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Abstract. In model-driven development, software artifacts are repre-
sented as models in order to improve productivity, quality, and cost ef-
fectiveness. In this area, the Meta-Object Facility (MOF) standard plays
a crucial role as a generic framework within which a wide range of model-
ing languages can be defined. The MOF standard aims at offering a good
basis for model-driven development, providing some of the building con-
cepts that are needed: what is a model, what is a metamodel, what is
reflection in the MOF framework, and so on. However, most of these con-
cepts are not yet fully formally defined in the current MOF standard.
In this paper we define a reflective, algebraic, executable framework for
precise metamodeling based on membership equational logic (mel) that
supports the MOF standard. Our formal framework provides a formal
semantics of the following notions: metamodel, model, and conformance
of a model to its metamodel. Furthermore, by using the Maude language,
which directly supports mel specifications, this formal semantics is exe-
cutable. This executable semantics has been integrated within the Eclipse
Modeling Framework as a plugin tool called MOMENT2. In this way,
formal analyses, such as semantic consistency checks, model checking of
invariants and LTL model checking, become available within Eclipse to
provide formal support for model-driven development processes.

Key words: MOF, model-driven development, membership equational
logic, metamodeling semantics, reflection, formal analysis.

1 Introduction

Model-driven development is a software engineering field in which software ar-
tifacts are represented as models in order to improve productivity, quality, and
cost-effectiveness. Models provide a more abstract description of a software ar-
tifact than the final code of the application. The Meta-Object Facility (MOF)
standard [45] offers a generic framework in which the abstract syntax of differ-
ent modeling languages can be defined. This is done by specifying within MOF
different metamodels for different modeling languages. Models in a modeling
language are then conforming instances of their corresponding metamodel. The
MOF standard aims at offering a good basis for model-driven development, pro-
viding some of the building concepts that are needed: what is a model, what is
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a metamodel, what is reflection in the MOF framework, and so on. However,
most of these concepts are not yet fully formally defined in the current MOF
standard. This is, in part, due to the fact that metamodels can only be defined
as data in the MOF framework.

In this paper, we define a reflective, algebraic, executable framework for pre-
cise metamodeling that supports the MOF standard. Our formal framework
provides a formal semantics of the following notions: metamodel, model, and
conformance of a model to its metamodel. We clearly distinguish the different
roles that the notion of metamodel usually plays in the literature: as data, as
type, and as theory. In addition, we introduce two new notions: (i) metamodel
realization, referring to the mathematical representation of a metamodel; and (ii)
model type, allowing models to be considered as first-class citizens. In particular,
our executable algebraic semantics for MOF generates, in an automatic way, the
algebraic semantics of any MOF metamodel by formalizing MOF metamodels
as mel theories. Furthermore, such mel theories are executable by rewriting.
This means that useful mel deduction capabilites become available as decision
procedures to check properties about the models of a metamodel so formalized;
and that all this can be achieved by executing the mel theory formalizing a
metamodel in an algebraic language such as Maude [22]. In this way, the exe-
cutable formal semantics of a metamodel can be used to automatically analyze
the conformance of its model instances. Such model instances are characterized
algebraically as terms modulo structural axioms of associativity, commutativ-
ity and identity, and have an equivalent topological characterization as graphs.
This makes the formal semantics particularly useful, since models can be directly
manipulated as graphs in their term-modulo-axioms formal representation. Fur-
thermore, as we explain below, it makes possible a number of very useful model
management and model analysis tasks.

Our framework provides not only an algebraic semantics, but also an exe-
cutable environment called MOMENT2 [43], that is plugged into the Eclipse
Modeling Framework (EMF) [25] and that constitutes the kernel of an alge-
braic model management framework supporting model transformations and for-
mal analysis techniques. In this work, we illustrate the basic principles on which
MOMENT2 is based by showing how the executable formalization of MOF meta-
models as mel theories provides automated, semantics-based support for very
useful model-based tasks, such as the definition of domain specific languages,
model transformations, model traceability and model management operators;
and formal analysis techniques, such as reachability analysis and LTL model
checking of model-based systems.

Philosophically, we can view this work as exploiting for the area of soft-
ware modeling languages the kinds of benefits that the rewriting logic semantics
project [42] has already demonstrated in the areas of programming languages
(see [41,42,54] and references there), and of formal specification and verification
languages (see, e.g., [23,55,19]). What is common to all these efforts is the use
of a flexible logical framework (either rewriting logic [38], or, as done in this
paper, its mel equational sublogic [40]) to formalize the semantics of either a
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programming language, a formal specification language, or, as done in this work,
a wide range of software modeling languages. By exploiting the fact that the log-
ical framework’s logic is executable and has a high-performance implementation,
one obtains much more than just precise semantic definitions: one obtains useful
(and quite efficient) semantics-based tools, such as programming language inter-
preters and model checkers, theorem provers of various kinds, and, in this paper,
a model management tool like MOMENT2 that is metamodel-generic and can
support a wide range of model management and model analysis tasks.

The paper is structured as follows: Section 2 briefly describes the underlying
formal background; Section 3 identifies important concepts that are not formally
defined in the MOF standard and are usually left unspecified in most of the MOF
implementations; Section 4 presents the foundations of our algebraic framework,
indicating how the algebraic semantics of MOF metamodels is defined; Section
5 illustrates the application of our framework in different model-driven develop-
ment scenarios; Section 6 discusses related work; and Section 7 summarizes the
main contributions of this work and discusses future work.

2 Membership Equational Logic and Maude

The logical framework in which we give an algebraic semantics to MOF is mem-
bership equational logic (mel) [40]. A key feature of mel is its strong support
for types (called sorts), subtypes, and partiality; and the closely-related feature
that types can be very expressive. In mel, membership in a type is not just a
syntactic matter, but may depend on the satisfaction of semantic conditions.
This mel feature is exploited very heavily in our semantics of MOF, where the
set of models that conform to a given metamodel is precisely characterized by
a type satisfying suitable semantic conditions. Another key feature of mel is
that it has initial algebras [40]; therefore, our MOF semantics is an initial al-
gebra semantics. Furthermore, under very reasonable assumptions mel theories
are executable by rewriting. Using Maude’s high-performance implementation of
mel, this means that theories satisfying such executability conditions become
declarative programs, and that various mel deduction tasks, including checking
equality and checking membership in a type, become decision procedures.

2.1 The Syntax and Semantics of MEL

A mel signature is a triple (K,Σ, S) (just Σ in the following), with K a set
of kinds, Σ = {Σw,k}(w,k)∈K∗×K a many-kinded signature of function symbols,
and S = {Sk}k∈K a K-kinded family of disjoint sets of sorts. The kind of a
sort s is denoted by [s]. Intuitively, membership in a sort is exactly definedness;
whereas membership in just a kind without membership in any of the sorts of
that kind means undefinedness or error. For example, let Numeric be a kind
having sorts Nat , Int , and Rat . Then, in a suitable mel specification of the
number hierarchy we may have expressions like 4− 7 of sort Int , and 2/7 of sort
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Rat . But the expression 2/0 has kind Numeric but has no sort and is therefore
interpreted as an undefined or error expression.

A mel Σ-algebra A contains a set Ak for each kind k ∈ K, a function
Af : Ak1 × · · · × Akn

→ Ak for each operator f ∈ Σk1···kn,k and a subset
As ⊆ Ak for each sort s ∈ Sk, with the meaning that the elements in sorts are
well-defined, while elements without a sort are errors. TΣ,k and TΣ(X)k denote,
respectively, the set of ground Σ-terms with kind k and of Σ-terms with kind k
over variables in X, where X = {x1 : k1, . . . , xn : kn} is a set of kinded variables.

