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Abstract. Model-driven development is a field within software engi-
neering in which software artifacts are represented as models in order
to improve productivity, quality, and cost effectiveness. In this field, the
Meta-Object Facility (MOF) standard plays a crucial role by provid-
ing a generic framework where the abstract syntax of different modeling
languages can be defined. In this work, we present a formal, algebraic
semantics of the MOF standard in membership equational logic (mel).
By using the Maude language, which directly supports mel specifica-
tions, this formal semantics is furthermore executable, and can be used to
perform useful formal analyses. The executable algebraic framework for
MOF obtained this way has been integrated within the Eclipse Modeling
Framework as a plugin. In this way, formal analyses, such as semantic
consistency checks, become available within Eclipse to provide formal
support for model-driven development processes.

Key words: MOF, model-driven development, membership equational
logic, metamodeling semantics, reflection.

1 Introduction

Model-driven development is a field in software engineering in which software
artifacts are represented as models in order to improve productivity, quality,
and cost-effectiveness. Models provide a more abstract description of a software
artifact than the final code of the application. The Meta-Object Facility (MOF)
standard [1] describes a generic framework in which the abstract syntax of mod-
eling languages can be defined. This is done by specifying within MOF different
metamodels for different modeling languages. Models in a modeling language are
then conforming instances of their corresponding metamodel. The MOF stan-
dard aims at offering a good basis for model-driven development, providing some
of the building concepts that are needed: what is a model, what is a metamodel,
what is reflection in a MOF framework, etc. However, most of these concepts
lack at present a formal semantics in the current MOF standard. This is, in
part, due to the fact that metamodels can only be defined as data in the MOF
framework.

In this paper, we define a reflective, algebraic, executable framework for pre-
cise metamodeling that supports the MOF standard. On the one hand, our for-
mal framework provides a formal semantics of the following notions: metamodel,
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model and conformance of a model to its metamodel. We clearly distinguish the
different roles that the notion of metamodel usually plays in the literature: as
data, as type, and as theory. In addition, we introduce two new notions: (i) meta-
model realization, referring to the mathematical representation of a metamodel;
and (ii) model type, allowing models to be considered as first-class citizens. In par-
ticular, our executable algebraic semantics for MOF generates in an automatic
way the algebraic semantics of any MOF metamodel. This is a powerful and very
useful form of reflection, in which metamodel MOF reflection is systematically
related to logical reflection in mel. The executable formal semantics of a meta-
model obtained in this reflective way can then be used to automatically analyze
the conformance of its model instances, which are characterized either as terms
modulo structural axioms or, equivalently, as graphs. This makes the formal se-
mantics particularly useful, since models can be directly manipulated as graphs
in their term-modulo-axioms formal representation. Furthermore, our framework
provides an executable environment that is plugged into the Eclipse Modeling
Framework (EMF) [2] and that constitutes the kernel of a model management
framework, supporting model transformations and formal analysis techniques.

The paper is structured as follows: Section 2 briefly describes the underlying
formal background; Section 3 identifies important concepts that are not defined
in the MOF standard, which are usually left unspecified in most of the MOF
implementations; Section 4 gives a high level view of our algebraic framework,
indicating how the algebraic semantics of MOF metamodels is defined; Section
5 presents some related work; and Section 6 summarizes the main contributions
of this work and discusses future work.

2 Preliminaries: Membership Equational Logic

A membership equational logic (mel) [3] signature is a triple pK,Σ, Sq (just Σ
in the following), with K a set of kinds, Σ � tΣw,kupw,kqPK��K a many-kinded
signature and S � tSkukPK a K-kinded family of disjoint sets of sorts. The kind
of a sort s is denoted by rss. A mel Σ-algebra A contains a set Ak for each kind
k P K, a function Af : Ak1 �� � ��Akn

Ñ Ak for each operator f P Σk1���kn,k and
a subset As � Ak for each sort s P Sk, with the meaning that the elements in
sorts are well-defined, while elements without a sort are errors. TΣ,k and TΣpXqk
denote, respectively, the set of ground Σ-terms with kind k and of Σ-terms with
kind k over variables in X, where X � tx1 : k1, . . . , xn : knu is a set of kinded
variables.

