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Microeconomic foundations of representative agent

models by means of ultraproducts ∗

Geghard Bedrosian† Frederik Herzberg ‡

Abstract

This paper builds on a recent proposal for microeconomic
foundations for “representative agents”. Herzberg [12] constructed a
representative utility function for finite-dimensional social decision
problems and since the decision problems of macroeconomic theory are
typically infinite-dimensional, Herzberg’s original result is insufficient
for many applications. We therefore generalise his result by allowing
the social alternatives to belong to a general reflexive Banach space
and provide sufficient conditions for our new results to be satisfied in
economic applications.
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1 Introduction

Modern macroeconomic theory looks for microeconomic foundations,
namely consumers and firms, and it considers how these microeconomic
entities in an economy make their decisions and then how these many
individuals’ choices give rise to economy-wide “macroeconomic” outcomes
(see Gillman [11] and Mankiw [16]).
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Germany. Email: gbedrosi@math.uni-bielefeld.de
‡Center for Mathematical Economics (IMW), Bielefeld University, Universitätsstraße
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Since in realistic models, consumers and firms are heterogeneous, an
accurate and comprehensive mathematical description of the aggregate
behaviour is typically an intractable problem. One solution is to assume
the existence of a “representative agent” in a loosely defined sense.

Indeed, in mathematical models of macroeconomic theory, the assump-
tion of a “representative agent” is ubiquitous (see [13]), but the search
for a rigorous justification has so far been unsuccessful and was ultimately
abandoned until very recently. Herzberg [12] constructed a representative
utility function for finite-dimensional social decision problems, based on
an bounded ultrapower construction over the reals, with respect to the
ultrafilter induced by the underlying social choice function (via the Kirman–
Sondermann [14] correspondence). However, since the decision problems of
macroeconomic theory are typically infinite-dimensional, Herzberg’s original
result is insufficient for many applications. We therefore generalise his result
by allowing the social alternatives to belong to a general reflexive Banach
space W .

In this paper, we suppose that individuals have “cardinal utilities”, i.e.
for every individual, there is an utility function which induces his (or her)
preference ordering. Furthermore, the aggregation of individual preferences
is assumed to result from a social welfare function satisfying all Arrovian
rationality axioms (Unanimity, Independence and No Dictatorship).

Arrow [3] has shown that if the set of individuals is finite and the set of
alternatives is at least three, then Arrow’s axioms are inconsistent (Arrow’s
Impossibility Theorem). Fishburn [9] has shown that if the set of individuals
is infinite and the set of alternatives is at least three, then Arrow’s axioms
are consistent (Fishburn’s Possibility Theorem). Kirman and Sondermann
[14] [Theorem 1; Proposition 2] have shown that the collection of decisive
coalitions generated by a social welfare function satisfying all Arrovian
rationality axioms, is always a non-principal ultrafilter. This is only possible
if the set of individuals is infinite.

We also suppose that the set of alternatives is a compact non-empty
convex subset of a given reflexive Banach space W (Herzberg [12] has
supposed that the set of alternatives is a finite-dimensional vector space).
Furthermore, we assume that the set of admissible utility functions are
parametrised and the parameter set is a compact subset of a given Banach
space X. For our results, the set of parametrised admissible utility functions
contains only continuous and strictly concave functions.

Using a nonstandard enlargement of the superstructure over (X⊕W )∪R,
obtained by a bounded ultrapower construction with respect to the non-
principal ultrafilter, we prove that there exists for every utility profile,
some D-socially acceptable utility function (Theorem 1) and then we use
this theorem for existence of a representative utility function (Theorem
2). These results depend on certain regularity features of the so-called
admissible utility functions (Axiom (A5)). We provide sufficient conditions
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(Corollary 2 and Corollary 3) for these regularities to be satisfied in diverse
economic applications.

2 The Model and Formulation

We are concerned with a social decision problem, therefore we need a model
for introducing population, alternatives and utility functions. We use the
following model:

Let N be a set of individuals1 and C a set of alternatives. We fix some
subset D of the power-set of N . We call the elements of D, potentially
decisive coalitions. Also for generalising Herzberg’s [12] results, we will
have to assume that C is a compact non-empty convex subset of a given
reflexive Banach space W (with norm ‖ ·‖W ).

