
Formal Visual Modelling of Human Agents in
Service Oriented Systems

Adwoa Donyina
Department of Computer Science

University of Leicester
Leicester, United Kingdom
Email: add7@leicester.ac.uk

Reiko Heckel
Department of Computer Science

University of Leicester
Leicester, United Kingdom
Email: reiko@mcs.le.ac.uk

Abstract—When the level of granularity of services approaches
that of business activities, humans become part of a service-
oriented system not just as users but as providers of services. A
model of such a system has to take into account the characteristics
of human actors as service providers. Conversely, in the world of
agent-based systems, software components have been attributed
with human properties such as reactivity, autonomy and pro-
activity. We believe that modelling techniques developed for
software agents are a valid starting point for specifying human
agents in service-oriented systems (HASOS). In particular, we
extend UML use case and class diagrams by concepts of role-
based access control (RBAC) and use graph transformation (GT)
rules to model changes to data as well as the dynamic (re-
)assignment of roles played by human actors. From these models
we can derive specifications of the services required systematically
in terms of pre- and post-conditions as well as communica-
tion scenarios modelling their interactions. We use the formal
framework provided by GT to formalize consistency relations
between the different parts of these models. The technique will
be demonstrated with the use of a pharmacy scenario.

Index Terms—human and software agents; service-oriented
systems; visual models; graph transformation

I. INTRODUCTION

In this paper, the problem being addressed is the abil-
ity to accurately model human actors as part of a service-
oriented system. Like software agents, humans differ from
standard software components by exhibiting properties such
as reactivity, autonomy and pro-activity. The modelling of the
orchestration between people and technical components should
correctly display roles and responsibilities of all participants
involved in the business process. These models of orchestrated
systems need to take into account the non-deterministic and
often non-predictable behaviour of humans. Unfortunately,
methods and tools that are currently available within software
engineering are not sufficient for addressing these issues.

Most formal approaches that have been developed so far
in software engineering focus on technical components of a
business process, by modelling how software and technical
components will react to triggers issued by a software compo-
nent and perform designated actions. However even if people
are correctly instructed, they may or may not perform their
allocated tasks.

Human actors can be categorized as a kind of autonomous
agents with the capacity to regulate and coordinate their own

behaviours [11]. In general, an autonomous agent is defined
as a system situated within an environment that senses that
environment and acts on it, over time, in pursuit of its own
agenda, so as to effect what it senses in the future [7]. In
other words agents are reactive to their environment and act in
pursuit of their own goals. Autonomous agents can be broken
down into different types of agents including software and
human agents. Some of the main behavioural characteristics
of autonomous agents are reactivity, autonomy and pro-activity
[4]. Reactivity is defined as the capability to be sensitive to
the environment and react to changes. Autonomy is defined
as the ability to make one’s own choices regarding the (non-
)execution of a task, leading to non-deterministic [4]. Pro-
activity is defined as the determination to reach a certain goal.
These characteristics can positively or negatively impact a
business process. For instance, because of autonomy, a person
could refuse to perform an expected task for their assigned
role, resulting in another person pro-actively taking over the
role in order for a task to be successfully completed. Because
of these shared characteristics, modelling techniques used for
software agents could also be used for human actors.

We are proposing a modelling approach for human actors
in service oriented systems (HASOS), based on a domain
specific language (DSL) using concepts from UML, role
based access control (RBAC) and graph transformations (GT).
These concepts are motivated by the fundamental behavioural
characteristics of human agents and will be presented in detail
in Section IV.