Given a mel signature Σ, atomic formulae have either the form t = t′ (Σ-
equation) or t : s (Σ-membership) with t, t′ ∈ TΣ(X)k and s ∈ Sk; and Σ-
sentences are conditional formulae of the form (∀X) ϕ if

∧
i pi = qi ∧

∧
j wj :

sj , where ϕ is either a Σ-equation or a Σ-membership, and all the variables in ϕ,
pi, qi, and wj are in X. The novel feature with respect to other equational logics
is the support for conditional memberships of the form (∀X) t : s if

∧
i pi =

qi ∧
∧
j wj : sj . This makes membership in a sort not just a syntactic matter,

but a semantic one, since the semantic conditions
∧
i pi = qi ∧

∧
j wj : sj must

be satisfied.
A mel theory is a pair (Σ,E) with Σ a mel signature and E a set of Σ-

sentences. The paper [40] gives a detailed presentation of (Σ,E)-algebras, sound
and complete deduction rules, and initial and free algebras. In particular, given
a mel theory (Σ,E), its initial algebra is denoted T(Σ/E); its elements are E-
equivalence classes of ground terms in TΣ .

Order-sorted notation s1 < s2 can be used to abbreviate the conditional
membership (∀x : k) x : s2 if x : s1. Similarly, an operator declaration f :
s1 × · · · × sn → s corresponds to declaring f at the kind level and giving the
membership axiom (∀x1 : k1, . . . , xn : kn) f(x1, . . . , xn) : s if

∧
1≤i≤n xi : si.

We write (∀x1 : s1, . . . , xn : sn) t = t′ in place of (∀x1 : k1, . . . , xn : kn) t =
t′ if

∧
1≤i≤n xi : si.

We can use order-sorted notation as syntactic sugar to present a mel theory
(Σ,E) in a more readable form as a tuple (S,<,Σ,E0 ∪ A) where: (i) S is the
set of sorts; (ii) < is the subsort inclusions, so that there is an implicit kind
associated to each connected component in the poset of sorts (S,<); (iii) Σ is
given as an order-sorted signature with possibly overloaded operator declarations
f : s1 × . . . × sn → s as described above; and (iv) the set E of (possibly con-
ditional) equations and memberships is quantified with variables having specific
sorts (instead than with variables having specific kinds) in the sugared fashion
described above; furthermore, E is decomposed as a disjoint union E = E0 ∪A,
where A is a collection of “structural” axioms such as associativity, commuta-
tivity, and identity. Any theory (S,<,Σ,E0 ∪ A) can then be desugared into a
standard mel theory (Σ,E) in the way explained above.

2.2 Executable MEL Theories and Maude

The point of the decomposition E = E0 ∪ A is that, under appropriate exe-
cutability requirements explained in [18,22], such as confluence, termination, and
sort-decreasingness modulo A, a mel theory (S,<,Σ,E0∪A) becomes executable
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by rewriting with the equations and memberships E0 modulo the structural ax-
ioms A. Furthermore, the initial algebra T(Σ/E) then becomes isomorphic to the
canonical term algebra CanΣ/E0,A whose elements are A-equivalence classes of
ground Σ-terms that cannot be further simplified by the equations and mem-
berships in E0.

An important consequence of (S,<,Σ,E0 ∪ A) satisfying the confluence,
termination and sort-decreasingness requirements is that both term equality and
term membership become decidable by rewriting [18]. Furthermore, mel theories
satisfying these executability properties can be executed in high-performance
languages such as Maude [22] that support execution of mel theories modulo
any combination of associativity and/or commutatitvity and/or identity axioms.

The syntax of Maude follows very closely the mathematical syntax for mel
described above, including support for order-sorted notation. In the rest of the
paper we will at times present fragments of mel specifications in Maude syntax.
Such syntax is essentially self-explanatory, but we give here a few explanations to
help the reader. First of all, basic notions such as sorts, subsorts, operators, equa-
tions, and memberships are declared with respective keywords sort, subsort,
op, eq (or ceq for conditional equations), and mb (or cmb for conditional mem-
berships). Second, associativity and/or commutativity and/or identity axioms
are not declared explicitly as equations, but are instead declared as attributes of
the binary operator enjoying them in the corresponding op declaration with the
assoc, comm, and id: keywords. Third, the syntax of an operator need not be
prefix syntax: it can also be user-definable “mixfix” syntax, where the argument
places are indicated by underbars. For example, a user can define an if-then-else
operator with syntax if then else fi.

3 MOF and its Semantic Issues

In this section, we give an informal description of the MOF standard by de-
scribing the MOF architecture and the main concepts in the MOF metamodel.
We also discuss several semantic issues that are then addressed by the formal
algebraic semantics presented in subsequent sections.

3.1 The MOF Modeling Framework

MOF is a semiformal approach to define modeling languages. It provides a four-
level hierarchy, with levels M0, M1, M2 and M3. Each entity M at level i repre-
sents a model3. M is constituted by a collection of typed elements e, which can
be simple data values or objects. Types T for the elements e that constitute a
model M at level i are defined as collections of elements in a metamodel M at
level i+1. There are two different kinds of types T : data types and object types.
We indicate that an element e is typed with a type T as e : T . This relation is
3 In the MOF framework, the concept of a model M is conceptually specialized de-

pending on the specific metalevel, in which a model is located: model at level M1,
metamodel at level M2 and meta-metamodel at level M3; as shown below.
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specialized for simple data values as the isValueOf relation, and for objects as
the isInstanceOf relation. In addition, a model M is said to conform to a meta-
model M [8], when the elements that constitute the model are properly typed.
We call this relation conformance relation between a model M and a metamodel
M and we denote it by M : M .

M3 

M2 

M1 

Component  
metamodel 

conf2 

EMOF  
metamodel 

s1 

c1 

c2 

c3 

c4 

s2 

s1 
c1 

c2 

c3 

c4 

s2 

conf1 

Fig. 1. The MOF framework.

Fig. 1 illustrates models at each level M1-M3 of the MOF framework. Each
model is encircled by a boundary and tagged with a name. For example, conf1
at level 1, which is a model corresponding to a configuration of components. The
isInstanceOf relation between objects of a model M and the metarepresentation
of object types in a metamodel M , and the conformance relation between a
model M and the corresponding metamodel M are depicted with dashed arrows.
We consider levels M1–M3 out of the MOF hierarchy in this work, which are:

M1 level. This level contains metarepresentations of models. A model is a col-
lection of data elements that describe the elements of some physical, abstract
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or hypothetical reality by using a well-defined language. In addition, a model
is suitable for computer-based interpretation, so that development tasks can
be automated. For example, the model conf1 in Fig. 1 defines a configuration
of client/server components describing how they are interconnected. Each
icon corresponds to a component indicating whether it is a client or a server.
We use this graphical representation to enhance the visualization of a model.
In addition, current technology permits using both textual and graphical
concrete syntax for MOF models enhancing the definition of domain-specific
languages for end-users.

M2 level. This level contains metarepresentations of metamodels. A metamodel
is a model specifying the abstract syntax of a modeling language. As an
example, we take a metamodel for defining configurations of components as
shown in Fig. 1 in UML notation. The types of a configuration are called
Component, Server and Client. The Component object type is abstract so
that it cannot be instantiated. This object type is specialized into a Client
and a Server object types. The model conf1 at level 1 conforms to the
component metamodel M at level 2.

M3 level. An entity at level 3 is the metarepresentation of a meta-metamodel. A
meta-metamodel specifies a modeling framework, which could also be called a
modeling space. In MOF, there is only one such meta-metamodel, called the
MOF meta-metamodel (usually also called the MOF metamodel). Within
the MOF standard, we focus on the Essential MOF (EMOF) specification
that describes the meta-metamodel, which appears simplified in Fig. 1. In the
MOF modeling framework one can define many different metamodels. Such
metamodels, when represented as data, must conform to the MOF meta-
metamodel. In particular, the component metamodel conforms to the MOF
meta-metamodel. Other metamodels that are likewise specified in MOF are
the UML2 metamodel to define UML models, the OWL metamodel to de-
fine ontologies [35], the AADL metamodel to specify real-time distributed
computer systems [51], and so on. The fact that all these metamodels are
specified within the single MOF framework greatly facilitates systematic
model/metamodel interchange and integration.