We fix some class M of functions from C to R. The elements of M are
called admissible utility functions. Every individual’s utility function,
ui, belongs to M. Elements of MN will be called utility profiles and
u = 〈ui〉i∈N ∈MN .

We now employ some social choice theory notations and formulations
from Kirman and Sondermann [14].

Definition 1 A relation P ⊆ C × C is called a weak order if and only if P
is “asymmetric” and “negatively transitive”. P denotes the set of all weak
orders on C. For all x, y ∈ C and P = 〈Pi〉i∈N ∈ PN , we define

C(x, y, P ) := {i ∈ N : xPiy}.

Definition 2 For x ∈ C and P ∈ P, x will be called P-maximal if and
only if for all y ∈ C\{x}, we have xPy.

Definition 3 For u : C −→ R and P ∈ P, we say that u is a utility
representation of P if and only if for all x, y ∈ C,

u(x) > u(y)⇔ xPy.

Remark 1 We denote P u ∈ P as a notation that utility function u, induces
the preference P . Similarly, given an N -sequence u = 〈ui〉i∈N of functions
from C to R, we define

P u := 〈P ui〉i∈N ∈ PN .

We say that the utility profile u induces the preference profile P u.

1Subsets of N are called coalitions.
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Definition 4 A social welfare function is a map σ : PN −→ P.

According to our notations, Arrow’s rationality axioms for σ will be
formulated as follows:

(A1) (Unanimity Preservation): For all x, y ∈ C and P ∈ PN , if C(x, y, P ) =
N then xσ(P )y.

(A2) (Independence of Irrelevant Alternatives): For all x, y ∈ C and P , P ′ ∈
PN , if C(x, y, P ) = C(x, y, P ′) and C(y, x, P ) = C(y, x, P ′), then

xσ(P )y ⇔ xσ(P ′)y, yσ(P )x⇔ yσ(P ′)x.

(A3) (No Dictatorship): There is no i0 ∈ N such that for all x, y ∈ C and
P ∈ PN ,

xPi0y ⇒ xσ(P )y.

Definition 5 We say that a coalition C ⊆ N is σ-decisive if and only if
for all x, y ∈ C and P ∈ PN one has xσ(P )y whenever xPiy for all i ∈ C
and yPjx for all j ∈ N\C. The set of σ-decisive coalitions is denoted by
Dσ.

For the following, recall that a filter on N is a set D of subsets of N
satisfying:

1. ∅ /∈ D.

2. If D1, D2 ∈ D then D1 ∩D2 ∈ D.

3. If D1 ∈ D and D1 ⊆ D2 then D2 ∈ D.

An ultrafilter on N is a filter D on N which is maximal with respect to
inclusion, i.e., it is a filter D for which any other filter D′ on N satisfying
D ⊂ D′, actually satisfies D = D′.2 In other words, an ultrafilter on N
is the collection of all subsets of N which have µ-measure 1 for some µ,
which is a finitely additive {0, 1}-valued measure on 2N . An ultrafilter is
non-principal if the intersection of all its members is empty. Otherwise it
is called principal, and one can show that the intersection has exactly one
element (in our interpretation a dictator).

Kirman and Sondermann [14] have shown that a social welfare function
σ satisfies all Arrovian rationality axioms ((A1), (A2) and (A3)) if and only
if Dσ is a non-principal ultrafilter. We therefore require that D is a non-
principal ultrafilter on N and this is only possible if N is infinite3. Thus,
we impose the following axiom:

2One can show that a filter D is an ultrafilter if and only if for all D ⊆ N , either D ∈ D
or N\D ∈ D (e.g. see Bell and Slomson [4]).

3If N is finite, then every ultrafilter on it is principal (for more details see Bell and
Slomson [4]).
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(A4) D is a non-principal ultrafilter on N (and therefore N is infinite).

Parametrisations are ubiquitous in macroeconomics, motivating our next
assumption:

(A5) Let Z be a compact subset of a given Banach space X (with norm
‖ ·‖X). There exists a continuous function v : Z × C −→ R such that
for every z ∈ Z, v(z, ·) is strictly concave and4

M⊆ { v(z, ·) : z ∈ Z }.

(In other words, given any u ∈MN , there is an N -sequence 〈zi〉i∈N ∈
(Z)N such that ui = v(zi, ·) for every i ∈ N .)

Remark 2 For all u ∈M, u attains its unique global maximum on C.