Modelling techniques for agent-based system often use
UML notation because the mainstream object-oriented mod-
eling technique provides a good basis for agent-specific ex-
tensions. Hence, our visual models are also based on UML,
following Depke, et. al [4], [3] in extending it by a rule-
based approach using graph transformation to specify agents’
operations. The operational semantics of graph transformation
allows simulation and analysis of dynamic reconfiguration,
and graph transformation rules provide a good visual repre-
sentations of non-deterministic structural changes in complex
business processes. Graph transformation exhibit properties
which reflect the characteristics of reactivity, autonomy and
pro-activity. Reactivity is demonstrated through pattern match-
ing in graph transformations, modelling how an actor can

2009 Fourth South-East European Workshop on Formal Methods

978-0-7695-3943-0/09 $26.00 © 2009 IEEE

DOI 10.1109/SEEFM.2009.17

25

sense or observe its environment and react to it. Autonomy is
demonstrated through the fact that a match is a requirement,
but not an obligation to apply a rule. Pro-activity is shown
by giving the person the choice to apply a variety of rules,
among which a choice can be made. The model will also
visually present a user’s access rights to objects and roles by
presenting rules for role assignment and reconfiguration of
roles. Users who have the capability to assume a certain role,
but not normally the right to do so, may have to overstep their
permissions in exceptional cases. Potentially, such action will
have to be justified later. It is therefore important to distinguish
capabilities to perform an action or assume a rule, and the
access rights to do so.

We first discuss related work in Section II. In Section III we
will illustrate the use of HASOS on a pharmacy case study,
defined using traditional UML techniques at business and
architectural level. We will then introduce our new HASOS
visual modelling language in Section IV and illustrate its
use on the pharmacy scenario in Section V. Section VI will
provide an analysis of the scenarios goals and dependencies.
Section VII will present future work.

II. RELATED WORK

We will present an analysis of the related work of BPMN,
WS-HumanTask, BPEL4People and problem frames in com-
parison to HASOS specifications.

WS-HumanTask and BPEL4People are extensions of
WSDL and BPEL motivated by requirements of specifying
humans as part of service-oriented systems or processes.
As the authors of BPEL4People stress, “the aspect of how
people interact with business processes must be properly mod-
eled” [8]. However, like their precursors, these are machine-
readable XML languages format that lack a visual represen-
tation suitable for domain and business experts. Although
BPEL4People captures human behaviours such as escalation
and assignment of roles, extensions for ad-hoc processes
have yet to be developed [5]. HASOS will also extend the
current semantic capabilities of existing languages to address
the challenges arising from the fact that human actors are
harder to control than machines. This raises reliability and
accountability issues.

On the other hand, the problem frames approach developed
by Michael A. Jackson provides an abstract representation of
the problem interaction for software requirements and specifi-
cations. It consists of three informal diagrams called: context
diagrams, problem diagrams and problem frame diagrams.
Context diagrams focus on customers’ needs, responsibility
and scope of authority by only displaying interfaces that are
within the scope of the customer. HASOS also considers the
viewpoint of the user by explicitly connecting the user to
objects and roles that they have access rights to; however it
also displays an overview of the surroundings by connecting
the interfaces that go beyond their scope in a single model. The
problem diagrams decompose the problem into subproblems
and rights and privileges of membership can be exercised
with the addition of annotations. Problem frame diagrams

classify problems into three distinct domains: casual, biddable
and lexical. The biddable domain consist of people and their
“lack of positive predictable internal causality” [9], similar
to the domain of human actors in HASOS. Both approaches
emphasize the fact that humans may be ignorant of their
operations and have unpredictable actions. The key difference
is in the perspectives: HASOS provides a detailed look at the
biddable domain whereas problem frame diagrams provide an
overview of the interaction across three different domains. A
person in this domain spontaneously causes events in a system
without external stimulus, which is similar to our notion of
pro-activity.

The formal approaches that have been developed so far
in software engineering focus on technical components of a
business process, by modelling how software and technical
components will react to triggers issued by a software compo-
nent and perform designated actions. However people cannot
be guaranteed to do what they are told and may or may not
perform their tasks, as demonstrated in the case study below.

III. PHARMACY CASE STUDY

We will illustrate the use of HASOS on a pharmacy
franchise. Shoppers Drug Mart Canada requires a systematic
standardized method for all the pharmacies across Canada. All
pharmacy owners go through an intense training on how to run
the pharmacy. A visual model would add clarity to the training
facilities and help visual learners to perceive the business
process. This pharmacy scenario is a good example to test the
language because it involves various actors in different roles
using specialized software services such as security enabled
barcode systems and printers connected to external sources.