3.2 Discussion and Open Problems

At present, important MOF concepts such as those of metamodel, model and
conformance relation do not have an explicit, syntactically characterizable sta-
tus in their data versions. For example, we can syntactically characterize the
correctness of the data elements of a metamodel M , but there is no explicit
type that permits defining M as a well-characterized value, which we call a
model type. In addition, in the MOF standard and in current MOF-like mod-
eling environments, such as Eclipse Modeling Framework or MS DSL tools, a
metamodel M does not have a precise mathematical status. Instead, at best, a
metamodel M is realized as a program in a conventional language as, for exam-
ple, the Java code that is generated for a metamodel M in EMF. This informal
implementation corresponds to what we call a metamodel realization. In these
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modeling environments, the conformance relation between a model definition M
and its corresponding metamodel M is checked by means of indirect techniques
based on XML document validation or on tool-specific implementations in OO
programming languages. Therefore, metamodels M and models M cannot be
explicitly characterized as first-class entities in their data versions, and the se-
mantics of the conformance relation remains formally unspecified. This is due
to the lack of a suitable reflective formal framework in which software artifacts,
and not just their metarepresentations, can acquire a formal semantics.

In this work, we formalize the notions of: (i) model type, (ii) metamodel
realization, and (iii) conformance relation, by means of a reflective semantics
that associates a mathematical metamodel realization to each metamodel M in
MOF.

4 An Algebraic Semantics for MOF

The practical usefulness of a formal semantics for a language is that it pro-
vides a rigorous standard that can be used to judge the correctness of an imple-
mentation. For example, if a programming language lacks a formal semantics,
compiler writers may interpret the informal semantics of the language in differ-
ent ways, resulting in possibly inconsistent and diverging implementations. For
MOF, given its genericity, the need for a formal semantics that can serve as
a rigorous standard for any implementation is even more pressing, since many
different modeling languages rely on the correctness of the MOF infrastructure.
In this section, we propose an algebraic, mathematical semantics for MOF in
membership equational logic (mel).

4.1 A High-Level View of the MOF Algebraic Semantics

A metamodel M describes a metamodel realization that contains a model type.
What this metamodel describes is, of course, a set of models. We call this the
extensional semantics of M , and denote this semantics by JM K. Recall that we
use the notation M : M for the conformance relation. Using this notation, the
extensional semantics can be informally defined as follows:

JM K = {M | M : M }.

We make the informal MOF semantics just described mathematically precise
in terms of the initial algebra semantics of mel. As already mentioned in Section
2, a mel specification (Σ,E) has an associated initial algebra T(Σ,E). We call
T(Σ,E) the initial algebra semantics of (Σ,E), and write

J(Σ,E)KIAS = T(Σ,E).

Let JMOFK denote the set of all MOF metamodels M , and let SpecMEL
denote the set of all mel specifications. The reason why we define JMOFK as
a set of metamodels M , instead than as a set of model types JM K is because,
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as already mentioned, the mathematical status of M is, as yet, undefined, and
is precisely one of the questions to be settled by a mathematical semantics. In-
stead, well-formed metamodels M are data structures that can be syntactically
characterized in a fully formal way. Therefore, the set JMOFK, thus understood,
is a well-defined mathematical entity. Our algebraic semantics is then defined as
a function

A : JMOFK −→ SpecMEL

that associates to each MOF metamodel M a corresponding mel specification
A(M ). Our informal semantics JM K is now made mathematically precise. Recall
that any mel signatureΣ has an associated set S of sorts. Therefore, in the initial
algebra T(Σ,E) each sort s ∈ S has an associated set of elements T(Σ,E),s. The
key point is that in any mel specification of the form A(M ), there is always a
sort called Model , whose data elements in the initial algebra are precisely the
data representations of those models that conform to M . That is, Model is the
syntactical representation of the model type JM K associated to a metamodel M .
Therefore, we can give a precise mathematical semantics to our informal MOF
extensional semantics by the defining equation

JM K = TA(M ),Model .

Note that our algebraic semantics gives a precise mathematical meaning to
the entities lacking such a precise meaning in the informal semantics, namely,
the notions of: (i) model type JM K, (ii) metamodel realization A(M ), and (iii)
conformance relation M : M . Specifically, we associate to a metamodel M a
precise mathematical object, namely, the mel theory A(M ), constituting its
metamodel realization. The structural conformance relation between a model
and its metamodel is then defined mathematically by the equivalence

M : M ⇔ M ∈ TA(M ),Model .

4.2 Reflective Bootstrapping of the Algebraic Semantics

The algebraic semantics that we propose exploits the reflective features of both
MOF and mel. This allows a modular, stepwise approach in the definition of
the semantic function A. This has many advantages, both theoretically and in
the practical realization of A in the MOMENT2 tool.

The key observation about reflection in MOF is that the MOF meta-meta-
model at level 3 is also a meta-model at level 2, which can be treated just as any
other metamodel. In particular this means that

MOF ∈ JMOFK.

It also means that our algebraic semantics function A : JMOFK −→ SpecMEL
applies in particular to MOF, that is, that there is a mel theory A(MOF).
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The mel theory A(MOF) is enormously useful to bootstrap our algebraic
semantics because of the following remarkable property. Since for any metamodel
M we have the identity JM K = TA(M ),Model , in particular for the metamamodel
MOF we have the identity

JMOFK = TA(MOF),Model .

This suggests the following bootstrapping strategy to define the semantic func-
tion A : JMOFK −→ SpecMEL.

1. First define the mel theory A(MOF). This automatically gives us the domain
JMOFK of our desired semantic function A : JMOFK −→ SpecMEL as the
algebraic data type JMOFK = TA(MOF),Model .

2. Once the domain JMOFK of A is thus algebraically represented, proceed to
give a recursive definition of the semantic function A for any M ∈ JMOFK.

Step (1) is described in Section 4.3, and Step (2) in Section 4.4.
There is, however, a third very important step, namely, to also exploit re-

flection in the target logical framework mel. Reflection in mel means that there
is a universal mel theory U ∈ SpecMEL that can simulate the deduction of all
finitary mel theories, including its own deduction [24].

In particular, the universal theory U has a sort Module that meta-represents
all finitary mel theories, including U itself. This means that there is an algebraic
data type SpecMEL whose elements are meta-representations of mel theories,
so that given any finitary mel theory (Σ,E), we have (Σ,E) ∈ SpecMEL iff
(Σ,E) ∈ SpecMEL, where (Σ,E) is the meta-representation of (Σ,E). Specifi-
cally, the algebraic data type SpecMEL has the following initial algebra semantics
definition:

SpecMEL = TU,Module .

All this means that we can take a third step in our bootstrapping process,
namely, to realize our semantic function A as an equationally defined function

A : JMOFK −→ SpecMEL

mapping each metamodel M to the metarepresentation A(M ) of the mel theory
A(M ).

At the theoretical level, this third bootstrapping step means that the entire
algebraic semantics of MOF can be defined within the semantic framework of
mel. At the practical level it also means that, because of the efficient support in
Maude for key functionality of the universal mel theory U by means of Maude’s
META-LEVEL module, the function A can be efficiently implemented in Maude. In
fact, this is exactly how the core functionality of the MOMENT2 tool has been
developed, as explained in Section 4.4.