Proof. We are concerned with the maximization problem

(1) sup
r∈C

v(z, r).

This problem is dual of the minimization problem in Ekeland and Temam
[8] [Chapter 2 (p. 34)]. Then according to (A5) (continuity and concavity),
the problem (1) has a solution for each z ∈ Z, and this solution is unique
since the function v(z, ·) is also assumed to be strictly concave over C (in
(A5)). (See Proposition 1.2. (p. 35) in Ekeland and Temam [8].)

�

3 Main Results

In this section after introducing two important definitions, we will show
the existence of D-socially acceptable and representative utility functions.
Afterwards, we will provide conditions for previous regularities to be satisfied
in economic applications.

Definition 6 An admissible utility function ϕ : C −→ R is said to be D-
socially acceptable for u if and only if there exists some x̃ ∈ C with ϕ(x̃)=
sup ϕ such that for every y ∈ C\{x̃}, the coalition of i with ui(x̃) > ui(y) is
decisive.

Definition 7 An admissible utility function ϕ : C −→ R is called σ-
representative of P ∈ PN if and only if there exists some x̃ ∈ C with
ϕ(x̃)= sup ϕ and any such x̃ is also σ(P )-maximal.

4Properness is obvious, since v goes to real numbers.

5



Theorem 1 Assuming (A4) and (A5), there exists for every u ∈MN some
D-socially acceptable utility function.

The proof, can be found in section 6, contains nonstandard functional
analysis. An informal discussion of the proof methodology can be found in
section 4.

Theorem 2 Suppose σ satisfies (A1), (A2) and (A3). Then:

1. D := Dσ satisfies (A4).

2. If, in addition, M satisfies (A5), then there exists for every u ∈
MN some admissible utility function which is σ-representative of the
preference profile P u induced by u.

For the proof of Theorem 2, we show that the maximiser of this
representative utility function maximises the Dσ-socially acceptable utility
function, Dσ being the ultrafilter of σ-decisive coalitions. In other words, the
maximiser of this representative utility function is the optimal alternative
according to the social preference relation. The complete proof can be
found in section 6.

Consider a function u, defined by

(2) ∀c ∈ C , u(c) = max
y∈Y

f(y, c),

where Y is some set (called choice set) and f : Y × C −→ R is some
function, interpreted as felicity function of some agent depending on the
social parameter c and his (or her) choice y.

Lemma 1 Suppose Y is a compact non-empty convex subset of X and f :
Y × C −→ R is continuous and strictly concave. Then u is continuous and
strictly concave.

We prove Lemma 1 using convex analysis (in section 6). Lemma 1
immediately implies the following corollary:

Corollary 1 Suppose Y is a compact non-empty convex subset of X and
f : Y × C −→ R is continuous and strictly concave. Then the function u
defined by (2) satisfies Axiom (A5).

Corollary 2 Suppose Y is a compact non-empty convex subset of X and
g : Z×Y ×C −→ R is continuous and g(z, ·) is strictly concave for all z ∈ Z.
Let

M⊆ {max
y∈Y

g(z, y, ·) : z ∈ Z },

and D be a non-principal ultrafilter on N . Then there exists for every
u ∈MN some D-socially acceptable utility function.
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Corollary 3 Suppose σ satisfies (A1), (A2) and (A3) and let Y , g and M
be as in Corollary 2. Then there exists for every u ∈ MN some admissible
utility function which is σ-representative of the preference profile P u induced
by u.

4 Proof methodology

For the proof of Theorem 1, we make a superstructure over (X⊕W )∪R, i.e.
V ((X ⊕W ) ∪ R), where X ⊕W is a Banach space which is established by
algebraic direct sum of two Banach spaces X and W with norm ‖x⊕w‖∞ =
max{‖x‖X , ‖w‖W }.5

We make the superstructure V ((X ⊕W )∪R) by iterating the power-set
operator countably many times. Then we construct a bounded ultrapower
of V ((X ⊕W ) ∪ R) by collecting the equivalence classes of sequences in
V ((X ⊕W ) ∪ R), that are bounded in the superstructure hierarchy, using
the non-principal ultrafilter D on N . Afterwards we embed this bounded
ultrapower into the superstructure V (∗(X ⊕ W ) ∪ ∗R) in such a way that
this embedding satisfies extension and transfer principle. We work on this
nonstandard universe, which consists of equivalence classes of sequences of
superstructure elements with respect to equivalence relation of “almost sure
agreement” according to D. On the ∗image of X ⊕W , a standard operator
with respect to the canonical topology on X ⊕ W is definable. We shall
verify that the standard part of the D-equivalence class of a utility profile
is the parameter of a D-socially acceptable utility function. The proof of
this assures the continuity and S-continuity arguments with features of the
bounded ultrapower construction.