Given a mel signature Σ, atomic formulae have either the form t � t1 (Σ-
equation) or t : s (Σ-membership) with t, t1 P TΣpXqk and s P Sk; and Σ-
sentences are conditional formulae of the form p@Xq ϕ if

�
i pi � qi ^

�
j wj :

sj , where ϕ is either a Σ-equation or a Σ-membership, and all the variables in
ϕ, pi, qi, and wj are in X.

A mel theory is a pair pΣ,Eq with Σ a mel signature and E a set of Σ-
sentences. The paper [3] gives a detailed presentation of pΣ,Eq-algebras, sound
and complete deduction rules, and initial and free algebras. In particular, given
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a mel theory pΣ,Eq, its initial algebra is denoted TpΣ{Eq; its elements are E-
equivalence classes of ground terms in TΣ .

Order-sorted notation s1   s2 can be used to abbreviate the conditional
membership p@x : kq x : s2 if x : s1. Similarly, an operator declaration f :
s1 � � � � � sn Ñ s corresponds to declaring f at the kind level and giving the
membership axiom p@x1 : k1, . . . , xn : knq fpx1, . . . , xnq : s if

�
1¤i¤n xi : si.

We write p@x1 : s1, . . . , xn : snq t � t1 in place of p@x1 : k1, . . . , xn : knq t �
t1 if

�
1¤i¤n xi : si.

We can use order-sorted notation as syntactic sugar to present a mel theory
pΣ,Eq in a more readable form as a tuple pS, , Σ,E0 Y Aq where: (i) S is the
set of sorts; (ii)   is the subsort inclusions, so that there is an implicit kind
associated to each connected component in the poset of sorts pS, q; (iii) Σ is
given as an order-sorted signature with possibly overloaded operator declarations
f : s1 � . . . � sn Ñ s as described above; and (iv) the set E of (possibly con-
ditional) equations and memberships is quantified with variables having specific
sorts (instead than with variables having specific kinds) in the sugared fashion
described above; furthermore, E is decomposed as a disjoint union E � E0 YA,
where A is a collection of “structural” axioms such as associativity, commuta-
tivity, and identity. Any theory pS, , Σ,E0 Y Aq can then be desugared into a
standard mel theory pΣ,Eq in the way explained above.

The point of the decomposition E � E0 Y A is that, under appropriate ex-
ecutability requirements explained in [4], such as confluence, termination, and
sort-decreasingness modulo A, an mel theory pS, , Σ,E0 Y Aq becomes exe-
cutable by rewriting with the equations and memberships E0 modulo the struc-
tural axioms A. Furthermore, the initial algebra TpΣ{Eq then becomes isomor-
phic to the canonical term algebra CanΣ{E0,A whose elements are A-equivalence
classes of ground Σ-terms that cannot be further simplified by the equations
and memberships in E0.

3 Presentation of the Problem

In this section, we give an informal description of the MOF standard by describ-
ing the MOF architecture and the main concepts in the MOF metamodel, which
are then given a formal semantics in subsequent sections.

3.1 The MOF Modeling Framework

MOF is a semiformal approach to define modeling languages. It provides a four-
level hierarchy, with levels M0, M1, M2 and M3. The entities rm populating
each level Mi, written rm P Mi are always collections, made up of constituent
data elements re. Each entity �M P Mi�1 at level i+1 metarepresents a model3

M and is viewed as the metarepresentation of a collection of types, i.e., as a
3 In the MOF framework, the concept of a model M is conceptually specialized de-

pending on the specific metalevel, in which a model is located: model at level M1,
metamodel at level M2 and meta-metamodel at level M3; as shown below.
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metadata collection that defines a specific collection of types. Each type T is
metarepresented as rT P �M and characterizes a collection of data elements, its
value domain. We write that a data element re P rm is a value of type rT P �M as
re r: rT . A metarepresentation at level i + 1 of a collection �M P Mi�1 of types
characterizes collections of data elements rm P Mi at level i. A specific data
collection rm P Mi is said to conform to model M , which is metarepresented by
its collection of types �M P Mi�1, iff for each data element re P rm there exists a
type rT P �M such that re r: rT . We write rm r: �M to denote this conformance
relation for model M , which we call the structural conformance relation. The
isValueOf relation re r: rT and the structural conformance relation rm r: �M are
summarized in Fig. 1.

Fig. 1. isValueOf and structural conformance relations.