In Sections 4.3 and 4.4 we give a high level summary of the definition of
the A semantic function, as achieved by the three reflective bootstrapping steps
described above. A complete definition of A is available in [11]4. In Section 4.5
we explain how A is used in the EMF by means of MOMENT2.
4 In the dissertation, the A function is denoted by reflectMOF.
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4.3 The MEL Theory A(MOF)

As already mentioned, we denote the metamodel that constitutes the meta-
metamodel of the MOF framework by MOF. MOF is itself a MOF metamodel,
since MOF : MOF. In this section we take the first bootstrapping step described
in Section 4.2, namely, to define the mel theory A(MOF). That is, we first
define A for a single metamodel, namely MOF. The A(MOF) theory defines
the JMOFK type as the set of metamodels M , which can be viewed as both
graphs and terms. This theory has been manually defined as a first step in the
bootstrapping process needed to define the A function in general.

The A(MOF) theory provides the algebraic representation for both object
types and model types for defining metamodels M . In this theory, object types
are used to describe a metamodel M : MOF as a collection of objects. Objects
are defined by using the following sorts: Oid for object identifiers; Cid for class
names; and PropertySet for multisets of comma-separated pairs of the form
(property : value), which represent property values. Objects in a metamodel
M are then syntactically characterized by means of an operator

op < : | > : Oid Cid PropertySet -> Object .

These sorts, subsorts and operators are defined, in Maude notation, as follows:

sorts Oid Cid Property PropertySet Object .

subsort Property < PropertySet .

op noneProperty : -> PropertySet .

op _‘,_ : PropertySet PropertySet -> PropertySet

[assoc comm id: noneProperty] .

In the A(MOF) theory, a metamodel M that conforms to the meta-metamodel
MOF, that is, such that M : MOF, can be represented as a collection of objects
by means of a term of sort Model. A term of sort Model is defined by means of
the following constructors, in Maude notation:

op none : -> ObjCol .

op __ : ObjCol ObjCol -> ObjCol [assoc comm id: none] .

op <<_>> : ObjCol -> Model .

where the Object sort is a subsort of the ObjCol sort. That is, we first form
a collection of objects of sort ObjCol using the associative and commutative
multiset union operator 5 and then we wrap the set of objects by using the
<< >> constructor to get the desired term of sort Model.

Each of the modeling primitives that constitute the MOF metamodel is spec-
ified in the A(MOF) theory by means of sorts, subsorts and operators. As an
example, we focus on the Class and Property object types of the MOF meta-
model.
5 This binary operator symbol has empty syntax (juxtaposition).
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Class object type. Object types are the central concept of MOF to model entities
of the problem domain in metamodels. An object type is defined in a metamodel
M as a Class instance and a set of Property instances. The object type Class
contains meta-properties like name, which indicates the name of the object type,
ownedAttribute, which indicates the properties that belong to the Class instance,
and superClass, which indicates that the object type is defined as a specializa-
tion of the object types that are referred to by means of this property. The
Class object type is specified as a sort Class, such that Class < Cid, and a con-
stant Class : -> Class. Each of the class properties is defined as a constructor
for the sort Property. For example, to define the name property, we have the
constructor name‘: : String -> Property; to define the isAbstract property, we
have the constructor isAbstract‘: : Bool -> Property; to define the ownedAt-
tribute property, we have the constructor ownedAttribute‘: : OrderedSet{Oid}
-> Property; and to define the superClass property, we have the constructor
superClass‘: : Set{Oid} -> Property.

In the component metamodel, the Class instance that defines the object type
Component in the metamodel M is defined as the term

< ’class0 : Class | name : "Component", isAbstract : true,

ownedAttribute : .. >

where ’class0 is an object identifier.

Property object type. A model can be viewed as a graph where the collection of
nodes is constituted by the collection of attributed objects of the model and the
edges are defined by means of directed links between objects, defined as object-
typed property values. Indeed, a model is an enriched graph where edges can
also be defined as structural containments so that hierarchies of nested objects
can also be represented.

A Property instance in a metamodel M enables the definition of an attribute
in an object or an association end between objects in a model definition M : M ,
one level down in the MOF framework. A Property instance defines the type of
the property, where the type is represented as a DataType instance (basic data
values and enumerations) or as a Class instance (object types). Properties that
are typed with datatypes are attributes, and properties that are typed with object
types are association ends or references. An association end defines a unidirec-
tional association between two classes. Bidirectional associations are defined by
means of two opposite association ends. Composition associations can be defined
by indicating that the association end that points to the composite class has its
meta-property isComposite set to true. Other meta-properties, such as lower,
upper, isOrdered and isUnique, constitute the multiplicity metadata of a specific
property.

The constructors that permit defining objects of the Property object type
are defined, in Maude notation, as follows6:

6 We represent the name of the Property class as Prop to avoid name collisions with
the aforementioned sort Property.
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sort Prop . subsort Prop < TypedElement .

op Prop : -> Prop .

op lower‘:_ : Int -> Property .

op upper‘:_ : Int -> Property .

op isOrdered‘:_ : Bool -> Property .

op isUnique‘:_ : Bool -> Property .

op opposite‘:_ : Oid -> Property .

op opposite : -> Property .

The Property instance that defines the metaproperty name of the object type
Component in the metamodel M of the example is represented by the term

< ’prop : Prop | name : "name", type : ’String, class : ’class0 >.

where ’String is the identifier of the object that represents the built-in String
type. We have taken into account the modeling primitives that constitute the
Essential MOF metamodel, including simple data types and enumeration types.
A detailed specification is provided in [11]. The metamodel M of the example
is defined as a term of sort Model in the A(MOF) theory in Fig. 2.

class0 : Class 

name = “Component” 
isAbstract = true 

prop0 : Property 

name = “name” 
class 

ownedAttribute 

class1 : Class 

name = “Client” 
isAbstract = false 

class2 : Class 

name = “Server” 
isAbstract = false 

superClass 
superClass prop1 : Property 

name = “connectsTo” 
lower = 0 
upper = -1 
isOrdered = false 
isUnique = true 

ownedAttribute 

type 

class 

String : PrimitiveType 

name = “String” 

type 

Fig. 2. Metamodel M viewed as a graph and as a term.

4.4 Reflective Algebraic Semantics of MOF Metamodels

Once the A(MOF) theory is defined, we focus on the Model sort in this theory,
whose carrier in the initial algebra defines the JMOFK model type, i.e., the model
type whose elements are metamodels:

JMOFK = TA(MOF),Model .
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Note that, since JMOFK is the set of all metamodels M in MOF, this means
that

MOF ∈ JMOFK.

We then define the value of the function A on any metamodel M , such
that M ∈ JMOFK, as its corresponding mel theory A(M ). This corresponds
to the second bootstrapping step described in Section 4.2. Given a metamodel
M , the A(M ) theory defines the JM K semantics as the set of models M that
are constituted by a collection of typed objects, which can be viewed as a graph
where objects correspond to nodes, object attributes to node attributes and
object-typed properties to edges. In addition, nodes can be nested by means of
object-typed properties that are defined as isComposite. The metamodel M of
a model M corresponds to the type graph of the graph M , where object types
constitute node types enabling node inheritance by means of class inheritance
relationships.

In the A(M ) theory, the algebraic notion of object type is generically given
by means of the sort Object . Terms of sort Object are defined by means of the
constructor

<_:_|_> : Oid Cid PropertySet -> Object

which is analogous to the constructor for objects that has been presented in the
A(MOF) theory.

Models M : M are given as collections of objects, which are instances of a
specific object type OT. Object types are defined in a metamodel M : MOF, as
a collection of objects OT ⊆M . Defining the algebraic semantics of an object
type involves the definition of the object identifiers and the properties that may
be involved in the definition of a specific object in a model M : M . Object type
specialization relationships must be also taken into account. Therefore, we need
to define the carrier of the sorts Oid , Cid and PropertySet for a specific object
type definition.

