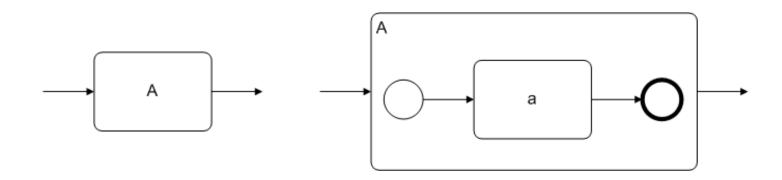
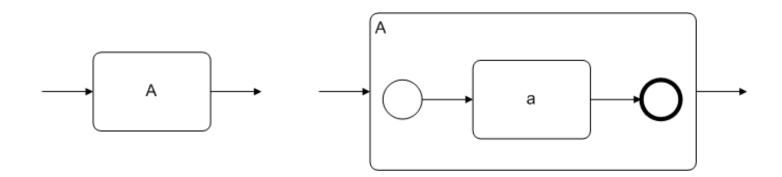
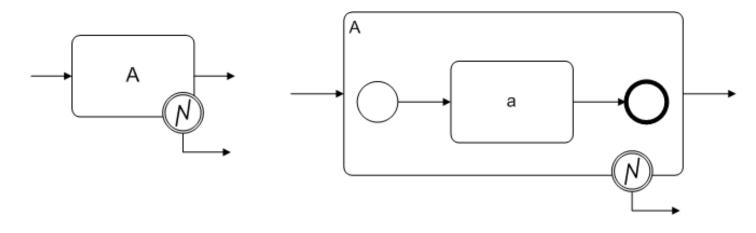

Verifying Business Process Compatibility

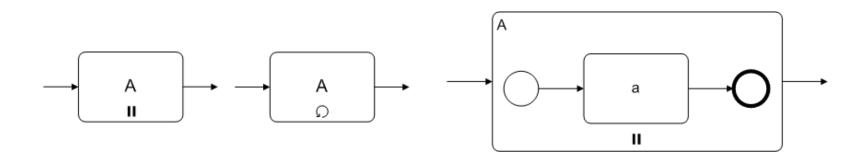
Peter Wong, University of Oxford, UK (Joint work with Jeremy Gibbons) June 2007


Introduction

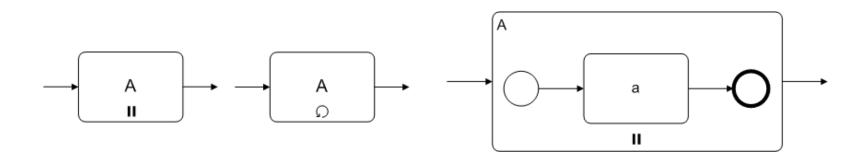
- Business processes may be described as a Business Process Modelling Notation (BPMN) diagram;
- *Local* business process is the composition of service/task components within a local domain;
- Globally these business processes may collaborate via messaging;
- We formally describe these diagrams semantically using the language of the process algebra Communicating Sequential Processes (CSP);
- Our approach facilitates specification and verification (consistency, compatibility etc.);
- This work is prerequisite to a BPM-based support for clinical trial specification.


Business Process Modelling Notation


pool


Tasks, subprocesses ...

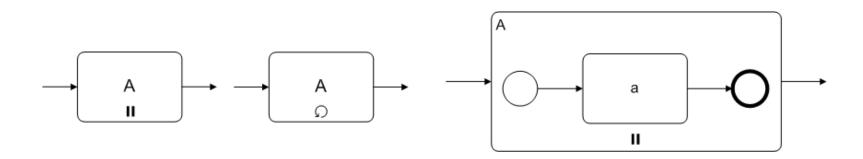
Tasks, subprocesses ...



With exception flows ...

Sequential and parallel multiple instances of tasks and subprocesses

•••

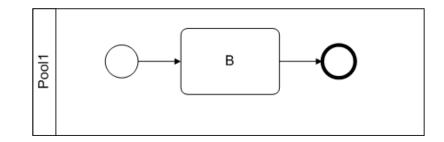


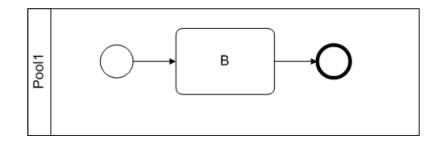
Sequential and parallel multiple instances of tasks and subprocesses

 $\times \times \times$

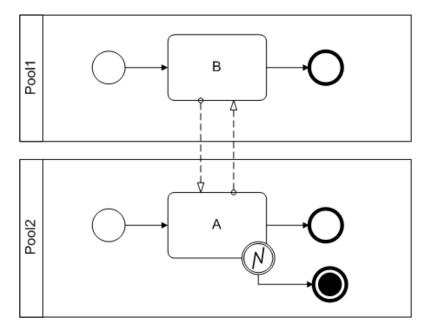
Decision gateways ...

