
Diagrammatic Process Theory as a
Logic for Social Interaction

Bob Coecke
University of Oxford



Diagrammatic Process Theory as a
Logic for Social Interaction

Bob Coecke
University of Oxford

Towards model independent compositional reason-
ing about social behaviours. Candidate models:

• theoretical models

• statistical data



Diagrammatic Process Theory as a
Logic for Social Interaction

Bob Coecke
University of Oxford

Towards model independent compositional reason-
ing about social behaviours. Candidate models:

• plain statistical data

• theoretical models



Our starting point is the common structure of:



Our starting point is the common structure of:

• how quantum systems interact

• how meanings in natural language interact

Exploring connections:

• BC (2012) The logic of quantum mechanics - Take II. arXiv:1204.3458

• S. Clark, BC, E. Grefenstette, S. Pulman & M. Sadrzadeh (2013) A quan-
tum teleportation inspired algorithm produces sentence meaning from word
meaning and grammatical structure. arXiv:1305.0556



– e.g. quantum teleportation –



– e.g. entanglement swapping –



– e.g. negation and relative pronouns –
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The overarching framework:

• process theories

• purely diagrammatic reasoning

Forthcoming book (750 pp):

• BC & Aleks Kissinger
Picturing Quantum Processes
Cambridge University Press, spring 2015
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Also in the scope of the framework:

• animal behaviour and evolution

Forthcoming paper:

• BC (2014) In the beginning God created ⊗. In: The Incom-
putable, S. B. Cooper & S. Soskova, Eds. Springer.

. . . evidently exactly the same:

• social behaviour and development
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Initial question (quant-ph/0510032):

Can QM be formulated in pictures?

Same question, put differently:

• Can QM be formulated in terms of ⊗?
(contra: C, +, matrices, ...)

• Can QM be formulated in terms of processes?
(contra: states, numbers)

• Does QM have logic features?
(contra: failures)



Category-theoretic underpinning:
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Selinger, P. (2007) Dagger compact closed categories and completely positive
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Coecke, B., and Pavlovic, D. (2007) Quantum measurements without sums.
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Coecke, B., and Duncan, R. (2008) Interacting quantum observables. ICALP’08
& NJP’10. arXiv:quant- ph/09064725

Coecke, B., Paquette, E. O., and Pavlovic, D. (2010) Classical and quan-
tum structuralism. In: Semantic Techniques in Quantum Computation. CUP.
arXiv:0904.1997

Chiribella, G., D’Ariano, G. M., and Perinotti, P. (2010) Probabilistic theo-
ries with purification. Physical Review. arXiv:0908.1583



. . . mainly borrowing from Australians:

Kelly, M. (1972) Many-variable functorial calculus I. LNM.
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New structural theorems:

Selinger, P. (2011) Finite dimensional Hilbert spaces are complete for dagger
compact closed categories. ENTCS.

Coecke, B., Pavlovic, D., and Vicary, J. (2011) A new description of orthog-
onal bases. MSCS. arXiv:quant-ph/0810.1037

Backens, M. (2013) The ZX-calculus is complete for stabilizer quantum me-
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Kissinger, A. (2014) Finite matrices are complete for (dagger-)multigraph cat-
egories. arXiv:1406.5942.



BC & Aleks Kissinger

Picturing Quantum Processes
Cambridge University Press, spring 2015.



— Ch. 1 – Processes as diagrams —

Philosophy [i.e. physics] is written in this grand book—I mean the
universe—which stands continually open to our gaze, but it cannot be
understood unless one first learns to comprehend the language and
interpret the characters in which it is written. It is written in the
language of mathematics, and its characters are triangles, circles,
and other geometrical figures, without which it is humanly impossible
to understand a single word of it; without these, one is wandering
around in a dark labyrinth.

— Galileo Galilei, “Il Saggiatore”, 1623.

Here we introduce:
• diagrams

• process theories

• (boring) circuit diagrams
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– process theory –

... consists of:

• set of systems S

• set of processes P, with ins and outs in S ,
which are:

• closed under forming diagrams.

It tells us:

• how to interpret boxes and wires,

• and hence, when two diagrams are equal.
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— Ch. 1 – Processes as diagrams —

– circuits –

Defn. ... := can be build with ⊗ and ◦.

Thm. Diagram is circuit⇔ is ‘causal’ e.g.:

with
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State :=

Effect / Test :=

Number :=
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– special processes/diagrams –
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— Ch. 1 – Processes as diagrams —

– special processes/diagrams –

Born rule :=
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Vector space model of word meaning in NLP:

• vector space spanned by context words

• meaning vectors from relative occurrences

• similarity from inner product

Source: huge corpus

Pioneer:

• H. Schuetze (1998) Automatic word sense discrimination. Com-
putational Linguistics, 24, 97123.