Fig. 2 illustrates example collections at each level M1-M3 of the MOF frame-
work. Each collection is encircled by a boundary and tagged with a name. For
example, rsPerson PM1, which is a model corresponding to a relational schema.
The isValueOf relation between elements re of a data collection and the metarep-
resentation of types rT of a type collection, and the structural conformance re-
lation between a data collection rm and the metarepresentation �M of a model
M are depicted with dashed arrows. We consider levels M1–M3 out of the MOF
hierarchy in this work, as illustrated in Fig. 2, which are:

M1 level. The M1 level contains metarepresentations of models. A model is
a set of types that describe the elements of some physical, abstract or hy-
pothetical reality by using a well-defined language. In addition, a model is
suitable for computer-based interpretation, so that development tasks can be
automated. For example, a model can define a relational schema describing
the concepts, i.e., types, of Person, Invoice and Item. The type of Person is
a table Person, with columns name and age; similarly, there is a table In-
voice, with columns date and cost ; and a table Item, with columns name and
price; a foreign key Invoice Person FK ; and a foreign key Item Invoice FK.

M2 level. The M2 level contains metarepresentations of metamodels. A meta-
model is a model specifying a modeling language. As an example, we take
a simple relational metamodel from the example of the QVT standard that
contains the main concepts to define relational schemas, as shown in Fig. 2
in UML notation. The types of a relational schema are called table, column,
foreign key, etc. Our example model, the relational schema with tables Per-
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Fig. 2. The MOF framework

son, Invoice and Item can be represented as a collection at level M1 that
conforms to the relational metamodel at level M2.

M3 level. An entity at the M3 level is the metarepresentation of a meta-
metamodel. A meta-metamodel specifies a modeling framework, which could
also be called a modeling space. In MOF, there is only one such meta-
metamodel, called the MOF meta-metamodel. Within the MOF modeling
framework one can define many different metamodels. Such metamodels,
when represented as data, must conform to the MOF meta-metamodel. In
particular, the relational metamodel conforms to the MOF meta-metamodel.
But in MOF one can likewise define many other metamodels, for example
the UML metamodel to define UML models, the OWL metamodel to define
ontologies, the AADL metamodel, and so on. The fact that all these meta-
models are specified within the single MOF framework greatly facilitates
systematic model/metamodel interchange and integration.
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3.2 Discussion and Open Problems

At present, important MOF concepts such as those of metamodel, model and
conformance relation do not have an explicit, syntactically characterizable status
in their data versions. For example, we can syntactically characterize the correct-
ness of the data elements in �M for a metamodelM, but there is no explicit type
that permits defining �M as a well-characterized value, which we call a model
type. In addition, in the MOF standard and in current MOF-like modeling envi-
ronments, such as Eclipse Modeling Framework or MS DSL tools, a metamodel
M does not have a precise mathematical status. Instead, at best, a metamodel
M is realized as a program in a conventional language, which may be generated
from �M, as, for example, the Java code that is generated for a metamodel �M in
EMF. This informal implementation corresponds to what we call a metamodel
realization. In these modeling environments, the conformance relation between
a model definition �M and its corresponding metamodel definition �M is checked
by means of indirect techniques based on XML document validation or on tool-
specific implementations in OO programming languages. Therefore, metamodels
�M and models �M cannot be explicitly characterized as first-class entities in their
data versions, and the semantics of the conformance relation remains formally
unspecified. This is due to the lack of a suitable reflective formal framework in
which software artifacts, and not just their metarepresentations, can acquire a
formal semantics.

In this work, we formalize the notions of: (i) model type, (ii) metamodel
realization and (iii) conformance relation, by means of a reflective semantics that
associates a mathematical metamodel realization to each metamodel definition
�M in MOF.

4 An Algebraic Semantics for MOF

The practical usefulness of a formal semantics for a language is that it provides
a rigorous standard that can be used to judge the correctness of an implementa-
tion. For example, if a programming language lacks a formal semantics, compiler
writers may interpret the informal semantics of the language in different ways,
resulting in inconsistent and diverging implementations. For MOF, given its
genericity, the need for a formal semantics that can serve as a rigorous standard
for any implementation is even more pressing, since many different modeling
languages rely on the correctness of the MOF infrastructure. In this section, we
propose an algebraic, mathematical semantics for MOF in membership equa-
tional logic (mel).