Consider, for example, the metamodel M in Fig. 1. In subsequent paragraphs,
we use this example to obtain the theory that defines the Component, Server
and Client object types.

Object Type Names. In the A(M ) theory, each Class instance in M is defined
as a new sort and a constant, both of them with the name of the class. Abstract
classes are defined as those that cannot be instantiated. The name of an abstract
class C is not specified with a constant C : C, so that objects in a model M ,
such that M : M , cannot have C as their type.

In the example of the component metamodel, the A function generates a sort
for the abstract object type Component in Maude notation as follows:

sort Component .

The concrete object types Client and Server are formalized as sorts and
constants as follows:
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sorts Client Server .

op Client : -> Client .

op Server : -> Server .

where the specialization of the Component class into the Client and Server
classes is formalized as subsort relationships between the sorts of the corre-
sponding classes:

subsorts Client Server < Component .

Object Type Properties. An object type is defined with a collection of Property
instances describing its meta-properties. A Property instance is associated with
a specific type t in the metamodel M , which is defined as an object t : Type.
Depending on the type t of a property, we can distinguish two kinds of properties:

– Value-typed Properties or Attributes. Properties of this kind are typed with
DataType instances, which can represent either a simple data type or an
enumeration type. Value-typed properties define the attributes of nodes in
a graph.

– Object-typed Properties or Association Ends. Properties of this kind are
typed with object types, enabling the definition of unidirectional labelled
edges in a graph.

The type meta-property together with the multiplicity metadata define a
set of specific constraints on the acceptable values for the property type. These
constraints are taken into account in the algebraic type that is assigned to the
property by means of OCL collection types, as indicated in Table 1. In this
table, the Set{Oid} sort corresponds to sets of identifiers that may be empty by
means of the constant empty-set, while the NeSet{Oid} sort corresponds to sets
of identifiers that cannot be empty, i.e., it excludes the constant empty-set. In
the example, the Component object type is specified in the theory A(M ), in
Maude notation, as follows:

op name‘:_ : String -> Property .

op connectsTo‘:_ : Oid -> Property .

op connectsTo : -> Property .

where the constant connectsTo permits defining unset connectsTo properties in
a model M since it is defined with lower bound 0 in the metamodel M .

Object Type Specialization Relation. A specialization is a taxonomic relationship
between two object types. This relationship specializes a general object type into
a more specific one. In the example, we algebraically define the specialization
relationship between the object types Client and Component by means of the
subsort Client < Component. The supersorts of the resulting subsort hierarchy
are defined as subsorts of the Cid sort, for object type name sorts and object
identifier sorts, respectively.
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Type Lower Bound Upper Bound isOrdered isUnique

∅, Oid 0 1 - -
Set{Oid} 0 * false true

OrderedSetOid} 0 * true true
Bag{Oid} 0 * false false

Sequence{Oid} 0 * true false

Oid 1 1 - -
NeSet{Oid} 1 * false true

NeOrderedSetOid} 1 * true true
NeBag{Oid} 1 * false false

NeSequence{Oid} 1 * true false

Table 1. OCL types for encoding multiplicity constraints in properties.

Algebraic Semantics of Object Types. The algebraic semantics of an object type
is then given by the set of all the objects that can be defined either as instances of
the object type, i.e., a class, or as instances of any of its subtypes. The algebraic
semantics of an object type definition OT is defined as follows:

JOT K = {o | o ∈ TA(M ),Object ∧ class(o) ∈ TA(M ),ClassSort(OT)}.

where class is an operator that obtains the class name constant of a given object,
and ClassSort is an operator that obtains the sort that corresponds to the object
type in A(M ). The isInstanceOf relation o : OT is defined as follows:

o : OT ⇔ o ∈ JOT K.

Algebraic Semantics of MOF Metamodels. The A(M ) theory constitutes the
metamodel realization of the metamodel M . This theory provides the model
type JM K, which is syntactically represented by the sort Model in A(M ). JM K
is the model type of collections of typed objects that have both a graph and a
term structure. The semantics of the JM K model type is defined by the equation

JM K = TA(M ),Model

and the structural conformance relation between a model definition M and its
corresponding model type M is then formally defined by the equivalence

M : M ⇔M ∈ JM K.

Embedding MOF Reflection into MEL Logical Reflection. We are now
ready to discuss the third, final bootstrapping step, mentioned in Section 4.2. The
logical reflective features of mel [22,24], particulary its universal theory U , make
it possible to internalize the representation function mapping the specifications
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of some other formalism to mel as an equationally defined function within mel
(see [23]). In particular this can be done for our representation function for MOF

JAK : MOF −→ SpecMEL.

Note that the domain of the function A, since it is the algebraic data type
JMOFK = TA(MOF),Model defined by initial algebra semantics in Section 4.3, is
already internalized within mel. However, the set of (finitary) mel specifications
SpecMEL is a metalevel entity and therefore outside the object level of mel, that
is, not directly definable as an algebraic data type in mel. However, this set is
representable at the object level inside the universal theory U by means of a
faithful representation mapping

SpecMEL −→ SpecMEL : (Σ,E) 7→ (Σ,E)

where, by definition, the set SpecMEL is the algebraic data type

SpecMEL = TU,Module

corresponding to the elements of sort Module in the initial algebra of the univer-
sal theory U . Then, the reflective internalization of the MOF algebraic semantics
A becomes an equationally defined function

A : JMOFK −→ SpecMEL : M 7→ A(M )

so that the term A(M ), for a specific metamodel M , metarepresents the mel
theory A(M ).

But since the universal theory U faithfully simulates all the deductive ca-
pabilities of an object level theory (Σ,E) by means of its meta-representation
(Σ,E) as data [24], this means that, given a metamodel M in MOF, anything
we can do with its associated mel theory A(M ) we can likewise perform at
the metalevel with its meta-representation as data A(M ). Furthermore, in an
efficient implementation of the relevant deductive functionality of U such as the
one provided in Maude’s META-LEVEL module [22], the difference in computa-
tion time between performing a deduction in A(M ) or performing the analogous
deduction at the metalevel with A(M ) is negligible in practice.

In this way, the term A(M ), that for a specific metamodel M meta-represents
the mel theory A(M ), can then be used in different model-driven development
scenarios, as illustrated in Section 5. The function A is completely defined in
[11] and is implemented as A in MOMENT2. That the function A is equationally
definable follows from the general principle that A is a computable function
and that all computable functions can be equationally defined by a finite set of
confluent and terminating equations [6]. In practical terms, this is just a matter
of representing all the recursive definitions given for in A earlier in Section 4.4
as corresponding equational definitions at the metalevel.
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4.5 MOMENT2 and the Eclipse Modeling Framework

MOMENT2 is a suite of tools, built on top of the Eclipse Modeling Framework
(EMF), that provides support for formal model-driven development. The math-
ematical foundations of this tool suite directly rely on the algebraic semantics
A of MOF metamodels, presented in this work, which can be neatly exploited
in the EMF, a widely used MOF-like metamodeling framework, by means of
OMG standards, such as MOF, OCL and QVT. In this way, the formal analysis
techniques that are presented in Section 5 can be applied to model-driven devel-
opment practices in industrial environments, such as Rational Software Archi-
tect [30] or OSATE AADL [51]. In particular, MOMENT2 provides support for
verifying metamodel conformance with OCL constraint satisfaction [16], QVT-
like model transformations and their verification based on Maude’s reachability
analysis and Maude’s LTL model checker, as explained in [15].

The integration of MOMENT2 into the EMF is based on a metamodel-
independent, automatic bridge7 between EMF and Maude, so that EMF models
M , such that M : M , can be isomorphically represented as terms of sort Model
in the theory A(M ). That is, there is a mapping T that formalizes an EMF
model M that conforms to a metamodel M as a term of sort Model in the the-
ory A(M ), and there is an inverse mapping T−1 that parses a term of sort Model
in the theory A(M ) and provides its EMF representation back again so that
T
−1(T(M)) = M . Since MOF metamodels M are given as models M : MOF in

EMF, T can likewise be applied to them, so that the algebraic semantics A of a
MOF metamodel M in the EMF is given by the the theory A(T(M )).