Vector space model of social properties:

• vector space spanned by context words

• meaning vectors from relative occurrences

• similarity from inner product

Source: Facebook, personal page, ...

Pioneer:

• H. Schuetze (1998) Automatic word sense discrimination. Com-
putational Linguistics, 24, 97123.



— Ch. 2 – String diagrams —

When two systems, of which we know the states by their respective
representatives, enter into temporary physical interaction due to known
forces between them, and when after a time of mutual influence the
systems separate again, then they can no longer be described in the
same way as before, viz. by endowing each of them with a representa-
tive of its own. I would not call that one but rather the characteristic
trait of quantum mechanics, the one that enforces its entire departure
from classical lines of thought.

— Erwin Schrödinger, 1935.

Here we introduce:
• string diagrams
• transposes and adjoints
• quantum phenomena in great generality
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1. ‘Circuits’ with cup-state and cup-effect:

which satisfy:
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I.e. ‘constructive’ CJ-isomorphism via Bell-state/effect:

Pf.
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2. diagrams allowing in-in, out-out and out-in wiring:



— Ch. 2 – String diagrams —

– TFAE –

From 1. to 2.:

so that:
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Symmetric monoidal categories as diagrams:

compact closed traced plain

string diagrams diagrams cicuits

no ins/outs outs to ins causal structure
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– transpose –

Prop. Sliding:

... so this is a mathematical equation:
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– trace –
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— Ch. 2 – String diagrams —

– trace –

Prop. Cyclicity:

Fun but redundant ‘ferris wheel’ proof:
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— Ch. 2 – String diagrams —

– adjoint & conjugate –

Conjugate :=

7→

Adjoint :=

7→
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– adjoint & conjugate –

Unitarity/isometry :=
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— Ch. 2 – String diagrams —

– sets and relations –

• wires := sets

• two wires := cartesian product

• boxes := relations

• transpose = adjoint := converse

• cups and caps for B :=
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— Ch. 2 – String diagrams —

– linearity –

Thm. No-cloning from assumptions:

(Categorically:= cartesian ⊥ compact closed)
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– no-cloning –
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– correlations –

Perfect correlations:
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– time-reversal –

Operational reading:
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String diagrams for natural language meaning:

• Top part: grammar

• Bottom part: meaning vectors
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b ≤ a( c⇔ a · b ≤ c⇔ a ≤ c � b

or equivalently,

a · (a( c) ≤ c ≤ a( (a · c)

(c � b) · b ≤ c ≤ (c · b) � b

Lambek’s Pregroups (2000’s):

a · −1a ≤ 1 ≤ −1a · a

b−1 · b ≤ 1 ≤ b · b−1
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1. Perform grammatical type reduction:

(word type 1) . . . (word type n) { sentence type

2. Interpret diagrammatic type reduction as linear map:

f :: 7→

∑
i

〈ii|

 ⊗ id ⊗

∑
i

〈ii|


3. Apply this map to tensor of word meaning vectors:

f
(
−→v 1 ⊗ . . . ⊗

−→v n

)



Algorithm for meaning composition:

Dimitri Kartsaklis & Mehrnoosh Sadrzadeh (2013) Prior Disambiguation of
Word Tensors for Constructing Sentence Vectors. In EMNLP’13.



Algorithm for meaning composition:

1. Perform grammatical type reduction:

(word type 1) . . . (word type n) { sentence type

2. Interpret diagrammatic type reduction as linear map:

f :: 7→

∑
i

〈ii|

 ⊗ id ⊗

∑
i

〈ii|


3. Apply this map to tensor of word meaning vectors:

f
(
−→v 1 ⊗ . . . ⊗

−→v n

)



Algorithm for social behaviour composition:

1. Perform social type reduction:

(person type 1) . . . (person type n) { group type

2. Interpret diagrammatic type reduction as linear map:

f :: 7→

∑
i

〈ii|

 ⊗ id ⊗

∑
i

〈ii|


3. Apply this map to tensor of word meaning vectors:

f
(
−→v 1 ⊗ . . . ⊗

−→v n

)



— Ch. 3 – Hilbert space from diagrams —

I would like to make a confession which may seem immoral: I do not
believe absolutely in Hilbert space any more.

— John von Neumann, letter to Garrett Birkhoff, 1935.

Here we define for string diagrams:

• ONBs, matrices and sums

• (multi-)linear maps & Hilbert spaces
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– orthonormal basis –

For:

• unit number := ‘empty’ diagram

• zero number := ‘black hole’ diagram

we set:
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– sum –

... := for processes of ‘same type’ there exists:

which ‘moves around’:
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— Ch. 3 – Hilbert space from diagrams —

– definition –

Thm.

