
YRSOC, Leicester, June 12, 2007

Semantic-Based Development of
Service-Oriented Systems

Martin Wirsing
LMU München

in Kooperation mit
A. Clark1, S. Gilmore1, M. Hölzl2, A. Knapp2, N. Koch2, A. Schroeder2

1University of Edinburgh 2LMU München

2Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Contents

Motivation: Web Services
SENSORIA: Systematic Development of Service-Oriented Systems
Semantic-based service-oriented extension of UML

Example: Orchestration with compensation
Semantics by model transformation to Saga process calculus

From requirements to design of service architectures
Soft Constraints and preferences for selecting the best service
Orchestration design by model transformation to state diagrams
Model checking the orchestration design

Analysis of quantitative properties: Service Level Agreements
Performance and scalability modelling in UML
Translation to PEPA
Analysis of Service Level Agreement

Concluding remarks

3Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Service-Oriented Sytems

Selling services has become the biggest growth business in the IT industry

changes the economics of IT industry and

influences the e-Society as a whole.

Today, services are being delivered through the

Web, Personal Digital Assistants, mobile phones…

Tomorrow, they will be delivered on all kinds of

global computers.

Computing is becoming a utility and software a service. [. . .] applications will
no longer be a big chunk of software that runs on a computer but a combination
of web services; and the platform for which developers write their programs
will no longer be the operating system, but application servers.

[The Economist, May 2003]

4Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Service-oriented Systems
Service

autonomous, platform-independent computational entity
that can be
described, published, categorised, discovered.

Services can be dynamically assembled for developing
massively distributed, interoperable, evolvable systems and applications.

Service-Oriented Computing
addressed by IT industry only in an ad-hoc and undisciplined way
theoretical foundations are missing, but needed for

trusted interoperability,
predictable compositionality,
ensuring adequate software quality.

How can one guarantee
correctness, security and appropriate resources usage of services

if service discovery and negotiation occur without human intervention?

5Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

The SENSORIA Project

IST-FET Integrated Project 2005-2009
Coordinator: LMU München
18 Partners: U. Pisa, Florence, Bologna, Trento, Leicester, Edinburgh, Imperial
College, University College, Lisbon, Warsaw, Budapest, DTU, ISTI Pisa, Poli Milano,
Telecom Italia, FAST, S&N, ATX

Novel comprehensive approach to
Engineering of software systems for

Service-Oriented Overlay Computers
integrating

foundational theories, techniques, and methods and
pragmatic software engineering

Application areas
e-business
automotive systems
e-learning
telecommunications

6Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

A Typical Scenario for SENSORIA
Service Design

UML for GC Services
(Model-driven Development)

Mathematical Models
(Primitives and languages for

GC -services)

Automatic connections

H
id

de
n

f ro
m

 th
e

d e
s i

g n
er

Quantitative and
Qualitative Properties
(Performance, reliability, fault-

tolerance, security, trust, mobility, …)

Integration
Simulation/verification

Designers
Interface

Designers
Interface

SENSORIA Development

integrates

practical SW Engineering

with

math. foundations

7Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

SENSORIA Detailed Approach

Core Calculi for Service Computing

Q
u

al
it

at
iv

e
an

d
Q

u
an

ti
ta

ti
ve

 A
n

al
ys

is

R
e-

En
gi

ne
er

in
g

Le
ga

cy
 S

ys
te

m
s

Model-driven
Development

Deployment

Global ComputerLegacy System

Service-Oriented Modeling

Global Computer

8Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Automotive Case Study

More and more embedded computers in cars

Safety-critical software (ESP, …)
Infotainment (e.g. office in the car)
E-assistance for accidents and car breakdown

Discovering and booking tow truck service, garage,
and rental car in the area
Sending an ambulance in case the driver does not
answer after an accident

9Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Simplified SW-Architecture for the Car

Monitor Comm.
Interface

Sensor
System

Hardware/Low level
Vehicle Platform

Actuator

Driving
Assistance

«execution environment»
High Level Vehicle Platform

«device»
Vehicle

«device»
Mobile
Phone

Remote
Discovery

Vehicle Communication
Gateway

In-Vehicle Service Platform

Driver-Vehicle
UI

Orchestrator

Reasoner Local
Discovery Repository

«device»
Vehicle

«device»
Car Manufacturer

«inter-vehicle» «vehicle-environment»«vehicle-environment»