4.1 A High-Level View of the MOF Algebraic Semantics

A metamodel definition �M describes a metamodel realization that contains a
model type M. What this metamodel definition describes is, of course, a set of
models. We call this the extensional semantics of �M, and denote this semantics
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by vMwMOF. Recall that we use the notation �M : M for the conformance rela-
tion. Using this notation, the extensional semantics can be informally defined as
follows:

vMwMOF � t�M | �M :Mu.

We make the informal MOF semantics just described mathematically precise
in terms of the initial algebra semantics of mel. As already mentioned in Section
2, a mel specification pΣ,Eq has an associated initial algebra TpΣ,Eq. We call
TpΣ,Eq the initial algebra semantics of pΣ,Eq, and write

vpΣ,EqwIAS � TpΣ,Eq.

Let vMOFwMOF denote the set of all MOF metamodel definitions �M, and
let SpecMEL denote the set of all mel specifications. The reason why we de-
fine vMOFwMOF as a set of metamodel definitions �M, instead than as a set of
model types M is because, as already mentioned, the mathematical status of
M is, as yet, undefined, and is precisely one of the questions to be settled by
a mathematical semantics. Instead, well-formed metamodel definitions �M are
data structures that can be syntactically characterized in a fully formal way.
Therefore, the set vMOFwMOF, thus understood, is a well-defined mathematical
entity. Our algebraic semantics is then defined as a function

reflectMOF : vMOFwMOF ÝÑ SpecMEL

that associates to each MOF metamodel definition �M a corresponding mel spec-
ification reflectMOFp�Mq. Our informal semantics vMwMOF is now made mathe-
matically precise. Recall that any mel signature Σ has an associated set S of
sorts. Therefore, in the initial algebra TpΣ,Eq each sort s P S has an associated
set of elements TpΣ,Eq,s. The key point is that in any mel specification of the
form reflectMOFp�Mq, there is always a sort called ModelTypetMu, which we also
denote as M for short, whose data elements in the initial algebra are precisely
the data representations of those models that conform to M. That is, M is the
model type associated to a metamodel definition �M. Therefore, we can give a
precise mathematical semantics to our informal MOF extensional semantics by
means of the equation

vMwMOF � T
reflectMOFp rMq,ModelTypetMu

.

Note that our algebraic semantics gives a precise mathematical meaning to
the entities lacking such a precise meaning in the informal semantics, namely, the
notions of: (i) model typeM, (ii) metamodel realization reflectMOFp�Mq, and (iii)
conformance relation �M :M. Specifically, we associate to a metamodel definition
�M a precise mathematical object, namely, the mel theory reflectMOFp�Mq, con-
stituting its metamodel realization. The structural conformance relation between
a model and its metamodel is then defined mathematically by the equivalence
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�M :M ô �M P T
reflectMOFp rMq,ModelTypetMu

.

4.2 Algebraic Semantics of MOF Metamodels

As introduced above, the reflectMOF function maps a MOF metamodel definition
�M to a mel theory reflectMOFp�Mq that constitutes its metamodel realization. In
this section, we provide a high-level summary of the definition of the reflectMOF

function, whose complete definition is available in [5].

MOF as a MEL theory. We denote the metamodel definition that consti-
tutes the meta-metamodel of the MOF framework by �MOF. �MOF is itself a
MOF metamodel definition, since �MOF : MOF. We first define a mel theory
reflectMOFp�MOFq, that is, we first define reflectMOF for a single metamodel,
namely �MOF. The reflectMOFp�MOFq theory defines the vMOFwMOF type as
the set of metamodel definitions �M, which can be viewed as both graphs and
terms. This theory has been manually defined as a first step in the bootstrapping
process needed to define the reflectMOF function in general.

The reflectMOFp�MOFq theory provides the algebraic representation for object
types and model types for defining metamodel definitions �M. In this theory,
object types are used to describe a metamodel definition �M : MOF as a set
of objects. Objects are defined by using the following sorts: Oid#MOF for object
identifiers; Cid#MOF for class names; and PropertySet#MOF for multisets of comma-
separated pairs of the form (property : value), which represent property values.
Objects in a metamodel definition �M are then syntactically characterized by
means of an operator

< : | > : Oid#MOF Cid#MOF PropertySet#MOF -> Object#MOF.