(multi) linear maps := string diagrams s.t.:

• each system has ONB

• ∃ sums

• numbers are C

Hilbert space := states for a system with Born-rule.

(note: tensor product comes for free)
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— Ch. 3 – Hilbert space from diagrams —

– completeness –

THM. (Selinger, 2008)

An equation between string diagrams holds, if and only
if it holds for Hilbert spaces and linear maps.

I.e. defining Hilbert spaces and linear maps in this man-
ner is a ‘conservative extension’ of string diagrams.



— Ch. 4 – Quantum processes —

The art of progress is to preserve order amid change, and to preserve
change amid order.

— Alfred North Whitehead, Process and Reality, 1929.

Here we introduce:

• pure quantum maps

• general quantum maps

• causality, no-signalling & Stinespring dilation
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Goal 1:

Goal 2:

∼
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Discarding :=

Thm. Discarding is not a pure quantum map.



— Ch. 4 – Quantum processes —

– quantum maps –

Discarding :=

Thm. Discarding is not a pure quantum map.

Pf. Something connected , something disconnected.
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... := pure quantum maps + discarding



— Ch. 4 – Quantum processes —

– quantum maps –

... := pure quantum maps + discarding

(cf. Krauss form of CP-map)
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(a surprising plethora of things follows: an arrow
of time, non-signalling, relativistic covariance, ...)
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– axiom: causality (= terminality of I) –

Prop. For pure quantum maps:

causality⇐⇒ isometry

Pf.
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– axiom: causality (= terminality of I) –

Prop. For general quantum maps:

causality
Stinespring
⇐⇒ of the form

Pf.



Candidate systems:

• vector space with inner-product:

– pure (or closed) quantum states (complex)

– standard natural language processing (real)

• density matrices with trace:

– mixed (or open) quantum states

– neo natural language processing

• more abstract models and constructions
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Two distinct sums:
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Advantages over vector spaces of meaning:

• Ambiguity:

– Robin Piedeleu’s MSc thesis (2014)

– Dimitri Kartsaklis’s PhD thesis (2014)

• Information/propositional content:

– Esma Balkir’s MSc thesis (2014)

• Construction can be iterated



— Ch. 5 – Quantum measurement —

The bureaucratic mentality is the only constant in the universe.

— Dr. McCoy, Star Trek IV: The Voyage Home, 2286.

↙ ↘
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— Ch. 5 – Quantum measurement —

– is quantum measurement weird? –

Heisenberg-Bohr:

any attempt to observe is bound to disturb

Newtonian equivalent:

locating a baloon by mechanical means

Resulting diagnosis:

we suffer from quantum-blindness



— Ch. 6 – Picturing classical processes —

Damn it! I knew she was a monster! John! Amy! Listen! Guard your
buttholes.

— David Wong, This Book Is Full of Spiders, 2012.

Here we fully diagrammatically describe:

• classical-quantum processes

• classical data as spiders

• fully diagrammatic protocols



— Ch. 6 – Picturing classical processes —

– classical-quantum maps –

Main idea:

classical system
quantum system

=
single wire

double wire
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– classical-quantum maps –

Fix ONB and set:

:= “providing classical value i”

:= “testing for classical value i”

Sanity check:
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Classical map :=
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– classical-quantum maps –

copy :=

delete :=
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Thm. ... are always of the form:

where Φ is a quantum map.
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— Ch. 6 – Picturing classical processes —

– spiders –

... :=



— Ch. 6 – Picturing classical processes —

– spiders –

Prop.
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E.g.:



— Ch. 6 – Picturing classical processes —

– spiders –

... and in particular:
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THM.

These equations imply ONB for linear maps!
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THM. (Kissinger, 2014)

An equation between dot diagrams holds, if and only if
it holds for Hilbert spaces with a fixed basis and linear
maps, that is, for matrices of complex numbers.
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Prop. Controlled isometry:
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Dot diagrams for natural language meaning:



Dot diagrams for natural language meaning:

• Top part: grammar

• Bottom part: meaning vectors
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• Thin wires := information types

•Measurement := share information

• Encode := being affected by information
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Not so crazy:
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• BC, E. O. Paquette & D. Pavlovic (2009) Classical and quantum struc-
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— Ch. 7 – Picturing phases & complementarity —

When spider webs unite, they can tie up a lion.

— Ethiopian proverb.

Here we identify in terms of spiders:

• phases

• complementarity

• strong complementarity
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Thm.