Fig. 3 shows a summary of the formalization of the metamodel M of the ex-
ample and a configuration of components as a model M in the formal framework,
i.e., as a term of sort Model. In this way, MOMENT2 enables the prototyping
and experimentation of formal model-driven development techniques and the
formal analysis of model-based languages and models in Maude, as shown in
Section 5.

5 Applications in Model-Driven Development Scenarios

In this Section we present some model-driven scenarios in which the algebraic
semantics A of MOF metamodels plays an important role. We illustrate the
application of A by using Maude and its support for formal reasoning in the
running example of model-based software architecture reconfigurations. These
techniques are internally used in MOMENT2, so that they can be applied in
EMF-based environments through OMG standards and without explicit contact
with the underlying mel and Maude.

Section 5.1 presents some scenarios where A provides the formal founda-
tions for techniques and practices widely used in the model-driven community:
metamodel conformance, semantics of MOF domain-specific languages, model
7 This bridge uses the API of the Maude Development Tools [37] for integrating Maude

into Eclipse.
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M2 
M1 

s1 

c1 

c2 

c3 

c4 

s2 

Fig. 3. EMF-Maude mappings in MOMENT2.

transformations and model management. Section 5.2 focuses on the formal impli-
cations and advantages of our approach where formal analysis is made available
within modeling environments: static analysis based on structural constraint sat-
isfaction, and dynamic analysis based on reachability analysis and LTL model
checking.

5.1 Model-Driven Development Scenarios

Model-driven development techniques can be formalized in our approach as fol-
lows.

Model conformance. MOMENT2 provides an automated, deductive mecha-
nism to check the structural conformance relation M : M by relying on Maude’s
implementation of mel. Consider the metamodel M and the model conf1 in Fig.
3, given as a constant conf1. We can automatically check whether the model
conf1 conforms to the metamodel M , formalized as the model type JM K and
syntactically represented by the sort Model in the theory A(M ), by evaluating
the following membership in Maude:

red conf1 :: Model .

result Bool: true
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Rewriting logic semantics of domain-specific languages. A MOF-based
domain-specific language (DSL) provides modeling primitives that can be used to
define concepts in a given domain. For example, real-time embedded systems can
be specified with AADL [51], web service workflows can be defined with BPEL
[44], or ontologies can be defined with OWL [35]. The abstract syntax of these
languages is provided as MOF metamodels, their concrete syntax can be either
textual or graphical, and their dynamic semantics can be defined either with
approaches for defining the semantics of programming languages, with frame-
works that provide library support for manipulating models, such as Kermeta
[57], or with graph transformation systems [50,27,26]. The last one constitutes
an interesting candidate for defining model-based DSLs due to the graph-based
nature of models and to the formalization of the approach.

A MOF metamodel M is used to define concepts in a particular domain,
such as components in our running example, where software architectures are
configurations of components that may be connected to each other through the
connectsTo association end. In this section, we enrich the algebraic semantics
A(M ) with a rewrite rule to define a dynamic semantics for component configu-
rations. In particular, we add a dynamic connection load balancing strategy, so
that a server component should not have more than two connections at a time,
i.e., when a component has more than two connections, the spare connections
are forwarded to other components with less than two incoming connections. We
depict the reconfiguration as a graph transformation rule in Fig. 4, where a rule
is defined with a left-hand side (LHS) pattern and a right-hand side (RHS) pat-
tern. Each pattern is constituted by nodes that represent Component objects in
a model (graph) M and edges representing connectsTo references between them.
A reconfiguration can be applied whenever the LHS pattern of the rule can be
matched against a specific configuration M of components, and then the edges
are manipulated as follows: an edge in the LHS and not in the RHS is removed
from the configuration, an edge not in the LHS but in the RHS is added, the
rest of edges remain unmodified. Marked edges indicate that the edges must not
exist in order to apply the rule; this notion is known as a negative application
condition in the graph transformation community.

Fig. 4. Reconfiguration rule.

The graph-theoretic nature of models is axiomatized in our algebraic seman-
tics as a set of objects modulo the associativity, commutativity, and identity
axioms of set union. The semantics of a reconfiguration can then be naturally
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expressed as a rewrite theory [38] extending the algebraic semantics A(M ) of our
metamodel specification with rewrite rules that are applied modulo the equa-
tional axioms. In this way, the above graph-transformation rule can be summa-
rized at a high level as follows:

op free-reconfiguration : Model -> Model .

crl free-reconfiguration(M) =>

free-reconfiguration(<< < O1 : C1 | PS1 >

< O2 : C2 | connectsTo : O1, PS2 >

< O3 : C3 | connectsTo : O1, PS3 >

< O4 : C4 | connectsTo : O5, PS4 >

< O5 : C5 | PS5 > OC >>)

if << < O1 : C1 | PS1 >

< O2 : C2 | connectsTo : O1, PS2 >

< O3 : C3 | connectsTo : O1, PS3 >

< O4 : C4 | connectsTo : O1, PS4 >

< O5 : C5 | PS5 > OC >> := M /\ nac(O5, M) .

where the expression P := M matches the pattern P to the model variable M, O1,
O2, O3, O4, O5 : Oid, C1, C2, C3, C4, C5 : Component, PS1, PS2, PS3, PS4, PS5

: PropertySet, OC : ObjCol, M : Model, the LHS of the graph transformation rule
in Fig. 4 corresponds to the pattern in the P := M expression, its RHS corresponds
to the RHS of the rewrite (after the => symbol), and the nac(O5, M) condition
corresponds to the negative application condition that enables the application
of the rule:

op nac : Oid Model -> Bool .

eq [satisfiedNAC] : nac(O1, M) = true [owise] .

eq [counterexampleNAC] : nac(O1,

<< < O1 : C1 | PS1 >

< O2 : C2 | connectsTo : O1, PS2 >

< O3 : C3 | connectsTo : O1, PS3 > OC

>>

) = false .

Model transformations and operators for model management. Due
to the executability of MEL specifications in Maude, the realization of MOF
metamodels as MEL theories enhances the formalization and prototyping of
model-driven development processes, such as:

– Model transformations [53], where translations of models between different
modeling languages can be performed.

– Model-driven roundtrip engineering [10,46], where a model that constitutes
the abstract syntax tree of a program can be translated into a model that
specifies the software at a higher level of abstraction. Code may be generated
again from recovered models in an automated way. An important issue is to
keep both the abstract description and the code synchronized to deal with
changes in a consistent way.
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– Model traceability, where traceability is important to keep track of the
changes performed by means of model transformations.

– Model management [7], where models can be manipulated by means of
generic operators that rely on mappings between models. These operators
permit, for example, merging models, generating mappings between mod-
els, and computing differences between models; they can be used to solve
complex scenarios such as the roundtrip problem.

We illustrate the application of MOMENT2 to trace component reconfigu-
rations, which can be applied to adapt a configuration to a given criteria, as the
load balance strategy discussed above. We consider a traceability metamodel
T to define mappings between components as models T , such that T : T . An
equationally defined operator is presented to generate such models.

The metamodel T in Fig. 5 permits defining mappings between components
that may belong to different configurations as TMapping instances. A TModel
instance constitutes the container for all the mappings between two models.
Given configurations conf1 and conf2, a trace model can be defined between
them in order to map the elements that represent the same component in both
configurations. Such mappings can be used to keep track of the changes that have
been applied to the initial configuration or to identify structurally-equivalent
elements in a model management scenario as presented in [12,14].

Fig. 5. Traceability metamodel T and its algebraic realization A(T ).