These sorts, subsorts and operators are defined, in Maude notation, as follows:

sorts Oid#MOF Cid#MOF Property#MOF PropertySet#MOF Object#MOF .
subsort Property#MOF < PropertySet#MOF .
op noneProperty : -> PropertySet#MOF .
op _‘,_ : PropertySet#MOF PropertySet#MOF -> PropertySet#MOF

[assoc comm id: noneProperty] .
op <_:_|_> : Oid#MOF Cid#MOF PropertySet#MOF -> Object#MOF .

In the reflectMOFp�MOFq theory, a metamodel definition �M that conforms
to the metamodel MOF, that is, such that �M : MOF, can be represented
as a collection of objects by means of a term of sort ModelType{MOF}. A term of
sort ModelType{MOF} is defined by means of the following constructors, in Maude
notation:

op __ : ObjectCollection{MOF} ObjectCollection{MOF} -> ObjectCollection{MOF} [assoc comm] .
op <<_>> : ObjectCollection{MOF} -> ModelType{MOF} .

where the Object#MOF sort is a subsort of the ObjectCollection{MOF} sort. That is, we
first form a multiset of objects of sort ObjectCollection{MOF} using the associative
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and commutative multiset union operator 4 and then we wrap the set of objects
by using the << >> constructor to get the desired term of sort ModelType{MOF}.

Each of the modeling primitives that constitute the MOF metamodel is spec-
ified in the reflectMOFp�MOFq theory by means of sorts, subsorts and operators.
As an example, we focus on the Class and Property object types of the MOF
metamodel.

Class object type. Object types are the central concept of MOF to model
entities of the problem domain in metamodels. An object type is defined in a
metamodel definition �M as a Class instance rc and a set of Property instances
rp. The object type Class contains meta-properties like name, which indicates
the name of the object type, ownedAttribute, which indicates the properties that
belong to the Class instance, and superClass, which indicates that the object
type is defined as a specialization of the object types that are referred to by
means of this property. The Class object type is specified as a sort Class, such
that Class < Cid#MOF, and a constant Class : -> Class. Each of the class properties is
defined as a constructor for the sort Property#MOF. For example, to define the name
property, we have the constructor name‘: : String -> Property#MOF, and to define the
package property, we have the constructor package‘: : Oid -> Property#MOF

5.
In the relational metamodel definition, the Class instance that defines the

object type Table in the metamodel �RDBMS is defined as the term

< ’Foo : Class | name : "Table", package : ..., ownedAttribute : ...>,

where ’Foo is an object identifier.

Property object type. A model can be viewed as a graph where the collection
of nodes is constituted by the collection of attributed objects of the model and
the edges are defined by means of directed references or links between objects.
A Property object in a metamodel definition �M enables the definition of an
attribute in an object or a reference between objects in a model definition �M :
�M, one level down in the MOF framework. A Property object defines the type
of the property, where the type can be a basic type definition, an enumeration
type definition or an object type definition. Other meta-properties, such as lower,
upper, ordered and unique, constitute the multiplicity metadata of a specific
property.

The constructors that permit defining objects of the Property object type
are defined, in Maude notation, as follows:

sort Property . subsort Property < Cid#MOF .
op Property : -> Property .
op lower‘:_ : Int -> Property . op upper‘:_ : Int -> Property .
op isOrdered‘:_ : Bool -> Property . op isUnique‘:_ : Bool -> Property .

The Property instance rp that defines the metaproperty name of the object
type RModelElement in the metamodel definition �RDBMS is represented by
the term
4 This binary operator symbol has empty syntax (juxtaposition).
5 Note that property operators can be typed with an object identifier (in the case of

references) and with a data type (in the case of attributes).
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< ’Foo : Property | name : "name", lower : 1, upper: 1, isOrdered = true, isUnique = false,
isComposite = false, type : ’PrimitiveType0, class : ’Class0 >.

We have taken into account the modeling primitives that constitute the Es-
sential MOF metamodel definition, including simple data types and enumeration
types. A detailed specification is provided in [5].

Reflective Algebraic Semantics of MOF Metamodels. Once the
reflectMOFp�MOFq theory is defined, we focus on the ModelTypetMOFu sort
in this theory, whose carrier in the initial algebra defines the vMOFwMOF type,
i.e., the model type whose elements are metamodels:

vMOFwMOF � T
reflectMOFp�MOFq,ModelTypetMOFu

.