UML Deployment Diagram

10Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Example: Car Repair Scenario
The diagnostic system reports a severe failure in the car engine so that
the car is no longer drivable.
The car’s discovery system identifies garages, car rentals and towing
truck services in the car’s vicinity.
The in-vehicle service platform selects a set of adequate offers taking
into account personalised policies and preferences of the driver and
tries to order them. The owner of the car has to deposit a security
payment before being able to order any services.
In case of failure compensation is needed:

If ordering a garage fails, the tow truck has to be cancelled as well and the rental
car has to be sent to the breakdown location.
If ordering a tow truck fails, the garage
appointment has to be cancelled as well.
Failure of renting a car does not influence
the booking of garage and tow truck.

„Long running transactions“of services
require compensation techniques

11Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Modelling Compensation in „Classic“ UML

Problem:
Complicated and confusing!
How to model „internal“
failure of car rental?

12Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

SENSORIA Approach to
Long Running Transactions

SENSORIA Approach:
Extend UML by notations for
long running transactions
Use formal models to derive
semantics of UML extensions:

The Saga process calculus supports
the formal treatment of compensation

[Bruni, Montanari et. al. 2005]
Extend UML by Sagas
Define semantics by

model transformations

SAGA Process Calculus

VIATRA
model
transformation

UML Activity Diag. + Compensation

13Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Saga Compensation in UML

UML-extension
by
Saga compensation

14Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

(Meta-) Model Transformation: UML into Sagas

VIATRA2 [Varro et al.] Graph transformation for compensable actions:

15Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

(Meta-) Model Transformation: UML into Sagas

Transforming the UML activity diagram yields SAGA program:
(ChargeCCard % RevokeCharge) ;

(OrderGar % CancelGar) ;

((OrderTTruck % CancelTTruck) | [OrderCar % RedirectCar])

Semantics of UML extension is defined by SAGA semantics

VIATRA2 [Varro et al.] graph transformation for compensable actions:

16Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

From Requirements to Design of Service
Architectures

Requirements
Define (workflow) scenarios and model them by UML (e.g. Activity Diagrams)
Identify and specify services
Specify required qualitative and quantitative properties

(Constraints, preferences, global service level agreements, …)

Design
Specify service architecture
Derive service selection, orchestration and design of services from requirements by
model transformation
Analyse design by mathematical techniques (model checking, Markov chains, ..)

Examples
Car Repair Scenario: Soft constraints and preferences,
orchestration design and model checking of the design
Road Accident Scenario: UML State Diagram with performance annotation,
SLA and validation of the SLA

17Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Car Repair Scenario:
Soft Constraints and Preferences for Services

Identify services:
Order garage, tow truck, and rental car

Choosing the „best“ offer
Approach: Soft Constraints over C-Semirings [Bistarelli, Montanari, Rossi 97]

Policy language with preferences [W, Hölzl 06a, b]
Example constraints and preferences

Repair as soon as possible, in less than 48 hours

Private repair as cheap as possible, 1000 Euro and more almost unacceptable

Preference: Prefer fast repair to cheap repair
fastRepair > cheapRepair

Fuzzy ring: 0 is the minimum

18Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Design:
Components of High-Level Vehicle Platform

Reasoner: computes
best/acceptable solutions
of constraints and preferences
with Soft Constraint Solver

[Frühwirth 02, W et al. 06, …

Orchestrator: realizes
workflow requirements

19Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Design and Analysis of Orchestrator

Specify orchestrator
workflow by
Activity Diagram with
Compensation
Model Transformation to
„classical“ State Diagram
by using car software
architecture
Quality analysis by model
checking of classical
State Diagram
Translation to
implementation (currently
Java or SystemC)

„Classical“ UML Statechart

Model
Transformation

UML Activity Diag. + Compensation

Java or SystemC

HUGO [Knapp et al. 02]
Translation Q

ua
lit

at
iv

e
A

na
ly

si
s:

M
od

el
 C

he
ck

in
g

w
ith

U
M

C
 [G

ne
si

, M
az

za
nt

i0
5]

H
U

G
O

/R
T

20Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Model Checking the Orchestrator (with HUGO)

Orchestrator:
interacts with Reasoner
model checking (with
HUGO), e.g. :
In final state all services are
ordered;
in case of failure, all previous
orders are compensated

21Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Analysis of Quantitative Properties:
Service Level Agreements

Specifying performance by
annotating State Machines

[DEGAS-
Projekt 2004]
Translation into process
calculus PEPA

[Gilmore 2004]
Performance and scalability
analysis of Service Level
Agreements with

Continuous Markov chains
Ordinary differential
equations [Gilmore, Hillston
2005]

PEPA Process Calculus

Translation
(extraction of
relevant data)

UML State Diagram with Rate Annot.