We consider the case of an online refill prescription service.
The refill prescription service involves the following steps:
(1) customer transmits online prescription refill request; (2)
the online service transmits payment to the customer’s drug
plan; if successful (3) a prescription label will be printed at the
requested pharmacy location. If an exception occurs during the
execution of the refill service, the customer and/or pharmacy
will be notified for an alternative resolution. For instance
if the customer’s drug plan rejects payment then the refill
transmission will be cancelled or another means of payment
will be offered.

The UML activity diagram in Figure 1 illustrates the phar-
macy business process. The swimlanes are used to partition
the diagram based on the actors’ roles. The actors involved in
this problem domain are pharmacists, technicians, customers
and doctors. Each actor is assigned a particular role and has
various abilities. The doctor’s role is to write a prescription
or directly fax/phone in a prescription into a pharmacy. The
customer’s role is to bring the prescription from the doctor
to the pharmacy or order a repeat prescription online or
via telephone. The pharmacy technician’s role is to receive
prescriptions from customers, fill prescriptions, answer phone
calls, and work the cash register. The pharmacist’s role is to
check filled prescriptions and counsel customers.

26

Fig. 1. Pharmacy Business Process in UML activity diagram

The pharmacy is divided into four stations: Entry Station,
Filling Station, Checking Station, and Pick up Station. There
is a minimum of one worker per station, and each worker is
assigned unique bar-code identifiers. These bar-codes are used
to track which worker completed particular tasks on particular
prescriptions.

The human actors in this system have properties of the
three characteristics of human agents of reactivity, autonomy
and pro-activity. The pharmacy team can react to an increased
customer demand. Each human actor involved has choices in
the order they perform a task; for instance a technician can
decide which prescription to fill first. This is an example of
autonomy. A typical pharmacy business process is initiated
with a prescription dispensing request. The prescription is
entered into the pharmacy database and the corresponding
bottle label is printed. The prescription is filled and checked.
If any errors are found the prescription will be re-typed and/or
re-filled. Once the medication is correctly filled, the customer
is counselled and given the filled prescription. The pharmacy
team are pro-active by working together to reach the goal
of providing a correctly filled prescription to customers in a
timely fashion.

There are various exceptional cases to this business process,
which go beyond the scope of UML and standard business
process models. For example, business process models do not
address the assignment of roles to individual actors. Simi-
larly, dynamic reassignment of roles is not presented either.
For instance, in the pharmacy business process, this would
be relevant in the exceptional situation where no pharmacy
technicians are available. In this case, the pharmacist must take
on all technician roles in addition to their pharmacist role. This
exceptional case also reflects the three characteristic of human
agents of reactivity, autonomy, and pro-activity behaviour. For
instance, a pharmacist is proactive by taking over a role of
technicians without being told to do so.

A UML sequence diagram was used to specify the com-
munication between actors in a business process, as shown in
Figure 2. The component diagram in Figure 3 was derived
from the interactions between component interfaces in the
sequence diagram. The service interfaces in (Figure 4) define
the operations provided by each interface defined in the

component diagram. These traditional UML diagram tech-
niques depicted human agents as systems; however this is an
inaccurate depiction because we cannot apply operations on
humans, who will make an internal choice on how to react to
external triggers.

Fig. 3. Pharmacy architectural level in UML component diagram

Fig. 4. Pharmacy architectural level in UML interfaces

The activity diagram, sequence diagram, component dia-
gram and interfaces are all lacking requirements defined in
the introduction. Role assignment is shown in the sequence
diagram; however it does not include role reconfiguration.
Requirements for roles are partially shown in the activity
diagram; however there is no visual representation to show that
the assignment has occurred. All the diagrams lack information
on the user’s role capabilities and permissions.