• • •


Sequential and parallel multiple instances of tasks and subprocesses


Decision gateways ...

Events ...


• • •

Local composition ...

Local composition ...

Global collaboration ...

On formalising BPMN

- Use Z as a syntactic vehicle (schema language, typed set theory);
- Define each BPMN state with the schema type *State*;

 $State \cong [in, out, error : \mathbb{P} Transition; type : Type;$ $rec, snd, acc, rep, brk : \mathbb{P} Messageflow]$

• A BPMN diagram is a non-empty finite set of *well-formed* states $WCF : \mathbb{P}(\mathbb{P} State);$

 $BPD ::= states \langle\!\langle WCF \rangle\!\rangle$ $Env == BName \to BPD$

• A process semantics for BPMN in CSP.

 $\llbracket . \rrbracket : BName \leftrightarrow Env \leftrightarrow Process$

\mathbf{CSP}

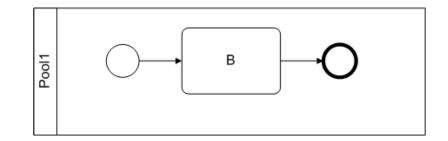
The grammar of CSP (subset).

 $P, Q ::= P \parallel Q \mid P \mid |A| \mid Q \mid P \parallel Q \mid P \setminus A \mid P \bigtriangleup Q \mid$ $P \Box Q \mid P \ _{\$} Q \mid e \rightarrow P \mid Skip \mid Stop$

- We write $\Box i : \{1 \dots n\} \bullet P(i)$ to denote $P(1) \Box \dots \Box P(n)$, similarly for operators ||| and ||;
- Three standard behavioural models (Traces \mathcal{T} , Stable Failures \mathcal{F} , Failures-Divergences \mathcal{N});
- Formal verification via refinement checks;
- FDR automated CSP model checker.

A Workflow Activity

In CSP the following process description P1 defines a basic activity. αP is the alphabet of process P.


$$P1 = \text{let } X = \Box \ i : (\alpha Y \setminus \{ fin.1 \}) \bullet (i \to X \Box fin.1 \to Skip)$$

$$Y = (S \parallel B \parallel E)$$

$$S = int.b \to fin.1 \to Skip$$

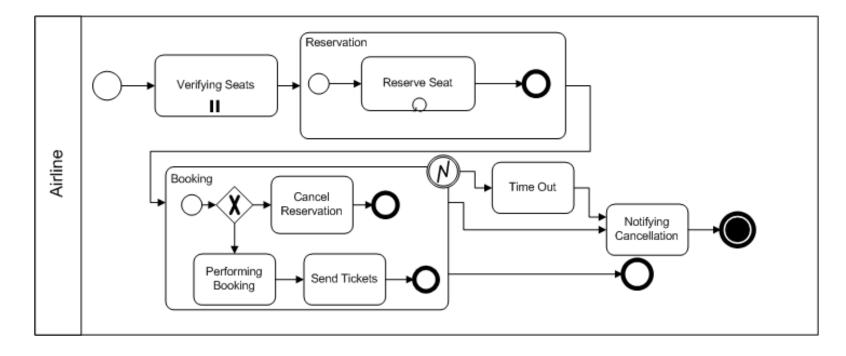
$$B = (int.b \to st.b \to int.e \to B) \Box fin.1 \to Skip$$

$$E = int.e \to fin.1 \to Skip$$
within $(Y \parallel \alpha Y \parallel X) \setminus \{ \text{|int|} \}$

Case Study

We present two simple examples based on a ticket reservation system adopted from Web Services Choreography Interface specification document.

- 1st example: single business process (orchestration) to show **consistency** check.
- 2nd example: business collaboration (choreography) to show **compatibility** check.


Orchestration

- Service composition;
- Local domain;
- Single participant viewpoint;
- Executable (BPEL) or Abstract (WSCI interface);
- Individual BPMN Pool

Choreography

- Collaboration protocol;
- Global domain;
- Multi-participant viewpoint;
- Abstract (not executable) (WSCDL or WSCI Global Model);
- Message flows between BPMN Pools

A Single Business Process

see: Booking subprocess see: Process in CSP see: Consistency Verification A Single Business Process (cont.)