5 Discussion

The traditional reason for using the assumption of the “representative
agent” in mathematical models of macroeconomic theory is that it provides
microeconomic foundations for aggregate behaviour. So far there have been
few attempts at rigorously justifying this assumption. Our contribution
combines Arrovian aggregation theory (on an infinite electorate) with
structural assumptions on the individual optimisation problem. We adopt
the hypothesis that the social planner’s goal is maximising the social welfare
function. After aggregating individual preferences, we have shown that
there is a representative utility function by proving that the maximiser of
this representative utility function is the optimal alternative according to
the social preference relation. We have also provided sufficient conditions

5One can show that two norms ‖x ⊕ w‖p = (‖x‖pX + ‖w‖pW )1/p for 1 ≤ p < ∞ and
‖x⊕ w‖∞ = max{‖x‖X , ‖w‖W } for p =∞, are equivalent on R.
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for these results to be satisfied in economic applications.

6 Proofs

Proof of Theorem 1. Fix an arbitrary u ∈ MN and by (A5), let 〈zi〉i∈N ∈
(Z)N be such that ui = v(zi, ·) for every i ∈ N .

The ultrapower construction can easily be adapted to construct an
embedding

∗ : V ((X ⊕W ) ∪ R) −→ V (∗(X ⊕ W ) ∪ ∗R),

where ∗(X ⊕ W ) is a Banach space over ∗R satisfying:
extension: ∗(X ⊕ W ) and ∗R are proper extensions of X ⊕ W and R,
respectively, and ∗x = x for all x ∈ (X ⊕W ) ∪ R,
and
transfer: If Φ(v1, · · · , vn) is an ∈-formula with bounded quantifiers and n
free variables, then for all A1, · · · , An ∈ V ((X ⊕W ) ∪ R),

V ((X ⊕W )∪R) |= Φ[A1, · · · , An] ⇔ V (∗(X ⊕W )∪ ∗R) |= Φ[ ∗A1, · · · , ∗An].

(See e.g. Albeverio, Fenstad, Høegh-Krohn and Lindstrøm [1])
For the rest of the proof, we work in the resulting nonstandard universe.

We have to construct some parameter z̃ such that v(z̃, ·) is D-socially
acceptable.

Put z̄ := [〈zi〉i∈N ]D ∈ ∗Z. Since Z is a compact, then every element
of ∗Z is nearstandard (Anderson [2] [Chapter 2; Theorem 2.3.2.])6 and let
z̃ := ◦z̄. Applying the transfer principle of nonstandard analysis to Remark
2, we learn that ∗v(z̄, ·) attains its unique global ∗maximum in some x̄ ∈ ∗C.

Consider now the map
w : Z −→ C,

which assigns to each z ∈ Z the unique x = w(z) ∈ C such that

x ∈ arg sup
r∈C

v(z, r).

(Existence and uniqueness follow from Remark 2.)
By transfer principle,

∗w : ∗Z −→ ∗C,

hence ∗w(z̄) ∈ ∗C and since C is a compact, every element of ∗C is
nearstandard (see again Anderson [2] [Chapter 2; Theorem 2.3.2.]) and
therefore x̄ = ∗w(z̄) is nearstandard. We put x̃ := ◦x̄.

6We only used the easy part of this theorem, which does not require saturations.
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Due to (A5), v is continuous and hence ∗v is S-continuous (Albeverio,
Fenstad, Høegh-Krohn and Lindstrøm [1]). Therefore, we have for all y ∈ C,

(3) v(z̃, y)− v(z̃, x̃) ' ∗v(z̄, y)− ∗v(z̄, x̃) ' ∗v(z̄, y)− ∗v(z̄, x̄).