Q
ua

nt
iti

ve
Pe

rf
or

m
an

ce
 a

nd

Sc
al

ab
ili

ty
A

na
ly

si
s:

22Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Example: Accident Assistance Scenario

An airbag deploys in 1/10 of a second (Rate: 600)

The car can transmit location data in 6 to 30 seconds (Rate: 2.0 .. 10.0)
It takes about one minute to register the incoming data (Rate: 0.5 .. 1.5)
It takes about thirty seconds to call the driver’s phone (Rate: 1.5 .. 2.5)
Give the driver from a second to one minute to answer (Rate: 1.0 .. 60.0)
Vary about one minute to decide to dispatch medical help (Rate: 0.25 .. 3.0)

The driver is now awaiting rescue.

23Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

State Machine with Rate Annotations

24Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Translation to PEPA

Reporting the accident:
Car1 = (airbag, r1).Car2
Car2 = (reportToService, r2).Car3
Car3 = (processReport, r3).Car4

Attempting a dialogue between the service and the registered driver of
the car
Car4 = (callDriversPhone, r4).Car5
Car5 = (timeoutDriversPhone, r5).Car6

Sending medical help
Car6 = (rescue, r6).Car7

And waiting …
Car7 = (awaitRescue, r7).Car1

25Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Analysis of Service Level Agreements

Example Service Level Agreement:
At least 40% of airbag deployments lead to medical help being sent within five
minutes and at least 80% of airbag deployments lead to medical help being sent
within ten minutes.
Analysis by varying rates r2-r6:

5 * 5 * 5 * 5 * 6 = experiments with ipc/Hydra Tool [U. Edinburgh]

26Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Analysis of Service Level Agreements

Cumulative analysis of Service Level Agreement:

Sensitivity to
variation of r2

Consequence: A faster decision to dispatch medical help (governed by rate r6) is
more important than trying to transmit location data faster (governed by rate r2),

Sensitivity to
variation of r6

27Martin Wirsing et al., Semantic-Based Development of Service-Oriented Systems

Concluding Remarks

SENSORIA is developing
adequate linguistic primitives for modelling and programming global
service-oriented systems

Phoenix, …, STOKLAIM, …, SRML
qualitative and quantitative analysis methods for verifying and validating

service level agreements, dynamic composition of services, security,
trust, resource usage, …

sound engineering and deployment techniques for global services
based on model transformations

With the goal of building a comprehensive approach for
Engineering of software systems for

Service-Oriented Global Computers
by integrating

foundational theories, techniques, and methods with
pragmatic software engineering

	Semantic-Based Development of�Service-Oriented Systems
	 Contents
	Service-Oriented Sytems
	Service-oriented Systems
	The SENSORIA Project
	SENSORIA Detailed Approach
	Automotive Case Study
	Simplified SW-Architecture for the Car
	Example: Car Repair Scenario
	Modelling Compensation in „Classic“ UML
	SENSORIA Approach to �Long Running Transactions
	Saga Compensation in UML
	(Meta-) Model Transformation: UML into Sagas
	(Meta-) Model Transformation: UML into Sagas
	From Requirements to Design of Service Architectures
	Car Repair Scenario:�Soft Constraints and Preferences for Services
	Design:�Components of High-Level Vehicle Platform
	Design and Analysis of Orchestrator
	Model Checking the Orchestrator (with HUGO)
	Analysis of Quantitative Properties: �Service Level Agreements
	Example: Accident Assistance Scenario�
	State Machine with Rate Annotations
	Translation to PEPA
	Analysis of Service Level Agreements
	Analysis of Service Level Agreements
	Concluding Remarks

