
INTRODUCTION TO UML

MSc programme (induction week) – Department of Informatics

Some of this material is based on
Bernd Bruegge and Allen H. Dutoit (2009) ‘Object-Oriented Software
Engineering: Using UML, Patterns, and Java’, Pearson, 3rd edition.

Overview: modelling with UML

♦ What is modelling?
♦ What is UML?
♦ Use case diagrams
♦ Class diagrams
♦ Sequence diagrams
♦ Activity diagrams

What is modelling?

♦ Modelling consists of building an abstraction of reality.
♦ Abstractions are simplifications because:

w They ignore irrelevant details and
w They only represent the relevant details.

♦ What is relevant or irrelevant depends on the purpose of the
model.

Example: street map

Why model software?

♦ Software is getting increasingly more complex:
w Samples of complex software.
w A single programmer cannot manage this amount of code in its

entirety.

♦ Code is not easily understandable by developers who did not
write it.

♦ We need simpler representations for complex systems:
w Modelling is a means for dealing with complexity.

What should be done first? Coding or Modelling?

♦ It all depends….
♦ Forward Engineering

w Creation of code from a model
w Start with modelling
w Greenfield projects

♦ Reverse Engineering
w Creation of a model from existing code
w Interface or reengineering projects

♦ Roundtrip Engineering
w Move constantly between forward and reverse engineering
w Reengineering projects
w Useful when requirements, technology and schedule are changing

frequently.

What is UML? Unified Modelling Language

♦ Convergence of different notations used in object-
oriented methods, mainly

t OMT (James Rumbaugh and colleagues),
OOSE (Ivar Jacobson), Booch (Grady
Booch)

♦ They also developed the Rational Unified Process,
which became the Unified Process in 1999

Origins

♦ OO programming languages

♦ OO analysis and design techniques
w business modelling
w analysis of requirements
w design of software systems

♦ UML: industry standard that merges the best
features of different notations

What UML is not

♦ UML is not a programming language per se

♦ UML is not a software modelling tool

♦ UML is not a method, methodology or software
development process

Why UML?

♦ De facto standard for OO modelling

♦ Unified modelling language

♦ UML provides extension mechanisms

UML overview

♦ Use case diagrams
w Describe the functional behaviour of the system as seen by the

user.
♦ Class diagrams

w Describe the static structure of the system: objects, attributes,
associations.

♦ Sequence diagrams
w Describe the dynamic behaviour between objects of the system.

♦ Activity diagrams
w Describe the dynamic behaviour of a system, in particular the

workflow.

USE CASE DIAGRAM

UML Use Case Diagrams

An Actor represents a role, that is, a type
of user of the system

Passenger

PurchaseTicket

Used during requirements elicitation and
analysis to represent external behaviour
(“visible from the outside of the system”)

Use case model:
The set of all use cases that completely
describe the functionality of the system.

A use case represents a class of functionality
provided by the system

Actors

♦ An actor is a model for an external entity
which interacts (communicates) with the
system:
w User
w External system (Another system)
w Physical environment (e.g. Weather)

♦ An actor has a unique name and an optional
description

♦ Examples:
w Passenger: A person in the train
w GPS satellite: An external system that provides

the system with GPS coordinates.

Passenger

Name

Optional
Description

Use Case
• A use case represents a class of

functionality provided by the system
• Use cases can be described textually, with

a focus on the event flow between actor
and system

• The textual use case description consists of
6 parts:
1. Unique name
2. Participating actors
3. Entry conditions
4. Exit conditions
5. Flow of events
6. Special requirements.

PurchaseTicket

Textual Use Case
Description Example

1. Name: Purchase ticket

2. Participating actor: Passenger

3. Entry condition:
♦ Passenger stands in front of

ticket distributor
♦ Passenger has sufficient

money to purchase ticket

4. Exit condition:
♦ Passenger has ticket

5. Flow of events:
1. Passenger selects the

number of zones to be traveled
2. Ticket Distributor displays

the amount due
3. Passenger inserts money, at

least the amount due
4. Ticket Distributor returns

change
5. Ticket Distributor issues ticket

6. Special requirements: None.

Passenger
PurchaseTicket

Use Case Models should be packaged

Actor.