Note that, since vMOFwMOF is the set of all metamodel definitions �M in MOF,
this means that

�MOF P vMOFwMOF.

We then define the value of the function reflectMOF on any metamodel �M,
such that �M P vMOFwMOF, as its corresponding mel theory reflectMOFp�Mq.
Given a metamodel definition �M, the reflectMOFp�Mq theory defines the vMwMOF

semantics as the set of model definitions �M that are constituted by a collection
of typed objects, which can be viewed as both a graph and a term.

In the reflectMOFp�Mq theory, the algebraic notion of object type is generically
given by means of the sort Object#M. Terms of sort Object#M are defined by
means of the constructor

  : | ¡ : Oid#M Cid#M PropertySet#MÑ Object#M,

which is analogous to the constructor for objects that has been presented in the
reflectMOFp�MOFq theory.

Model definitions �M : M are given as collections of objects, which are in-
stances of a specific object type OT. Object types are defined in a metamodel
definition �M : MOF, as a multiset of objects �OT � �M. Defining the algebraic
semantics of an object type involves the definition of the object identifiers and
the properties that may be involved in the definition of a specific object in a
model definition �M : M. Object type specialization relationships must be also
taken into account. Therefore, we need to define the carrier of the sorts Oid#M,
Cid#M and PropertySet#M for a specific object type definition.

Consider, for example, the �RDBMS metamodel definition, where the Table
object type, denoted by �Table, is specified in Maude notation as

<< < ’Table : Class | name : "Table", isAbstract : false,
ownedAttribute : OrderedSet{ ’prop0 ::’prop1 :: ’prop2 :: ’prop3},
superClass : OrderedSet{ ’RModelElement } >

< ’prop0 : Property | name : "schema", lower : 1, upper: 1,
isOrdered = true, isUnique = true, isComposite = true, type : ’Schema, class : ’Table >

< ’prop1 : Property | name : "column", lower : 0, upper: -1,
isOrdered = true, isUnique = true, isComposite = false, type : ’Column, class : ’Table >
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< ’prop2 : Property | name : "key", lower : 0, upper: 1,
isOrdered = true, isUnique = true, isComposite = false, type : ’PrimaryKey, class : ’Table >

< ’prop3 : Property | name : "foreignKey", lower : 0, upper: -1, isOrdered = true,
isUnique = true, isComposite = false, type : ’PrimaryKey, class : ’Table > >>.

where ’PrimaryKey is the object identifier for the Class instance of the Prima-
ryKey object type in the relational metamodel �RDBMS. In subsequent para-
graphs, we use this example to obtain the theory that defines the Table object
type.

Object Type Names. In the reflectMOFp�Mq theory, each Class instance rcl in �M
is defined as a new sort and a constant, both of them with the name of the class.
Abstract classes are defined as those that cannot be instantiated. The name of
an abstract class C is not specified with a constant C : C, so that objects in a
metamodel definition �M cannot have C as their type.

In the example of the RDBMS metamodel, the reflectMOF function generates
a single sort and a single constant for the object type Table, specified in Maude
notation as follows,
sort Table . subsort Table < Cid#rdbms . op Table : -> Table .

Object Type Properties. An object type OT is defined with a collection of Prop-
erty instances describing its properties. A Property instance rp in a metamodel
definition �M : MOF is given by an object rp, such that rp : Property and rp P �M.
A Property instance rp is associated with a specific type rt in the metamodel def-
inition �M, which is defined as an object rt : Type. Depending on the type rt of a
property, we can distinguish two kinds of properties:

– Value-typed Properties or Attributes. Properties of this kind are typed with
DataType instances, which can represent either a simple data type or an
numeration type. Value-typed properties define the attributes of the of nodes
in a graph.