Let J be the index set:

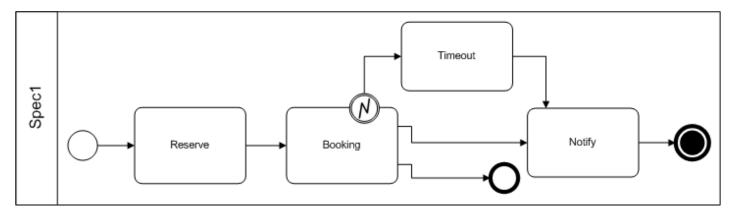
$$\begin{aligned} Airline &= \mathsf{let} \ X = \Box \ i : (\alpha \ Y \setminus \{ \ fin.1, \ abt.1 \ \}) \bullet \\ & (i \to X \ \Box \ abt.1 \to Stop \ \Box \ fin.1 \to Skip) \\ & Y = (\| \ j : J \bullet \alpha P(j) \circ P(j)) \\ & \mathsf{within} \ (\ Y \ [| \ \alpha \ Y \ |] \ X) \setminus \{ \| init \| \} \end{aligned}$$

 $P(timeout) = (int.timeout \rightarrow st.timeout \rightarrow int.notify2 \rightarrow P(notify))$ $\Box (fin.1 \rightarrow Skip)$ $P(notify) = ((int.notify1 \rightarrow Skip \Box int.notify2 \rightarrow Skip)$ $st.notify \rightarrow int.abt \rightarrow P(notify)) \Box (fin.1 \rightarrow Skip)$

see: BPMN diagram

A Single Business Process (cont.)

Booking subprocess, let J'' be the index set:


$$Booking = let \ X = \Box \ i : (\alpha \ Y \setminus \{ fin.3, fin.4 \}) \bullet$$
$$(i \to X \Box (fin.3 \to Skip \Box fin.4 \to Skip))$$
$$Y = (|| \ j : J'' \bullet \alpha P(j) \circ P(j))$$
within $(Y [| \ \alpha \ Y |] \ X) \setminus \{ lint \}$

$$P(start2) = (int.xs3 \rightarrow P(start2)) \Box (fin.3 \rightarrow Skip \Box fin.4 \rightarrow Skip)$$
$$P(xs3) = ((int.xs3 \rightarrow (int.pbooking \rightarrow Skip \Box init.cancel \rightarrow Skip))$$

see: BPMN diagram

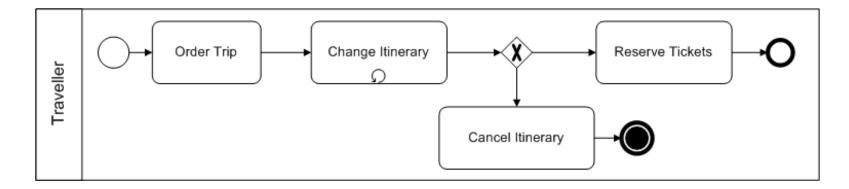
Consistency Verification

• CSP's process refinement allows us to design and construct specifications using BPMN;

• We ask FDR to verify the following refinement assertion;

Spec1 $\sqsubseteq_{\mathcal{F}} (Airline \setminus (\alpha Airline \setminus \alpha Spec1))$

• This refinement check demonstrates semantic **consistency** between different levels of abstraction.


Collaboration - Global Model

• A collaboration of business processes hence is the parallel composition of processes each corresponding to a local participant.

 $Collab = (Trm \parallel Ag) \setminus \{ | msg \}$

- *Trm* is the model of the traveller participant;
- Ag is the model of the travel agent participant

see: Collaboration in BPMN see: Compatibility Verification Compatibility Verification

• We ask FDR to verify the following refinement assertion;

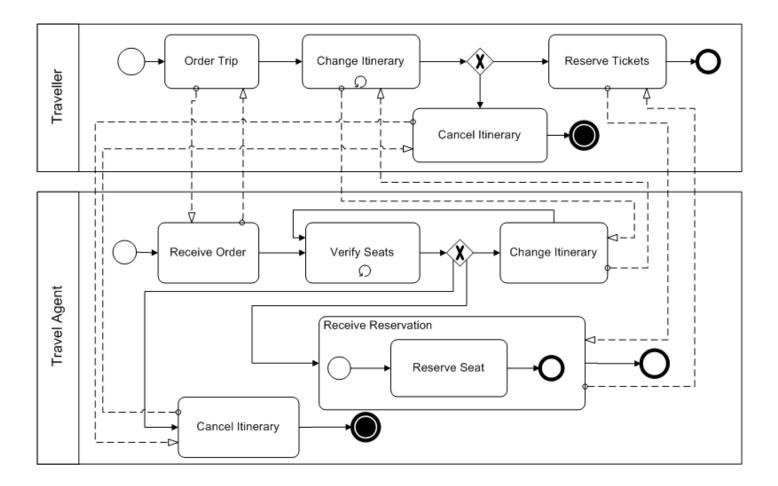
 $Tr \sqsubseteq_{\mathcal{F}} (Collab \setminus (\alpha Collab \setminus \alpha Tr))$

