Service Referrals in BPEL-based Choreographies

Gero Decker¹, Oliver Kopp², Frank Puhlmann¹

IT Systems Engineering | Universität Potsdam

Choreographies

BPEL-based Choreographies

Service Referrals in BPEL4Chor

The Reseller Choreography

Interconnection model

Interaction model

How to derive the orchestration?

Choreography

Orchestration

Reseller Choreography in BPEL4Chor

Resellers's behavior:

```
<receive
```

name="getOrder" />

<flow>

<invoke

name="PlaceInvoiceReq" />

name="PlaceProductReg" />

</flow>

 Behavior of the other participants specified analogous

The interconnections

The interconnection is formed by links:

<messageLink
name="productRequestLink"
sender="reseller"
sendActivity=
 "PlaceProductRequest"
 receiver="manufacturer"
 receiveActivity="getReq"
 messageName="productReq"</pre>

participantRefs="customer"

The execution

Mapping message links to porttypes / operations "Grounding"

<messageLink
name="productRequestLink"
portType="man:manufacturerPT"
operation="placeProductRequest"
/>

<participantRef name="customer"
WSDLproperty=
 "msgs:customerProperty" />

The complete picture of BPEL4Chor

Reseller Choreography in Pi-Calculus

- Pi-Calculus because of link-passing mobility
- The complete system consists of the four participants executing in parallel

$$SYS \stackrel{def}{=} (C \mid R \mid P \mid M)$$

The Customer

Customer creates
 order and callback channels (*v*)

Uses public order channel "oc"

 $C \stackrel{def}{=} (\nu order, ic, pc)$ $\overline{oc} \langle order, ic, pc \rangle.$ $(ic(invoice) \mid pc(product))$

The Reseller

 Reseller sends customer's callbackchannels

 Uses public invoice and payment request channels

$$R \stackrel{def}{=} (\nu invoiceReq, productReq) \\ oc(order, ic, pc). \\ (\overline{irc}\langle invoiceReq, ic \rangle \mid \\ \overline{prc}\langle productReq, pc \rangle)$$

The Manufacturer and the Payment Organization

- Receive the callbackchannel via public channel
- Create invoice/product
- Use the callback-channel to send invoice/product
- $P \stackrel{def}{=} (\nu invoice) \\ irc(invoiceReq, ic). \\ \overline{ic}\langle invoice \rangle$
- $M \stackrel{def}{=} (\nu product) \\ prc(productReq, pc). \\ \overline{pc} \langle product \rangle$

- BPEL4Chor as interconnection model
- Link passing mobility as first-class citizen
- Pi-Calculus as formalism
- Ongoing work
 - Complete mapping: BPEL4Chor to pi-calculus
 - Interaction models vs. interconnection models
 - Conformance