The right-hand side of Equation (3) is a non-positive hyperreal (since x̄ is a
global ∗maximum of ∗v(z̄, ·)), so the standard part is non-positive, but the
standard part is exactly v(z̃, y)− v(z̃, x̃); then

v(z̃, y)− v(z̃, x̃) ≤ 0 ; ∀y ∈ C.

Since we have a unique global maximum (according to Remark 2), thus

(4) v(z̃, y)− v(z̃, x̃) < 0 ; for all standard y 6= x̃.

The rest of the proof is basically as in Herzberg [12]. In order to verify
that v(z̃, ·) is D-socially acceptable, we still need to show that for every
y ∈ C\{x̃}, the set of all i ∈ N with ui(x̃) > ui(y) is decisive (i.e. ∈ D).
Define a function f by f(h) := v(h, x̃)− v(h, y) for all h ∈ Z, whence

{i ∈ N : ui(x̃) > ui(y) } = {i ∈ N : f(zi) > 0 }.(5)

Due to the construction of the nonstandard embedding ∗ via the bounded
ultrapower (with respect to D) of the superstructure V ((X ⊕W )∪R), one
has

(6) {i ∈ N : ui(x̃) > ui(y) } ∈ D ⇔ ∗f(z̄) > 0.

However, by applying the transfer principle to the defining equation for f
and due to S-continuity of ∗v, we get

∗f(z̄) = ∗v(z̄, x̃)− ∗v(z̄, y) ' ∗v(z̄, x̄)− ∗v(z̄, y).

The standard part of the right-hand side is strictly positive (by inequality
(4)) and therefore ◦(∗f(z̄)) > 0. Hence ∗f(z̄) > 0 and by equivalence (6) we
have

{i ∈ N : ui(x̃) > ui(y) } ∈ D.

�

Proof of Theorem 2. (1) Kirman and Sondermann [14] [Theorem 1;
Proposition 2] have shown that D = Dσ is a non-principal ultrafilter
whenever σ satisfies (A1), (A2) and (A3).

(2) According to Theorem 1, for an arbitrary u ∈ MN there exist some
ϕ ∈M and x̃ ∈ C such that ϕ(x̃)= sup ϕ and for every y ∈ C\{x̃}

{i ∈ N : ui(x̃) > ui(y) } ∈ Dσ.
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Therefore, for an arbitrary y ∈ C\{x̃},

{i ∈ N : x̃P
u
i y } ⊇ {i ∈ N : ui(x̃) > ui(y) } ∈ Dσ.

Since Dσ is an ultrafilter, hence

{i ∈ N : x̃P
u
i y } ∈ Dσ,

and this implies x̃σ(P u)y (Kirman and Sondermann [14] [Theorem 1(i)]).
The proof is complete since y was an arbitrary element of C\{x̃}.

�

Proof of Lemma 1. Since f is strictly concave, then for every y′, y′′ ∈ Y
and every c′, c′′ ∈ C and λ ∈ [0, 1] we have

f
(
λy′ + (1− λ)y′′, λc′ + (1− λ)c′′

)
> λf(y′, c′) + (1− λ)f(y′′, c′′).

Taking the maximum of both sides over y′, y′′ ∈ Y and using the convexity
of Y , we obtain

u
(
λc′ + (1− λ)c′′

)
> λu(c′) + (1− λ)u(c′′),

and therefore u is strictly concave.
Since Y is a compact set and f is continuous, the extreme value theorem

implies the existence of maximum on Y . Let {cn} be a sequence in C
converging to c and {yn} ∈ arg maxn f(yn, cn) be a sequence in Y . Since Y is
a compact set, there exists a convergent subsequence {ynk

} which converges
to some y ∈ Y . If it is shown that y ∈ arg maxy f(y, c), then

lim
k→∞

u(cnk
) = lim

k→∞
f(ynk

, cnk
) = f(y, c) = u(c),

which would prove the continuity of u.
Suppose that y /∈ arg maxy f(y, c), i.e. there exists an ŷ ∈ Y such that
f(ŷ, c) > f(y, c). By the continuity of f , we get

lim
j→∞

f(ŷ, cnj ) = f(ŷ, c) > f(y, c) = lim
j→∞

f(ynj , cnj ).

This implies that for sufficiently large j,

f(ŷ, cnj ) > f(ynj , cnj ),

which would mean ynj is not a maximiser and this is a contradiction of
{yn} ∈ arg maxn f(yn, cn).

�
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