27

Fig. 2. Pharmacy architectural level in UML sequence diagram

IV. HASOS LANGUAGE FRAMEWORK

We defined the DSL using a (linguistic) metamodel for
modelling the orchestration between people and technical
components. The language syntax is illustrated using the
pharmacy business domain defined in Section 13.

The HASOS metamodel is defined in Figure 5. For clarity
the instance and type elements are located on opposite sides
of the diagram.1 Each element defined in the metamodel is an
extension of either Class or Object type. Actor, Role and Case
extend Class, whereas User, RoleInstance and CaseInstance
are extensions of Object. The structure of the metamodel
captures the concepts of role assignment, point of view of
participants and access control. The relationship between
User (instance level) and Actor (type level) is influenced by
concepts of role-based access control (RBAC).

The influence of RBAC is due to the fact that the central
notion in the meta model is the association of individuals
to permissions via roles to permissions [12]. RBAC models
provide a visual representation of the interactions between
people and their corresponding task involvement in a business
process. Roles represent competency, authority or responsibil-
ity to perform a specific task, which formulates the access
control policy [12].

The RBAC3 model in Figure 6 is composed of users, roles,
permissions, sessions/objects, role hierarchy and constraint
features. A user is defined as a human-being. A role is a job
function or job title within the organization with additional
semantics regarding authority and responsibility. Permission
is defined as approval of a particular mode of access to
one or more objects in the system. Objects are also known
as sessions which represent the data within the computer
system as both resource and data objects [12]. Users are
not directly connected to permissions because this would
weaken access control. Instead, the placement of roles between
user and permission provides a greater control over access

1Since this is a linguistic metamodel the “instance-of” relationship appears
within meta levels.

Fig. 5. Metamodel at M2 level

configuration. A subject (or session) is defined as a unit of
access control, and a user may have multiple subjects active
at the same time [12].

The modelling of the orchestration between people and
technical components should correctly display roles and re-
sponsibilities of all participants involved in the business pro-
cess; hence we decided to use RBAC3 to help model the
organizational structure of the business process.

Figure 7 is the abstract model at M1 level model, which
is an “instance of” the M2 metamodel defined in Figure 5.
This model is similar to a type graph in GT. It also formalizes
Figure 8 and 9, which are the concrete model at M1 level.

The HASOS metamodel is composed of user, role and
session elements for access control; however they are renamed
to correspond with UML terminology. Role is represented
as Actor and Session is as RoleInstance. Each Case type
has a “port” connection to zero or many Roles. Each Role

28

Fig. 7. Abstract Syntax at M1 level

Fig. 6. RBAC3 [12]

“needs” zero or one Actor. Object is an “instanceOf” Class,
similarly User is an “instanceOf” Actor, CaseInstance is an
“instanceOf” Case and RoleInstance is an “instanceOf” Role.
The relationship between User and Actor has two associations

between each other of “capableOf” and an “instanceOf”, which
represents a “memberOf” relationship.

These access rights influence the user-role assignment. An
additional concept supported by the language displays the
point of view of participants involved in a business process
in relation to internal and external activities.

V. MODELLING NOTATION

We expand UML use case to visualise the concepts laid
down in the meta model. A use case diagram is composed
of modelling elements of actors, use cases, association, gen-
eralization and the “includes” and the “extends” relationships.
An actor is a role that a user, external to the system, plays
in relation to the system [10]. The actor’s description may be
refined using generalization, as used in class diagrams.

UML diagrams are limited to depicting typical object-
oriented systems.

“Although the UML provides quite a considerable
body of various diagrams that help to define an
application, it is by no means a complete list of all
the useful diagrams that you might want to use. In
many places, different diagrams can be useful, and

29

you shouldn’t hesitate to use a non-UML diagram if
no UML diagram suits your purpose” [6].

