UNIVERSITY OF
@ LEICESTER

MSc programme (induction week) — Department of Informatics

INTRODUCTION TO UML

Some of this material is based on

Bernd Bruegge and Allen H. Dutoit (2009) ‘Object-Oriented Software
Engineering: Using UML, Patterns, and Java’, Pearson, 3" edition.

Overview: modelling with UML

¢ What is modelling?
¢ What 1s UML?

¢ Use case diagrams

¢ Class diagrams

¢ Sequence diagrams

¢ Activity diagrams

What is modelling?

¢ Modelling consists of building an abstraction of reality.

¢ Abstractions are simplifications because:
+ They ignore irrelevant details and

+ They only represent the relevant details.

¢ What is relevant or irrelevant depends on the purpose of the
model.

Example: street map

8
Victonia Park

Why model software?

¢ Software 1s getting increasingly more complex:

+ Samples of complex software.

+ A single programmer cannot manage this amount of code in its
entirety.

¢ Code is not easily understandable by developers who did not
write it.

¢ We need simpler representations for complex systems:

¢+ Modelling is a means for dealing with complexity.

What should be done first? Coding or Modelling?

¢ It all depends....

¢ Forward Engineering
¢ Creation of code from a model
+ Start with modelling

¢ Greenfield projects

¢ Reverse Engineering
¢ Creation of a model from existing code

¢ Interface or reengineering projects

¢ Roundtrip Engineering
* Move constantly between forward and reverse engineering
+ Reengineering projects

¢ Useful when requirements, technology and schedule are changing
frequently.

What is UML? Unified Modelling Language

¢ Convergence of different notations used in object-
oriented methods, mainly

+ OMT (James Rumbaugh and colleagues),
OOSE (Ivar Jacobson), Booch (Grady
Booch)

¢ They also developed the Rational Unified Process,
which became the Unified Process in 1999

Origins
¢ OO programming languages

¢ OO analysis and design techniques
+ business modelling
+ analysis of requirements
+ design of software systems

¢ UML: industry standard that merges the best
features of different notations

What UML is not

¢ UML is not a programming language per se
¢ UML is not a software modelling tool

¢ UML is not a method, methodology or software
development process

Why UML?

¢ De facto standard for OO modelling
¢ Unified modelling language

¢ UML provides extension mechanisms

UML overview

¢ Use case diagrams

¢ Describe the functional behaviour of the system as seen by the
user.

¢ Class diagrams

¢ Describe the static structure of the system: objects, attributes,
associations.

¢ Sequence diagrams
¢ Describe the dynamic behaviour between objects of the system.
¢ Activity diagrams

¢ Describe the dynamic behaviour of a system, in particular the
workflow.

USE CASE DIAGRAM

® © ® @ ArrivaBus Home X

& C' @ https://www.arrivabus.co.uk/?gclid=CKmw3M3asc8CFcYVOwod434DMw

Search a = A O

(@ ARRIVA ——rT—

a company

® Where we operate Travel help and accessibility About us Bus tickets Working with Arriva Contact Us

- . . - - - -

<,
7

efab' _) ‘3‘ Now you can buy your
WW : | tickets with PayPal

or

"
Find services and_ N) ‘

Journey planner

- |

Clear search

) . :) Travel tickets
! (
|
'

Buy now
Lo 2

W I Use our website to plan your journey, buy tickets,

e com e look at timetables and catch up on our latest news.

Sign up to our Browse employment opportunities with Arriva and
newsletter to A rriva buses find out how to get in touch with Arriva through a

\ w variety of channels.
| ——

® ® /(@ Arriva Bus Home X / (2 Arriva Bus - Buy Tickets Onlin- x

&

C' | @ https://tickets.arrivabus.co.uk/midlands/

El Change Region

Choose your ticket zone

Midlands Region

Use the A-Z below to filter ticket zones.

ALL B CD

Leicester Zone One

Places covered: Leicester city centre and out as far as Birstall, Syston, Hamilton, Scraptoft, Oadby,
Kilby, South Wigston, Countesthorpe, Whetstone, Grove Park, Thorpe Astley, Leicester Forest East,
Kirby Muxloe, Groby..

O View zone map

Leicester Zone Plus

Places covered: Leicester and out as far as Melton Mowbray, Hamilton, Scraptoft, Market
Harborough, Rogby, Croft, Nuneaton, Market Bosworth, Ibstock, Ashby-de-la-Zouch, Shepshed,
Loughborough, plus local services within those towns..

O View zone map

Leicester Zone Two

Places covered: From Melton Mowbray towards Leicester as far as Syston, from Market Harborough
towards Leicester as far as Oadby and Kilby, from Croft towards Leicester as far as Grove Park, from
Nuneaton and Hinckley towards Leicester as far as Leicester Forest East, from Market Bosworth
towards Leicester as far as Kirby Muxloe, services towards Burton-on-Trent from points between
Groby and Coalville, Ibstock, from Coalville, Shepshed and Loughborough towards Leicester as far as
Birstall. .