– Object-typed Properties or References. Properties of this kind are typed with
object types. Model definitions �M can then be viewed as graphs, where
objects define graph nodes and object-typed properties define graph edges.
For example, we can define a Class instance ”Table” and a Property
instance ”name” that are related by means of their respective ownedAttribute
and class properties:
< ’class0 : Class | name : "Table", ownedAttribute : OrderedSet{ ’prop0 } >
< ’prop0 : Property | name : "name", class : ’class0 >

The type meta-property together with the multiplicity metadata define a
set of specific constraints on the acceptable values for the property type. These
constraints are taken into account in the algebraic type that is assigned to the
property by means of OCL collection types. In the example, the Table ob-
ject type is specified in the theory reflectMOFp �RDBMSq, in Maude notation, as
follows:
sorts Table . subsort Table < Cid#rdbms . op Table : -> Table .
op schema : Oid -> Property#rdbms . op column : OrderedSet{Oid} -> Property#rdbms .
op key : [Oid] -> Property#rdbms . op foreignKey : OrderedSet{Oid} -> Property#rdbms .
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Object Type Specialization Relation. A specialization is a taxonomic relationship
between two object types. This relationship specializes a general object type into
a more specific one. In the RDBMS example, we algebraically define the special-
ization relationship between the object types �RModelElement and�Table as the
subsorts Table < RModelElement. The supersorts of the resulting subsort hierarchy are
defined as subsorts of the Cid#rdbms sort, for object type name sorts and object
identifier sorts, respectively. In this way, we can define a table instance as < ’Foo

: Table | name : "date", ...>, where the name property is defined for the RModelEle-
ment object type.

Algebraic Semantics of Object Types. The algebraic semantics of an object type
is then given by the set of all the objects that can be defined either as instances of
the object type, i.e., a class, or as instances of any of its subtypes. The algebraic
semantics of an object type definition �OT, such that �OT : MOF, is defined as
follows:

vOTwMOF � tro | ro P T
reflectMOFp rMq,Object#M ^

classproq P T
reflectMOFp rMq,ClassSortp�OTq

u.

where class is an operator that obtains the type constant of a given object, and
ClassSort is an operator that obtains the sort that corresponds to the object
type constant in reflectMOFp�Mq. The isValueOf relation ro : OT indicates if an
object ro is instance of a given object type OT, is defined as follows:

ro : OT ô ro P vOTwMOF.

Algebraic Semantics of MOF Metamodels. The reflectMOFp�Mq theory consti-
tutes the metamodel realization of the metamodel definition �M. This theory
provides the model type M, which is represented by the sort ModelTypetMu.
M is the type of collections of typed objects that have both a graph and a term
structure. The semantics of the M type is defined by the equation

vMwMOF � T
reflectMOFp rMq,ModelTypetMu

,

and the structural conformance relation between a model definition �M and its
corresponding model type M is then formally defined by the equivalence

�M :Mô �M P vMwMOF.

Embedding MOF Reflection into mel Logical Reflection. The logical re-
flective features of mel [4], together with its logical framework capabilities, make
it possible to internalize the representation Φ : SpecL ÝÑ SpecMEL of a for-
malism L in mel, as an equationally-defined function Φ : ModuleL ÝÑ Module,
where ModuleL is an equationally defined data type representing specifications
in L, and Module is the data type whose terms, of the form pΣ,Eq, metarepre-
sent mel specifications of the form pΣ,Eq. We can apply this general method
to the case of our algebraic semantics
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reflectMOF : MOF ÝÑ SpecMEL.

Then, the reflective internalization of the MOF algebraic semantics reflectMOF

becomes an equationally-defined function

reflectMOF : ModelTypetMOFu ÝÑ Module.

where Module is the sort whose terms represent mel theories in the universal
mel theory (see [4]).

The function reflectMOF is completely defined in [5] and is implemented
as reflectMOF in the prototype that is available at [6]. By using the theory
reflectMOFp �RDBMSq, the table Person in the relational schema that appears
in Fig. 2 is defined as the term

<< < ’column.0 : Column | nnv : true, owner : ’table.0, type : VARCHAR, name : "name" >
< ’column.1 : Column | owner : ’table.0, type : NUMBER, name : "age" >
< ’column.2 : Column | key : OrderedSet{ ’key.0 },

nnv : true, owner : ’table.0, type : VARCHAR, name : "person_PK" >
< ’key.0 : Key | column : OrderedSet{ ’column.2 }, owner : ’tables.0, name : "Person_PK" >
< ’table.0 : Table | name : "Person", key : OrderedSet{’key.0},

column : OrderedSet{ ’column.0 :: ’column.1 :: ’column.2 } > >>.