Motivated by the development of use-case extensions for the
SENSORIA Reference Modelling Language (SRML) [2], we
employ use cases to depict Cases and Actor as Role elements.
A use-case diagram describes “who the relevant users will be,
the services they require of the system and the services they
need to provide to the system” [10]. However they do not
describe the internal workings of anything, hence the extension
of its elements will provide additional visual detail to replace
‘use case descriptions.’ Our extension of use cases promotes
the goal-driven characteristics of autonomous agents because
the focus of use cases is on the goal.

Fig. 8. Use Case Diagram

Fig. 9. Domain Model Class Diagram

The graphical notation is based on UML notation with
minor extensions, as shown in Figure 8 and Figure 9. The
use case diagram provides actor hierarchy and allowable roles
for corresponding actors. In the use case diagram the roles are
defined at the endpoints of the lines connected to the use case.
The use case corresponds to a HASOS case which defines
a detailed domain model. The keyword <<role>> is used

within class elements to define access rights to elements within
the class diagram. Additionally UML composition is visually
represented with the containment of class/object elements.

The visual notation used to represent a generic user is a
happy face. In order to show the specific relationship between
user and actor a deviation of a happy face was used as shown
in Figure 10. Illustrations of the use of this notation are shown
in Figures 12 and 13.

Fig. 10. User graphical notation

Individual actions of our actors are described by graph
transformation rules. Graphs occur at type and instance level,
such as in UML class and object diagrams, respectively. Graph
transformation is the rule-based modification on instance
graphs. A graph transformation rule is composed of a left-
hand side (L) and a right-hand side (R). The left-hand side
represents the preconditions of the operation while the right-
hand side represents the postcondition.

The rule in Figure 11 describes the “Fill Prescription”
operation at the level of graphs representing meta model
instances. The left-hand side of the rule requires a CaseIn-
stance called “DispenceMedication” with composition of a
“Label” Object. The CaseInstance must have one port to a
“FillingTechnician” Role which “isAssigned” to a User that is
an “instanceOf” the “Technician” Actor and “canAccess” the
“Label” Object. With the negative condition stating that the
“FilledPrescription” Object does not exist yet. The right-hand
side defines the changes made in the transformation. The User
who was an “instanceOf” a “FillingTechnician” generates a
“FilledPrescription” Object and associates it with the “Label”
Object.

Figure 12 (d) illustrates a more user-friendly presentation of
the rule in Figure 11. Due to the use of graph transformation,
the language can describe non-deterministic actions, reactive
behaviour, as well as spontaneous actions, thus supporting the
modelling of reactivity, pro-activity and autonomy of human
behaviour. Tasks will be represented by a set of GT rules and
the environment will be represented by instance graphs and
type graphs. Reactivity will be addressed by allowing humans
to select the left-hand side of a transformation rule that can be
applied to the current state of the environment. Autonomy will
be addressed by allowing the rules to be applied in any order.
Pro-activity will be addressed by showing human decision to
select rules in order to reach a chosen goal.

Note that a rule-based approach represents behaviour in
terms of a set of “IF-THEN” rules. This form of modelling
is in contrast to the control flow approach, which represents
expected ordering of events. The control flow approach of
BPEL4People models the expected order of tasks in a business
process, whereas rule-based models support more directly a

30

Fig. 11. Semantics illustration

non-deterministic order of tasks in business process, intuitively
allowing the human to select the rule to apply. The pharmacy
scenario defined in Section III is illustrated in Figure 13, by
applying various GT rules defined in Figure 12.

Note, that an exceptional rule was used in place of the stan-
dard on (c) in Figure 12 because no actor with “instanceOf”
technician is available. In such a case, a person who was
“capableOf” the role took it on instead.

VI. ANALYSIS OF GOALS AND DEPENDENCIES

Graph transformation provides a variety of analysis tech-
niques, which make it a visual formal method rather than
just a visual language. For example, consistency between
the communication in the sequence diagram and the data
transformation described by rules can be analyzed by deter-
mining dependencies between rules: These should reflect the
order of messages represented in the corresponding sequence
diagram defined in Figure 2. For example, both “Assign Filling
Technician GT” and “Exception Assign Filling Technician
GT” depend on “Print Label GT” because the transformation
defines “:FillingTechnician” as a required role, which is one
of the preconditions of both rules. Similarly rule (d) depends
on rules (b), (c) and (e), because their post-conditions are
subsets of its pre-condition. The order of these dependencies
corresponds to the message order in the sequence diagram,
therefore the model is consistent.