Use Case

System boundary

CLASS DIAGRAM

Class Diagrams

♦ Class diagrams represent the structure of the system
♦ Used

w during requirements analysis to model application domain
concepts

w during system design to model subsystems
w during object design to specify the detailed behaviour and

attributes of classes.

zone2price: Table
getZones():Enumeration
getPrice(Zone):Price

TarifSchedule

* *

Trip
zone:Zone

Price: Price

Classes

♦ A class represents a concept
♦ A class encapsulates state (attributes) and behaviour (operations)

zone2price: Table
getZones(): Enumeration
getPrice(Zone):Price

TarifSchedule

zone2price
getZones()
getPrice()

TarifSchedule

Name

Attributes

Operations

Signature

TarifSchedule

The class name is the only mandatory information

Each attribute has a type
Each operation has a signature

Type

Instances

♦ An instance represents a phenomenon
♦ The attributes are represented with their values
♦ The name of an instance is underlined
♦ The name can contain only the class name of the instance (anonymous

instance)

zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

tarif2006:TarifSchedule
zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

:TarifSchedule

Actor vs Class vs Object

♦ Actor
w An entity outside the system to be modelled, interacting with the

system (“Passenger”)
♦ Class

w An abstraction modelling an entity in the application or solution
domain

w The class is part of the system model (“User”, “Ticket distributor”,
“Server”)

♦ Object
w A specific instance of a class (“Joe, the passenger who is purchasing

a ticket from the ticket distributor”).

Associations

Associations denote collaborations between classes by means of message
exchange.

Price
Zone

getZones():Enumeration
getPrice(Zone):Price

TarifSchedule TripLeg

* *

The multiplicity of an association end denotes how many objects the instance
of a class can legitimately reference.

Association properties

♦ Name
♦ Multiplicity: number of

object instances of the
class at the far end of an
association for one
instance of the class at
the near end of an
association

♦ Role names
w role played by a class in

an association
w useful to specify

methods

Aggregation
♦ An aggregation is a special case of association denoting

that one class may consist of, or include, instances of
another class.

♦ A solid diamond denotes composition: the lifetime of the
component instances is controlled by the aggregate.

Inheritance

♦ Inheritance is another special case of an association denoting
a “kind-of” hierarchy

♦ Inheritance simplifies the analysis model by introducing a
taxonomy

♦ The children classes inherit the attributes and operations of
the parent class.

Button

ZoneButtonCancelButton

SEQUENCE DIAGRAM

Sequence Diagrams

♦ Used during analysis
w To refine use case descriptions
w to find additional objects

(“participating objects”)
♦ Used during system design

w to refine subsystem interfaces
♦ Instances are represented by

rectangles. Actors by sticky figures
♦ Lifelines are represented by dashed

lines
♦ Messages are represented by arrows
♦ Activations are represented by narrow

rectangles.

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

TicketMachinePassenger

Focus on
control flow

Messages ->
Operations on

participating Object

zone2price
selectZone()
insertCoins()
pickupChange()
pickUpTicket()

TicketMachine

Sequence Diagrams can also model the Flow of Data

♦ The source of an arrow indicates the activation which sent the message
♦ Horizontal dashed arrows indicate data flow, for example return results

from a message

Passenger

selectZone()

ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow
…continued on next slide...

Sequence Diagrams: Iteration & Condition

♦ Iteration is denoted by a * preceding the message name
♦ Condition is denoted by boolean expression in [] before the message

name

Passenger ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

…continued on next slide...

…continued from previous slide...

*

Sequence Diagram Properties

♦ UML sequence diagram represent behaviour in terms of
interactions

♦ Useful to identify or find missing objects
♦ Time consuming to build, but worth the investment
♦ Complement class diagrams (which represent structure).

ACTIVITY DIAGRAM

Activity Diagrams

♦ An activity diagram is a special case of a state chart diagram
♦ The states are activities (“functions”)
♦ An activity diagram is useful to depict the workflow in a

system

Handle
Incident

Document
Incident

Archive
Incident

Activity Diagrams allow to model Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Decision

Activity Diagrams can model Concurrency

♦ Synchronization of multiple activities
♦ Splitting the flow of control into multiple threads

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

SynchronizationSplitting

Activity Diagrams: Grouping of Activities

♦ Activities may be grouped into swimlanes to denote the object
or subsystem that implements the activities.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer

UML Summary

♦ UML provides a wide variety of notations for representing
many aspects of software development
w Powerful, but complex

♦ UML is not a programming language
w Can be misused to generate unreadable models
w Can be misunderstood when using too many exotic features

♦ We concentrated on a few notations:
w Functional model: Use case diagram
w Object model: class diagram
w Dynamic model: sequence diagrams and activity diagrams

Additional References

♦ Martin Fowler
w UML Distilled: A Brief Guide to the Standard Object Modelling

Language, 3rd ed., Addison-Wesley, 2003
♦ Grady Booch, James Rumbaugh, Ivar Jacobson

w The Unified Modelling Language User Guide, Addison Wesley, 2nd

edition, 2005
♦ Open Source UML tools

(https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Lang
uage_tools)
w Eclipse Papyrus (built atop the Eclipse Modeling Framework)

t https://www.eclipse.org/papyrus/
w PlantUML (textual UML using DSLs)

t http://plantuml.com/