If we represent this term as the constant model, we can automatically check
whether this model conforms to its metamodel by evaluating the following mem-
bership in Maude:

red model :: ModelType{rdbms} .
result Bool: true

5 Related work

The meaning of the metamodel notion has been widely discussed in the literature,
see for example [7,8,9,10]. There is a consensus that a metamodel can play several
roles: as data, as type or as theory. In this paper, we have formally expressed
each of these roles by means of the notions of metamodel definition �M, model
type M, and metamodel realization reflectMOFp�Mq, respectively.

The current MOF standard does not provide any guidelines to implement a
reflective mechanism that obtains the semantics of a metamodel. An informal
attempt to realize MOF metamodel definitions as Java programs is provided
in the Java Metadata Interface (JMI) specification [11], which is defined for
a previous version of the MOF standard. A mapping of this kind has been
successfully implemented in modeling environments such as the Eclipse Modeling
Framework. By contrast, our reflectMOF function gives us an executable formal
specification of the algebraic semantics of any metamodel �M in MOF.

Poernomo gives a formal metamodeling framework based on Constructive
Type Theory [12], where models, which are define as terms (token models), can
also be represented as types (type models) by means of a reflection mechanism. In
this framework, the conformance relation is implicitly provided by construction:
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only valid models can be defined as terms, and their definition constitutes a
formal proof of the fact that the subject belongs to the corresponding type, by
means of the Curry-Howard isomorphism.

[13] describes a metamodeling framework, based on Maude, which also rep-
resents graphs as terms by taking advantage of the underlying term matching
algorithm modulo associativity and commutativity. In this work, the authors
address the model subtyping relation that can be defined between two model
types and type inference to deal with model management scenarios. Their work
is based on the data version of metamodels, i.e., over metamodel definitions. A
difference compared to our work is the reflective semantics for MOF metamodels
that we have defined in our framework.

6 Conclusions and Future Work

In this work we have proposed an algebraic semantics for the MOF metamodeling
framework, formalizing notions not yet clear in the MOF standard. In our ap-
proach, we give an explicit formal representation for each of the different notions
that may be involved in a metamodeling framework: model typeM, metamodel
realization reflectMOFp�Mq, and metamodel conformance �M :M. Our work pro-
vides an algebraic executable formalization of the MOF standard that can be
reused for free, in standard-compliant frameworks. At present, the prototype,
available at [6], implements the MOF framework in Maude and uses the EMF
as the metamodeling front-end.

We plan to use this framework as the kernel of a model management tool
suite that provides support for QVT and graph-based model transformations
within the EMF. For this we have relied on the experience gained in previous
prototypes that gave algebraic executable specifications for OCL [14], QVT [15]
and model management operators [16]. Our framework supports the application
of formal analysis techniques, such as inductive theorem proving and model
checking, to model-based and graph-based systems by means of the underlying
Maude framework and its formal tools [4]. In addition, grammar-based software
artifacts can also be related to models by specifying context-free grammars as
mel signatures. This last feature makes our framework also suitable for forward
and reverse Model-Driven Engineering.

We are currently working on a graph transformation tool that provides sup-
port for OCL and QVT. This tool is being developed entirely in Maude and
uses rewriting logic to support graph transformations. In future work, we plan
to apply the algebraic MOF framework together with the aforementioned QVT
model transformation tool and Maude-based formal verification techniques to
model management scenarios, where formal verification techniques play an im-
portant role. In particular, we are considering the formal analysis of real-time
embedded systems in the avionics specific domain that are developed by following
a model-driven approach, by using model-based languages like the Architecture
Analysis and Design Language (AADL) [17].
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R., eds.: Language Engineering for Model-Driven Software Development. Vol-
ume 04101 of Dagstuhl Seminar Proceedings., Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2004)

11. Java Community Process: The Java Metadata Interface (JMI) Specification (JSR
40) (2002) http://www.jcp.org/en/jsr/detail?id=40.

12. Poernomo, I.: The meta-object facility typed. In Haddad, H., ed.: SAC, ACM
(2006) 1845–1849

13. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and Tool Support for
Model Driven Engineering with Maude. Journal of Object Technology 6(9) (2007)
187–207 http://www.jot.fm/issues/issue_2007_10/paper10/.

14. Boronat, A., Oriente, J., Gómez, A., Ramos, I., Carśı, J.A.: An Algebraic Specifica-
tion of Generic OCL Queries Within the Eclipse Modeling Framework. In Rensink,
A., Warmer, J., eds.: ECMDA-FA. Volume 4066 of LNCS., Springer (2006) 316–330
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