VII. FUTURE WORK

We intend to extend HASOS by adding standard BPMN
notation such as timer, exception flow, ad hoc markers and
then extend BPMN to include a visual representation of human
involvement in business process specializing on fundamental
notations for deadlines, priorities, and urgency (escalation). In

Fig. 12. Graph Transformation Rules

order to expand the visual representation of human involve-
ment in business processes we intend to illustrate the expres-
sive nature of the XML-based languages of BPEL4People and
WS-HumanTask. The current BPMN specifications does not
capture the information in their specifications.

These specifications include timeouts, escalations and prior-
ities. Timeouts are handled by triggering appropriate escalation
actions [1]. HASOS will be expanded to include some of the
elements located in WS-HumanTasks such as: state, priority,
time stamp, and skipable indicators. If any deadline is not
reached an escalation action can be triggered, which could
invoke role reconfiguration.

31

Fig. 13. Instance Graphs of Scenario in Section III

In order to create realistic depiction of role assignment,
we intend to make a clear distinction between different types
of achieved roles, by refining achieved roles into positions
which reflect personal skills, abilities, and efforts. We can
then research on the legality of temporally assigning particular
achieved roles to people who are capable but not normally
permitted to take on the role because they are at lower
positions.

VIII. CONCLUSION

In this paper, we introduced a new visual modelling lan-
guage HASOS which allows us to model humans as part of
service-oriented system based on agent-based characteristics
of reactivity, autonomy and pro-activity using a rule-based
approach.

ACKNOWLEDGMENT

The authors would like to thank Georgina Donyina Phar-
macist/Owner of store #729 Shoppers Drug Mart, Canada, for
taking us through the pharmacy business process.

REFERENCES

[1] Adobe, BEA, Oracle, Active Endpoints, IBM, and SAP. Web service
human task (WS-HumanTask), version 1.0. Technical report, June 2007.

[2] Laura Bocchi, José Luiz Fiadeiro, and Antnia Lopes. A use-case driven
approach to formal service-oriented modelling. In Tiziana Margaria
and Bernhard Steffen, editors, ISoLA, volume 17 of Communications in
Computer and Information Science, pages 155–169. Springer, 2008.

[3] Ralph Depke, Reiko Heckel, and Jochen Küster. Agent-oriented mod-
eling with graph transformation. pages 105–119, 2001.

[4] Ralph Depke, Reiko Heckel, and Jochen Malte Küster. Formal agent-
oriented modeling with uml and graph transformation. Sci. Comput.
Program., 44(2):229–252, 2002.

[5] José Fiadeiro and et al. Expanding service-oriented architecture to
support human interaction (SOA4HU). September 2008.

[6] Martin Fowler. UML Distilled Third Edition. Addison-Wesley, Boston,
Massachusetts, 2004.

[7] Stan Franklin and Art Graesser. Is it an agent, or just a program?:
A taxonomy for autonomous agents. In ECAI ’96: Proceedings of the
Workshop on Intelligent Agents III, Agent Theories, Architectures, and
Languages, pages 21–35, London, UK, 1997. Springer-Verlag.

[8] IBM and SAP. Ws-bpel extension for people bpel4people. Technical
report, July 2005.

[9] Michael Jackson. Problem frames: analyzing and structuring software
development problems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[10] Tom Pender. UMLTM Bible. Wiley Publishing, Inc., Indianapolis, IN,
2003.

[11] Jenny Preece. Human-Computer Interaction. Addison-Wesley, New
York, 1994.

[12] Ravi S. Sandhu. Role-based access control, September 1997.

32

