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Why (Non-)Termination

A non-termination bug in the below code (simplified) made many
Zune devices freeze on 31 Dec 2008.

days =// days since 1 Jan 1980
year = 1980;
while (days > 365) {

if (leap(year))
if (days > 366) {

days = days − 366;
year = year + 1; }

else {
days = days − 365;
year = year + 1; }

}

The official response was, “Wait until battery dies”.



Why (Non-)Termination

I Many programs are supposed to terminate.
I Non-termination bugs have big impact, but are caused by

simple errors.
I People are bad at finding (non-)termination bugs.
I We want automated analyses for:

I validation (prove termination);
I debugging (explain non-termination).

I Other analyses may rely on (non-)termination results.



Termination and Non-Termination

I A family of undecidable problems.
I Sound analyses are incomplete.

Find a set of states, such that from every state:

Every trace is finite
(prove termination)

There exists an infinite
trace (prove

non-termination)

There exists a finite
trace Every trace is infinite



Recurrent Set

We search for a recurrent set which is a sub-problem of showing
non-termination.

I Recurrent set is a set of states s.t. a program may stay in it
forever (after it reaches the recurrent set).

I To prove non-termination, we need to show reachability of a
recurrent set. We do not do it.



Abstract Interpretation

Search for a recurrent set fits into abstract interpretation.

How to Use Abstract Interpretation
First, characterise the interesting property as a fixed point of some
function.

I Example 1 (Invariant)

Inv = lfpλX . Init ∪ post(X )

Smallest set
that includes
initial states
and all its own successors
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How to Use Abstract Interpretation

First, we characterize the interesting property as a fixed point.
I Example 1 (Invariant)

Inv = lfpλX .X ∪ Init ∪ post(X )

I Example 2 (set where a program may stay forever):

Re = gfpλX . (¬Final) ∩ pre(X )
↑May lead into X



How to Use Abstract Interpretation

I Second, compute an approximation of the fixed point.
I The approximation will be in a certain form (called abstract

domain, e.g., polyhedra, separation logic, etc).
I We find a stable limit of a chain:

e0 = >
e1 = e0 u (¬Final)[ u pre[(e0)
e2 = e1 u (¬Final)[ u pre[(e1)
. . . eventually
ek+1 = ek

I If the chain is infinite, use acceleration (widening).



In Practice

I Recurrent set needs to be under-approximated.
I Under-approximation is difficult.

I Transfer functions may have hidden disjunctions and recurrent sets
may not be convex.

Lbranch

Lleft Lright
(x ≥ 0) (y ≥ 0)

(x ≥ 0 ∨ y ≥ 0)
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In Practice

I Recurrent set needs to be under-approximated.
I Under-approximation is difficult.

I Transfer functions may have hidden disjunctions and recurrent sets
may not be convex.

I Have to come up with workarounds.
I Our workaround:

I Allow some joins, guided by trace partitioning.
I After computation, check for soundness.



Recurrent Sets Via Compute-and-Check

l1

l2

[0 ≤ x ≤ 100]

l3

x++

l5

x--

1 while (0 ≤ x ≤ 100) {
2 if (?)
3 x++;
4 else
5 x--;
6 }



Recurrent Sets Via Compute-and-Check

First, approximate a fixed point.
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Recurrent Sets Via Compute-and-Check

Add path information to abstract states (trace partitioning).
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Recurrent Sets Via Compute-and-Check

Allow some joins, guided by path domain.
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Recurrent Sets Via Compute-and-Check

Then, ensure that it represents a recurrent set.
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assume. . .

x++
x--



Recurrent Sets Via Compute-and-Check
I Implemented for individual loops of numeric programs.
I We believe, may be adapted for non-numeric programs.
I Precision depends whether path represenation can express the

non-terminating paths.
I Compares well to other tools in benchmarks. We selected 44

non-terminating programs from SV-COMP’2015, and 3 other
tools. All tools handle 30-40 programs well, with no tool
subsuming the others.

I Many test programs have a single loop and a sequential stem
→ in principle, we can prove non-termination for them.

We Tool 1 Tool 2 Tool 3
OK X OK ? X OK X OK X
32 12 30(+6) 4 10(+6) 37(+11) 7(+6) 35(+7) 9(+4)
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Thanks

Related Work
I (Heizmann et al. 2015) Extract lasso-shaped subprograms

(stem and branch-free loop) and analyze them separately.
I (Chen et al. 2014) Iteratively remove terminating behaviours

from a program.
I (Beyene, Popeea, and Rybalchenko 2013) Encode problems as

sets of quantified Horn clauses. Can express (non-)termination
properties.

I (Brockschmidt et al. 2011) Implemented in AProVE, uses
multiple techniques.

I Build and analyze a graph of abstract states.
I Produce an SMT problem.