A model transformation, defined as an equationally defined function, can
be used to automatically generate a trace model between two configurations.
The following match operator takes two component configurations (the models
conf1 and conf2 in Fig. 1) as inputs and generates a trace model with mappings
between the components of both configurations. The match operator uses an
auxiliar operator $match that, in addition, takes a traceability model that is
initialized with a TModel instance, and a natural number that is used to create
object identifiers. The $match operator adds a new link whenever two compo-
nents with the same name are found. More complex structural criteria can be
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used to match objects by simply traversing the objects that constitute the model
by means of matching modulo associativity and commutativity axioms.

op match : Model Model -> Model{Trac} .

eq match(M1,M2) = $match(M1,M2,init-trac,0) .

op $match : Model Model Model{Trac} Nat -> Model{Trac} .

eq $match(M1,M2,TM, N) = TM [owise] .

eq $match( << < O1 : C1 | name : Name, PS1 > OC1 >>,

<< < O2 : C2 | name : Name, PS2 > OC2 >>,

<< < O3 : TModel | links : Set, PS3 > OC3 >>, N

) =

$match( << OC1 >>, << OC2 >>,

<< < O3 : TModel | links : Set -> including( getNewOid(N) ), PS3 >

< getNewOid(N) : TMapping | domain : O1, range : O2 > OC3 >>,

N + 1 ) .

where Model{Trac} is the sort of the model type JT K in the theory A(T ),
init-trac is a constant that represents a trace model with a single TModel
instance, the getNewOid function obtains a new object identifier from a natu-
ral number, and the including operator adds an element to a set, as in OCL.
The trace model betweeen the configurations conf1 and conf2 can be gener-
ated by means of the command red match(conf1, conf2). The output model is
illustrated in Fig. 6.

conf2 

s1 

c1 

c2 

c3 

c4 

s2 

s1 

c1 

c2 

c3 

c4 

s2 

conf1 

match(conf1,conf2) 

match(conf1,conf2) 

Fig. 6. Trace model and its term representation.

5.2 Formal Analysis Scenarios

In this subsection, we present some applications of the algebraic semantics A for
MOF metamodels to formal reasoning of model-driven development practices. In
particular, static and dynamic anlysis of model-based domain-specific languages
(DSLs).
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Static analysis. Once a metamodel M is realized as a theory A(M ), more
axioms can be added to A(M ) in order to enrich the semantics of the metamodel
M or to add semantics to the corresponding DSL. These axioms may correspond
to OCL constraints as shown in [16] and can be used to verify that a specific
model satisfies certain semantic properties.

For example, we can define a boolean predicate over a model that specifies
that client components do not receive connections from other components in a
specific configuration. This predicate is given as an equationally defined function
that negates the satisfaction of the predicate when the property is not satisfied
and that asserts its satisfaction in any other case:

op checkClientServer : Model -> Bool .

eq checkClientServer( << < O1 : C1 | connectsTo : O2, PS1 >

< O2 : Client | PS2 > OC >> ) = false .

eq checkClientServer( M:Model ) = true [owise] .

where O1, O2: Oid, C1 : Component, PS1, PS2: PropertySet, and OC : ObjCol.
The models conf1 and conf2 in Fig. 1 can then be verified as follows:

red checkClientServer(conf1) .

result Bool: true

red checkClientServer(conf2) .

result Bool: false

where conf2 does not satisfy the constraint.

Formal verification of behavioral specifications. The rewriting logic se-
mantics of DSLs, defined by means of A and additional rewrite rules, can also
be used for formal dynamic analysis. Given a specific initial configuration M of
components, we can use Maude’s search command to model check whether or
not all possible reconfigurations of an initial configuration preserve the constraint
checkClientServer, introduced above.

The metamodel realization A(M ), corresponding to Fig. 1, and the rewrit-
ing rule free-reconfiguration presented above define a state transition system,
where states represent configurations M and M ′ of components and transitions
M −→ M ′ are given by one application of the reconfiguration rule. However,
a reconfiguration of this kind could conceivably produce configurations M ′ of
components that do not satisfy the constraint checkClientServer.

In Maude, the search command allows one to exhaustively explore (following
a breadth-first strategy) the reachable state space defined by a state transition
system as the one above, checking if an invariant is violated. We can use the
search command to find out if the reconfiguration free-reconfiguration pro-
duces such an illegal configuration as follows8:

8 We have removed the types of the variables in the RHS of the command (after the
=>+ symbol) for the sake of simplicity.
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search [1] free-reconfiguration(conf1) =>+

free-reconfiguration(<< < O1 : C1 | connectsTo : O2, PS1 >

< O2 : Client | PS2 > OC >>) .

where conf1 is a constant that represents the initial configuration M in Fig. 1.
This command finds a counterexample, conf2 in Fig. 1, where a client component
is connected to another client component. An alternative reconfiguration rule can
be defined to avoid this problem as shown below, by indicating that the node O5

in the graph patterns of the rule in Fig. 4 is of type Server. No counterexamples
are found when running again the search command with the new reconfiguration
rule.

op safe-reconfiguration : Model -> Model .

crl safe-reconfiguration(M) =>

safe-reconfiguration(<< < O1 : C1 | PS1 >

< O2 : C2 | connectsTo : O1, PS2 >

< O3 : C3 | connectsTo : O1, PS3 >

< O4 : C4 | connectsTo : O5, PS4 >

< O5 : Server | PS5 > OC >>)

if << < O1 : C1 | PS1 >

< O2 : C2 | connectsTo : O1, PS2 >

< O3 : C3 | connectsTo : O1, PS3 >

< O4 : C4 | connectsTo : O1, PS4 >

< O5 : Server | PS5 > OC >> := M /\ nac(O5, M) .

Linear temporal logic model checking. Maude also provides a model checker
where properties can be given as Linear Temporal Logic (LTL) formulae [22].
Taking into account the safe-reconfiguration rule that has been added to the
theory A(M ), we can also model check liveness properties, such as the fact that
the server s1 will always have a balanced load L eventually. This property can be
formulated in LTL as � ♦ balanced(”s1 ”,L), where balanced(”s1”, L) is a state
predicate that is satisfied when the server component with name ”s1” has L or
less connections. Following the guidelines provided in [22], we defined a subtheory
inclusion to use Maude’s model checker, defined in the theory MODEL-CHECKER,
into the theory A(M ) that is extended with the rule safe-reconfiguration. The
sort Model is defined as subsort of the sort State, used by the model checker
to represent system states. The predicate symbol balanced is then defined as a
parametric predicate of sort Prop so that the satisfaction relation |= between
system states and state predicates can be equationally defined for the case in
which the state predicate is satisfied:

subsort Model < State .

op balanced : String Nat -> Prop .

eq free-reconfiguration( << < O1 : Server | name : Name, PS1 > OC >> )

|= balanced(Name, L)

= (countBalance(O1, << < O1 : Server | name : Name, PS1 > OC >>) <= L) .
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where countBalance is an equationally defined function that counts the number
of connections to a given component with identifier O1 in the model M:

op countBalance : Oid Model -> Nat .

eq countBalance( O1, M ) = 0 [owise] .

eq countBalance( O1, << < O2 : C2 | connectsTo : O1, PS2 > OC >> ) =

1 + countBalance(O1, << OC >>) .

The model predicate balanced("s1",2) can be used in a LTL formula to model
check that the server "s1" will end up with 2 or less connections as follows:

red modelCheck(safe-reconfiguration(conf1), [] <> balanced("s1", 2)) .

6 Related work

The meaning of the metamodel notion has been widely discussed in the literature,
see for example [36,52,34,48]. There is a consensus that a metamodel can play
several roles: as data, as type or as theory. In this paper, we have formally
expressed each of these roles by means of the notions of metamodel M , model
type JM K, and metamodel realization A(M ), respectively.