- This refinement check tells us whether the collaboration behaves as specified by the traveller participant;
- This requires the travel agent to be **compatible** with the traveller participant.

see: Collaboration in CSP

- The refinement assertion **does not hold** and a deadlock has occurred;
- Participants in the collaboration are **incompatible**;
- The following counterexample is given by FDR.

 $(\langle st.tr.order, st.tr.cancel \rangle, \Sigma)$


Detailed analysis of the failures of Trm and Ag may be carried out:

 $(\langle st.tr.order, msg.order.in, msg.order.out, msg.change.end, starts.tr.cancel \rangle, ref1)$

 $(\langle msg.order.in, st.ag.order, msg.order.out, msg.change.end \rangle, ref2)$

where $msg.cancel.in \notin ref1$ and $msg.cancel.in \in ref2$.

- The traveller may cancel her itinerary before deciding to reserve her ticket, and send a message to the travel agent about the cancellation;
- The travel agent may only carry out her cancellation after entering the reservation phase, and hence **may not receive** the message from the traveller.

see: Collaboration in BPMN see: Refinement Checks

We ask FDR to verify the following refinement assertion:

 $Tr \sqsubseteq_{\mathcal{F}} (Collab2 \setminus (\alpha Collab2 \setminus \alpha Tr))$

where $Collab2 = (Trm \parallel Ag2) \setminus \{ \mid msg \}$

see: Model Correction

Future Work

CancerGrid :

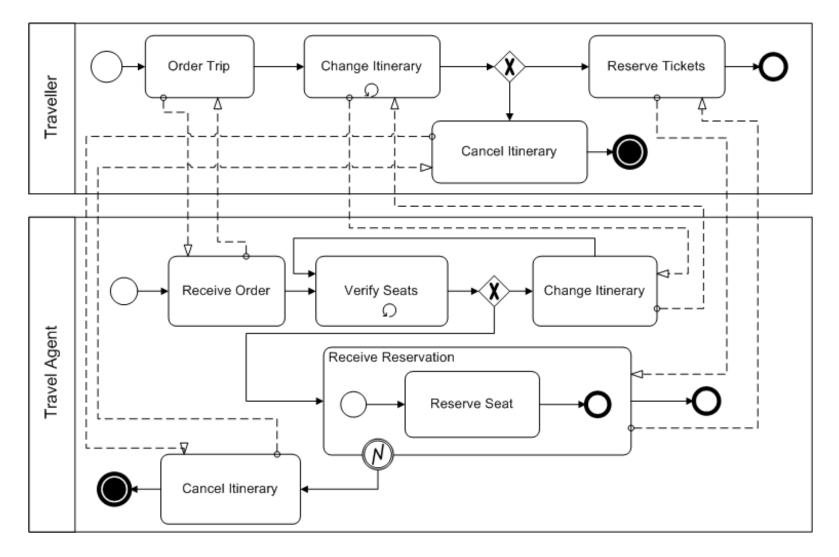
- standardise trial model and CONSORT compliance;
- provide a SOA framework for trial software generation;
- Toward a BPM-based support for clinical trial specification

Ongoing Work:

- Extend BPMN for capturing medical information;
- Compensation and Association (Dataflow);
- Automate our translation using an existing BPMN graphical editor

Thank You

Web site: http://www.comlab.ox.ac.uk/peter.wong/ Email: peter.wong@comlab.ox.ac.uk


Index

- 2 Introduction
- 3 Business Process Modelling Notation
- 4 Business Process Modelling Notation (cont.)
- 5 Business Process Modelling Notation (cont.)
- 6 Business Process Modelling Notation (cont.)
- 7 Business Process Modelling Notation (cont.)
- 8 Business Process Modelling Notation (cont.)
- 9 Business Process Modelling Notation (cont.)
- 10 Business Process Modelling Notation (cont.)
- 11 On formalising BPMN
- 12 CSP
- 13 A Workflow Activity

- 14 Case Study
- 15
- 16 A Single Business Process
- 17 A Single Business Process (cont.)
- 18 A Single Business Process (cont.)
- 19 Consistency Verification
- 20 Collaboration Global Model
- 21 Compatibility Verification
- 22 Compatibility Verification (cont.)
- 23 Compatibility Verification (cont.)
- 24 Compatibility Verification (cont.)
- 25 Compatibility Verification (cont.)
- 26 Compatibility Verification (cont.)

