Finding Recurrent Sets with Backward Analysis and Trace Partitioning

Alexey Bakhirkin Nir Piterman

University of Leicester, Department of Computer Science

Why (Non-)Termination

A non-termination bug in the below code (simplified) made many Zune devices freeze on 31 Dec 2008.

```
days=// days since 1 Jan 1980
year = 1980;
while (days > 365) {
    if (leap(year))
        if (days > 366) {
        days = days - 366;
        year = year + 1; }
        else {
        days = days - 365;
    year = year +1; }
}
```

The official response was, "Wait until battery dies".

Why (Non-)Termination

- Many programs are supposed to terminate.
- Non-termination bugs have big impact, but are caused by simple errors.
- People are bad at finding (non-)termination bugs.
- We want automated analyses for:
- validation (prove termination);
- debugging (explain non-termination).
- Other analyses may rely on (non-)termination results.

Termination and Non-Termination

- A family of undecidable problems.
- Sound analyses are incomplete.

Find a set of states, such that from every state:

Every trace is finite (prove termination)	There exists an infinite trace (prove non-termination)
There exists a finite trace	Every trace is infinite

Recurrent Set

We search for a recurrent set which is a sub-problem of showing non-termination.

- Recurrent set is a set of states s.t. a program may stay in it forever (after it reaches the recurrent set).
- To prove non-termination, we need to show reachability of a recurrent set. We do not do it.

Abstract Interpretation

Search for a recurrent set fits into abstract interpretation.

Abstract Interpretation

Search for a recurrent set fits into abstract interpretation.
How to Use Abstract Interpretation
First, characterise the interesting property as a fixed point of some function.

- Example 1 (Invariant)

$$
\operatorname{Inv}=\operatorname{Ifp} \lambda X . \operatorname{Init} \cup \operatorname{post}(X)
$$

Smallest set that includes initial states and all its own successors

How to Use Abstract Interpretation

First, we characterize the interesting property as a fixed point.

- Example 1 (Invariant)

$$
\operatorname{Inv}=\operatorname{Ifp} \lambda X . X \cup \operatorname{Init} \cup \operatorname{post}(X)
$$

- Example 2 (set where a program may stay forever):

$$
R_{e}=\operatorname{gfp} \lambda X .(\neg \text { Final }) \cap \operatorname{pre}(X)
$$

How to Use Abstract Interpretation

- Second, compute an approximation of the fixed point.
- The approximation will be in a certain form (called abstract domain, e.g., polyhedra, separation logic, etc).
- We find a stable limit of a chain:

$$
\begin{aligned}
& e_{0}=\top \\
& e_{1}=e_{0} \sqcap(\neg \text { Final })^{b} \sqcap \operatorname{pre}^{b}\left(e_{0}\right) \\
& e_{2}=e_{1} \sqcap(\neg \text { Final })^{b} \sqcap \operatorname{pre}^{b}\left(e_{1}\right) \\
& \ldots \text { eventually } \\
& e_{k+1}=e_{k}
\end{aligned}
$$

- If the chain is infinite, use acceleration (widening).

In Practice

- Recurrent set needs to be under-approximated.
- Under-approximation is difficult.
- Transfer functions may have hidden disjunctions and recurrent sets may not be convex.

In Practice

- Recurrent set needs to be under-approximated.
- Under-approximation is difficult.
- Transfer functions may have hidden disjunctions and recurrent sets may not be convex.

In Practice

- Recurrent set needs to be under-approximated.
- Under-approximation is difficult.
- Transfer functions may have hidden disjunctions and recurrent sets may not be convex.
- Have to come up with workarounds.
- Our workaround:
- Allow some joins, guided by trace partitioning.
- After computation, check for soundness.

Recurrent Sets Via Compute-and-Check

Recurrent Sets Via Compute-and-Check

First, approximate a fixed point.

Recurrent Sets Via Compute-and-Check

Recurrent Sets Via Compute-and-Check

Recurrent Sets Via Compute-and-Check

Add path information to abstract states (trace partitioning).

Recurrent Sets Via Compute-and-Check

Recurrent Sets Via Compute-and-Check

Allow some joins, guided by path domain.

Recurrent Sets Via Compute-and-Check

Recurrent Sets Via Compute-and-Check

Then, ensure that it represents a recurrent set.

Recurrent Sets Via Compute-and-Check

- Implemented for individual loops of numeric programs.
- We believe, may be adapted for non-numeric programs.
- Precision depends whether path represenation can express the non-terminating paths.
- Compares well to other tools in benchmarks. We selected 44 non-terminating programs from SV-COMP'2015, and 3 other tools. All tools handle 30-40 programs well, with no tool subsuming the others.

We		Tool 1			Tool 2		Tool 3	
OK	X	OK	$?$	X	OK	X	OK	X
32	12	$30(+6)$	4	$10(+6)$	$37(+11)$	$7(+6)$	$35(+7)$	$9(+4)$

Recurrent Sets Via Compute-and-Check

- Implemented for individual loops of numeric programs.
- We believe, may be adapted for non-numeric programs.
- Precision depends whether path represenation can express the non-terminating paths.
- Compares well to other tools in benchmarks. We selected 44 non-terminating programs from SV-COMP'2015, and 3 other tools. All tools handle 30-40 programs well, with no tool subsuming the others.
- Many test programs have a single loop and a sequential stem \rightarrow in principle, we can prove non-termination for them.

We		Tool 1			Tool 2		Tool 3	
OK	X	OK	$?$	X	OK	X	OK	X
32	12	$30(+6)$	4	$10(+6)$	$37(+11)$	$7(+6)$	$35(+7)$	$9(+4)$

Thanks

Related Work

- (Heizmann et al. 2015) Extract lasso-shaped subprograms (stem and branch-free loop) and analyze them separately.
- (Chen et al. 2014) Iteratively remove terminating behaviours from a program.
- (Beyene, Popeea, and Rybalchenko 2013) Encode problems as sets of quantified Horn clauses. Can express (non-)termination properties.
- (Brockschmidt et al. 2011) Implemented in AProVE, uses multiple techniques.
- Build and analyze a graph of abstract states.
- Produce an SMT problem.