O View zone map

2 Basket

(0) No tickets in your basket

Got a promotion code?

Use code

total

£0.00

Customer Services
0344 80044 11

O More contact information

&

(2 Arriva Bus Home X

C' @ https://tickets.arrivabus.co.uk/midlands/zone-one/

Bl Change Ticket Zone
Choose your ticket
Leicester Zone One Ticket Zone

Child
from £3.00

Adult
from £4.20

Group
from £9.00

(@ Arriva Bus - Buy Tickets Onlin: x

Other
ticket types

Student
from £135.00

Adult Day

Ticket Zone: Leicester Zone One

Adult Weekly

Ticket Zone: Leicester Zone One

Adult 4 Weekly

Ticket Zone: Leicester Zone One

v Added £4.20

or

Check out with PayPaI

£16.50

(£2.75 | day)

Add to basket

£58.00

(£2.15 | day)

Add to basket

2 Basket

Adult Day

Region: Midlands

Zone: Leicester Zone One

O Remove

Got a promotion code?

Use code

total

£4.20

Go to checkout

Check out with PayPaI

O Download network map
Customer Services
0344 80044 11

O More contact information

UML Use Case Diagrams

Used during requirements elicitation and
analysis to represent external behaviour
(“visible from the outside of the system”)

An Actor represents a role, that is, a type
of user of the system

Passenger
\ A use case represents a class of functionality
provided by the system
© Use case model.
_ The set of all use cases that completely
PurchaseTicket

describe the functionality of the system.

Actors

¢ An actor 1s a model for an external entity
which interacts (communicates) with the
system:

¢ User
+ External system (Another system)
¢ Physical environment (e.g. Weather)

¢ An actor has a unique name and an optional
description Optional
¢ Examples: Description

+ Passenger: A person in the train

Passenger

Name * GPS satellite: An external system that provides
the system with GPS coordinates.

Use Case

C_ D

PurchaseTicket

e A use case represents a class of
functionality provided by the system

e Use cases can be described textually, with
a focus on the event flow between actor
and system

e The textual use case description consists of
6 parts:
1. Unique name
Participating actors
. Entry conditions
. Exit conditions
. Flow of events

SN U AW

. Special requirements.

Textual Use Case
Description Example Q
PurchaseTicket
Passenger

. Name: Purchase ticket 5. Flow of events:

1. Passenger selects the
number of zones to be traveled

2. Ticket Distributor displays
the amountdue

2. Participating actor: Passenger

3. Entry condition: 3. Passenger inserts money, at
¢ Passenger stands in front of least the amountdue
ticket distributor 4. Ticket Distributor returns
change

¢ Passenger has sufficient
money to purchase ticket 5. Ticket Distributor issues ticket

6.Special requirements: None.

4. Exit condition:

¢ Passenger has ticket

Use Case Models should be packaged

}Cise‘

ﬁSystem boundary]

CLASS DIAGRAM

Class Diagrams

¢ Class diagrams represent the structure of the system
¢ Used

¢ during requirements analysis to model application domain
concepts

¢ during system design to model subsystems

¢ during object design to specify the detailed behaviour and
attributes of classes.

TaflfSchedule Trip
zone2price: Table
- zone:Zone
getZones () :Enumeration * *

)] Price: Price
getPrice(Zone) : Price

Classes & T/ype]

TarifSchedu}\ /
zone2price: v

getZones():
% Name J getPrice() :
TarifSchedule _
zone2price % Attributes J Slgnature J

getZones ()

getPrice()
Operationsj TarifSchedule

¢ A class represents a concept
¢ A class encapsulates state (attributes) and behaviour (operations)

Each attribute has a type
Each operation has a signature

The class name is the only mandatory information

Instances

® & o o

tarif2006:TarifSchedule :TarifSchedule
zone2price = { zone2price = {
{‘1, 0.20}, {‘1, 0.20},

{‘2’, 0.40} {‘2’, 0.40},

{‘3’, 0.60}} {3, 0.60}}

An instance represents a phenomenon
The attributes are represented with their values
The name of an instance is underlined

The name can contain only the class name of the instance (anonymous
Instance)

Actor vs Class vs Object

¢ Actor
+ An entity outside the system to be modelled, interacting with the
system (“Passenger”)
¢ Class

¢ An abstraction modelling an entity in the application or solution
domain

* The class is part of the system model (“User”, “Ticket distributor”,
“Server”)

¢ Object

* A specific instance of a class (“Joe, the passenger who is purchasing
a ticket from the ticket distributor’).

Associations

TarifSchedule TripLeg
getZones () :Enumeration * . Price
getPrice(Zone) :Price Zone

Associations denote collaborations between classes by means of message
exchange.

The multiplicity of an association end denotes how many objects the instance
of a class can legitimately reference.