- 27 Future Work
- 28 Thank You
- 29 Index
- 30 Ticket Reservation Collaboration
- 31 CSP
- 32 CSP
- 33 CSP
- 34 CSP
- 35 Ticket Reservation Collaboration

Ticket Reservation Collaboration

see: Introduction

\mathbf{CSP}

The grammar of CSP (subset).

 $P, Q ::= P \parallel Q \mid P \mid |A| \mid Q \mid P \parallel Q \mid P \setminus A \mid P \bigtriangleup Q \mid$ $P \Box Q \mid P \ (A \mid P \land Q \mid e \rightarrow P \mid Skip \mid Stop$

- *Skip*, *Stop* termination;.
- $e \rightarrow P$ prefixing;
- P Q sequential composition.

CSP

The grammar of CSP (subset).

 $\begin{array}{l} P, Q ::= P \parallel \!\!\mid Q \mid P \mid \mid A \mid \!\!\mid Q \mid P \parallel Q \mid P \setminus A \mid P \bigtriangleup Q \mid \\ P \Box Q \mid P ~_{\$} Q \mid e \to P \mid Skip \mid Stop \end{array}$

- $P \parallel Q$ interleaving;
- P[|A|] Q partial interleaving;
- $P \parallel Q$ parallel composition.

\mathbf{CSP}

The grammar of CSP (subset).

 $P, Q ::= P \parallel Q \mid P \mid |A| \mid Q \mid P \parallel Q \mid P \setminus A \mid P \bigtriangleup Q \mid$ $P \Box Q \mid P \ _{\$} Q \mid e \rightarrow P \mid Skip \mid Stop$

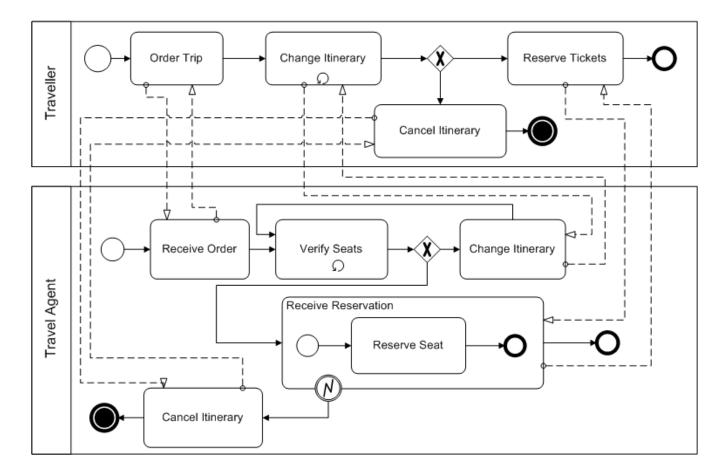
- $P \setminus A$ hiding;
- $P \bigtriangleup Q$ interrupt;
- $P \square Q$ external choice.

\mathbf{CSP}

The grammar of CSP (subset).

 $P, Q ::= P \parallel Q \mid P \mid |A|] Q \mid P \parallel Q \mid P \setminus A \mid P \bigtriangleup Q \mid$ $P \Box Q \mid P \S Q \mid e \to P \mid Skip \mid Stop$

• Traces refinement $(traces : CSP \rightarrow \mathbb{P}(\operatorname{seq} \Sigma))$


$$- \sqsubseteq_{\mathcal{T}} -: CSP \leftrightarrow CSP$$
$$\forall P, Q : CSP \bullet P \sqsubseteq_{\mathcal{T}} Q \Leftrightarrow traces(P) \supseteq traces(Q)$$

• Failures refinement $(failures : CSP \to \mathbb{P}(\operatorname{seq} \Sigma \times \mathbb{P} \Sigma))$

 $-\sqsubseteq_{\mathcal{F}} -: CSP \leftrightarrow CSP$ $\forall P, Q : CSP \bullet$ $P \sqsubseteq_{\mathcal{F}} Q \Leftrightarrow traces(P) \supseteq traces(Q) \land failures(P) \supseteq failures(Q)$

see: CSP

Ticket Reservation Collaboration

see: Introduction see: Collaboration in CSP see: Model Correction and Error