The current MOF standard does not provide any guidelines to implement
a reflective mechanism that obtains the semantics of a metamodel. An infor-
mal attempt to realize MOF metamodels as Java programs is provided in the
Java Metadata Interface (JMI) specification [32], which is defined for a previous
version of the MOF standard. A mapping of this kind has been successfully im-
plemented in modeling environments such as the Eclipse Modeling Framework.
By contrast, our A function gives us an executable formal specification of the
algebraic semantics of any EMOF metamodel M .

Although EMOF metamodels can be viewed as simplified UML class dia-
grams, formal approaches for metamodeling need a reflective mechanism, such
as A in our approach, to provide the semantics of modeling languages. This
mechanism is not needed in UML, where the modeling language is fixed. We
focus on several approaches for metamodeling that rely on different formalisms.

The Meta-Modeling Language is a meta-circular language based on the MML
calculus [20], which provides an operational semantics for both UML modeling
constructs and OCL operators. Modeling languages can be precisely defined
in MML by explicitly specifying its abstract syntax, its semantic domain and
a mapping between the concepts involved in both [21]. This mapping can be
viewed as the application of the function A to a specific metamodel M .

Alloy [31] is a declarative language based on first-order relational logic in
which systems with constraints can be modeled. The Alloy analyzer [1] provides
an automated mechanism for constraint satisfaction with two main function-
alities: simulation for producing valid instances of an Alloy specification and
assertion for verifying constraints. [4] provides an encoding of EMOF metamod-
els with OCL constraints into Alloy so that the Alloy analyzer [1] is used to
generate models that conform to a metamodel (automated test case generation)
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and to verify that OCL constraints can be satisfied. Counterexamples and logical
inconsistencies are found when the constraints are not satisfied. In [5], the Alloy
analyzer is used to verify relational model transformations in order to ensure
that a model transformation cannot produce invalid models. However, Alloy has
a simple type system where only integers can be used in attribute values.

In [47], constructive type theory is used for defining a typed metamodeling
framework, where models, which are defined as terms, can also be represented
as types by means of a reflection mechanism such as A. In this framework, the
conformance relation is implicitly provided by construction: only valid models
can be defined as terms, and their definition constitutes a formal proof of the fact
that the model belongs to the corresponding type by means of the Curry-Howard
isomorphism.

In the graph transformations field [50,27,26], metamodels are defined as type
graphs with node inheritance, and models are defined as attributed typed graphs.
The main difference between type graphs and metamodels rely on the use of
composition associations in EMOF metamodels, which can be used for defining
hierarchies of composite objects in models. A notion of graph with containments
is introduced in [9], where the authors show how graph transformations can be
used as a formal backend for model transformations. In this way, the theory on
graph transformations and related tools can be used to perform formal analysis
of model transformations. In particular, the authors show how to analyse ter-
mination and confluence of model transformations that are encoded as graph
transformations in the algebraic graph transformation environment AGG [2].

There are a number of metamodeling approaches based on Maude. Maude
already provides support for object-oriented programming [39], where objects,
the isInstanceOf relation and the class specialization relation are supported.
The dynamics of object-oriented systems can be provided by means of term
rewriting.

The static semantics of the UML metamodel (version 1.3) has been previously
formalized as an algebraic specification in mel [29]. In this approach, the authors
already took the MOF approach into account, although the MOF standard was
in its early stages. In [28,3], the authors provide a formal four-layered framework
where: (i) some parts of the MOF meta-metamodel are formalized in a mel
theory at M3 level (called MOF layer); (ii) the UML class diagram and the object
diagram metamodels are provided as mel theories, called syntactic specification
and semantic specification respectively, at M2 level (called UML metamodel
layer); (iii) UML class diagrams are defined as terms in the syntactic specification
theory at M1 level (called domain model layer); and (iv) object diagrams are
defined as terms in the semantic specification theory at M0-level (named user
objects layer). A novel feature in this approach relies on the reuse of the reflective
facilities of mel to provide support for the evolution of UML-based software
artifacts [56]. The authors focused on the verification of static properties by using
Maude as an implementation of mel and the language to define the constraints.

Another approach [49] based on Maude uses the KM3 language [33] for indi-
rectly defining EMOF metamodels. In this work, the authors present how KM3
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specifications of metamodels can be represented as object modules [22] in Full-
Maude and how models can be defined as Maude collections of objects. However,
no automated support is provided for representing models as terms since KM3
only permits defining the textual concrete syntax of metamodels. That is, map-
pings like T and T

−1 are not defined for models that conform to metamodels
that are extracted from KM3 specifications. In this way, the user has to define
the models in Maude notation directly. The authors provide a mechanism to
represent KM3 specifications of metamodels as collections of objects at a syn-
tactic level so that Maude is used to statically analyse KM3 specifications: to
check when two metamodels describe model subtypes, to infer metamodels from
models and to compute metrics. However, model types are not algebraically
characterized.

Our algebraic semantics A for EMOF metamodels M in mel formally de-
fines the notions of metamodel realization A(M ), model type JM K and model
conformance M : M . This means that A enables reasoning with model types at
an algebraic level and not just at a syntactical level. Due to the graph nature of
models, the algebraic semantics A for MOF can also be used as an algebraic en-
vironment for graph transformations, where Maude’s analysis capabilities, such
as reachability analysis and LTL model checking, can be reused. The complete
algebraic formalization of EMOF metamodels together with OCL can be found
in [11], where composition associations are also taken into account in the formal-
ization. The algebraic semantics A is implemented in MOMENT2 where EMF is
used as implementation of the EMOF standard. Furthermore, the generic map-
pings T and T

−1 allow representing EMF models as terms in MOMENT2 in
a transparent way to the user. This an essential feature in MOMENT2, where
the goal is to apply Maude for formal model management tasks by using OMG
standards, such as MOF, OCL and QVT.

7 Conclusions and Future Work

In this work we have proposed an algebraic semantics for the MOF metamod-
eling framework, formalizing notions not yet clear in the MOF standard. In our
approach, we give an explicit formal representation for each of the different no-
tions that may be involved in a metamodeling framework: model type JM K,
metamodel realization A(M ), and metamodel conformance M : M . Our work
provides an algebraic executable formalization of the MOF standard that can
be reused in standard-compliant frameworks.

This algebraic framework opens a wide spectrum of interesting applications
for model-driven development. In particular, we have shown how it can be used
for automatically checking metamodel conformance, defining domain-specific
languages and specifying model transformations and model management op-
erators. In addition, Maude’s formal verification facilities can be used for static
and dynamic analysis of domain-specific languages, such as checking constraints
over models, reachability analysis and LTL model checking.
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The algebraic semantics for MOF provides the foundational notions for a
model management tool suite, MOMENT2 [43], that supports both OCL [16] and
QVT-like model transformations [15]. MOMENT2 uses MOF, OCL and a QVT-
like model transformation language as interface, so that the techniques that have
been illustrated in this work are internally used in a transparent way to the user.
For the development of this framework, we have relied on the experience gained
in previous prototypes that gave algebraic executable specifications for OCL
[17], QVT [13] and model management operators [12,14]. In addition, grammar-
based software artifacts can also be related to models by specifying context-free
grammars as mel signatures. This last feature makes our framework also suitable
for forward and reverse Model-Driven Engineering.

In future work, we plan to apply the algebraic MOF framework together
with the aforementioned tool for model transformations and Maude-based for-
mal reasoning techniques in model-driven development scenarios, where software
systems that are developed contain critical properties that have to be verified. In
particular, we are considering the formal analysis of real-time embedded systems
in the avionics domain, by using model-based languages like the Architecture
Analysis and Design Language (AADL) [51].
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//www.cs.le.ac.uk/people/aboronat/papers/2007_thesis_ArturBoronat.pdf.
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