined subjectively by each consumer taking past
experiences into account.
Integrate nicely with access control policies defining who can
observe dynamic attributes of a consumers interactions.

Conclusion
.. and ugly

Overhead on the infrastructure.

Communication of non-local observations diminishes
bandwidth.

Missing methodology to define preference rules and update
actions.

Validation that the policy captures the intent.

More potential for policy conflicts.

Update actions complicate semantics.

Questions?
... are appreciated!

Contact:

Helge Janicke
(heljanic@dmu.ac.uk)

Monika Solanki
(monika@doc.ic.ac.uk)

J. Park and R. S. Sandhu.
The uconabc usage control model.
ACM Trans. Inf. Syst. Secur., 7(1):128–174, 2004.

J. Park, X. Zhang, and R. S. Sandhu.
Attribute mutability in usage control.
In C. Farkas and P. Samarati, editors, Proceedings of IFIP
TC11/WG 11.3 Eighteenth Annual Conference on Data and
Applications Security, pages 15–29, Sitges, Catalonia, Spain,
July 2004. Kluwer.

	Motivation
	Service Architecture
	Policy & Preferences
	Example
	Conclusion