Association properties

¢ Name

¢ Multiplicity: number of

object instances of the L
y

class at the far end of an
association for one
instance of the class at o
the near end of an Subscription [~ o
association

¢ Role names

+ role played by a class in
an association tickets | %

+ useful to specify
methods

reflexive associaticn

next | p.1

rolename ~ source 0.1 = multiplicity

-

binary asscciation

Reservation oarticipating class

Aggregation

¢ An aggregation is a special case of association denoting
that one class may consist of, or include, instances of
another class.

¢ A solid diamond denotes composition: the lifetime of the
component instances is controlled by the aggregate.

Subscription | aggregate composite Order
* 1 1 1
1 *

Performance parts parts | Customerinfo Lineltem

Inheritance

Button

/\

CancelButton ZoneButton

¢ [nheritance 1s another special case of an association denoting
a “kind-of hierarchy

¢ Inheritance simplifies the analysis model by introducing a
taxonomy

¢ The children classes inherit the attributes and operations of
the parent class.

SEQUENCE DIAGRAM

Sequence Diagrams

Passenger

TicketMach”

=

selectZone() |

insertCoins ()

»
>

pickupChange()

pickUpTicket ()

»

Focus on
control flow

J

/O@in g analysis

+ To refine use case descriptions

¢ to find additional objects
(“participating objects”)

TicketMachine

& llsed dur

system design

Messages ->

selectZone ()

insertCoins ()
pickupChange ()
pickUpTicket ()

Operations on
participating Object
%

s. Actors

are repres

are represented by arrows

o

¢ Activations are represented by narrow
rectangles.

Sequence Diagrams can also model the Flow of Data

X

ZoneButton TarifSchedule Display

Passenger
1

selectZone ()

lookupPrice(selection)

v

“——1 displayPrice(price) Mi
[Dataﬂow I ; T]

...continued on next slide...

¢ The source of an arrow indicates the activation which sent the message

¢ Horizontal dashed arrows indicate data flow, for example return results
from a message

Sequence Diagrams: Iteration & Condition

...continued from previous slide...

ChangeProcessor| | CoinIdentifier Display CoinDrop

Passenger
1

\ sertChange(coid)) i
> lookupC01n(co+n)

lteration

displayPrice(éwedAmount) R

s L

[owedAmount<0], returnChange (-owedAmount)

| {ConditionJ/V ! | ”

...continued on next slide...

¢ Iteration is denoted by a * preceding the message name

¢ Conditionis denoted by boolean expression in [| before the message
name

Sequence Diagram Properties

¢ UML sequence diagram represent behaviour in terms of
interactions

¢ Usetul to identify or find missing objects
¢ Time consuming to build, but worth the investment

¢ Complement class diagrams (which represent structure).

ACTIVITY DIAGRAM

Activity Diagrams

¢ An activity diagram 1s a special case of a state chart diagram

¢ The states are activities (" functions’)

¢ An activity diagram 1s useful to depict the workflow in a
system

Handle \ Document \ Archive
Incident j Incident J = Incident

Activity Diagrams allow to model Decisions

Decision J

owPriority]
Open Allocate
Incident <R = Resources

A A

[fire & highPriority]

[not fire & highPriiority]

Notify ‘\\
Fire Chief//

v
Notify ‘\\
Police Chiff/

Activity Diagrams can model Concurrency

¢ Synchronization of multiple activities
¢ Splitting the flow of control into multiple threads

Allocate
@)

O
\ o 'e)
Open > Coordinate ° = Archive
Incident<// Resources Incident
S Document
(::IncidentA:>

Activity Diagrams: Grouping of Activities

¢ Activities may be grouped into swimlanes to denote the object
or subsystem that implements the activities.

Allocate Dispatcher
Resources
Open ﬂ\\ Coordinate Archive
IncidentA/} Resources Incident
FieldOfficer
Document

—> Incident

A
\[/

UML Summary

¢ UML provides a wide variety of notations for representing
many aspects of software development

¢ Powerful, but complex
¢ UML is not a programming language

¢ Can be misused to generate unreadable models

¢ Can be misunderstood when using too many exotic features
¢ We concentrated on a few notations:

¢ Functional model: Use case diagram
¢ Object model: class diagram

¢+ Dynamic model: sequence diagrams and activity diagrams

Additional References

¢ Martin Fowler

¢+ UML Distilled: A Brief Guide to the Standard Object Modelling
Language,3rd ed., Addison-Wesley, 2003

¢ Grady Booch,James Rumbaugh, Ivar Jacobson

¢ The Unified Modelling Language User Guide, Addison Wesley, 2"d
edition, 2005

¢ Open Source UML tools
(https://en.wikipedia.org/wiki/List_of_Unified_Modeling_lLang
uage_tools)
+ Eclipse Papyrus (built atop the Eclipse Modeling Framework)

¢+ https://www.eclipse.org/papyrus/
¢ PlantUML (textual UML using DSLs)

¢ http://plantuml.com/

