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Abstract

We present a framework for extending Stone’s representation theorem for distributive
lattices to representation theorems for distributive lattices with operators. We proceed
by introducing the definition of algebraic theory of operators over distributive lattices.
Each such theory induces a functor on the category of distributive lattices such that its
algebras are exactly the distributive lattices with operators in the original theory. We
characterize the topological counterpart of these algebras in terms of suitable coalgebras
on spectral spaces. We work out some of these coalgebraic representations, including a
new representation theorem for distributive lattices with monotone operators.

1 Introduction

Boolean algebras with operators were first introduced and investigated in 1951 by Jónsson and
Tarski [18, 19] as a common framework for the study of several algebras and logics, including
relation algebras, cylindric algebras and modal logics. Using Stone’s topological representa-
tion of Boolean algebras [37], they showed that every Boolean algebra with operators can be
represented as a relational structure. Their result played an important role in the study of
many extensions of classical logics, such as normal modal logics [11] and monotone modal
logics [14].

Although Jónsson and Tarski considered only Boolean algebras with operators, their re-
sult suggested that similar methods can be applied to more general algebraic structures for
which a representation theorem is known. For example, an extensive theory of representation
of distributive lattices with operators has been developed in the past years [7, 36, 8, 9],
either using Stone’s representation of distributive lattices in terms of spectral spaces [38], or
Priestley’s duality [30], an alternative to Stone’s original duality.

Building on the original Stone representation theorem, in this paper we present a frame-
work aiming at a general representation theory of distributive lattices with operators in terms
of relational structures. Following Rutten [34], we see a relational structure as a coalgebra,
allowing the treatment of a large variety of different relational structures in a uniform way.

∗The research of Dr. Bonsangue has been made possible by a fellowship of the Royal Netherlands Academy
of Arts and Sciences

†Partially support by the Nuffield Foundation Grant NUF-NAL04.
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Stone duality between distributive lattices and spectral spaces can be lifted to a duality be-
tween suitable coalgebras over spectral spaces and algebras over distributive lattices induced
by algebraic theories of operators over distributive lattices.

Informally speaking, coalgebras encode operational meaning of systems in terms of the
possible next-steps relation a system may engage in; whereas algebras over distributive lattices
describes how to construct, up to logical equivalence, formulae for this next-step relations from
an intuitionistic (i.e. negation free) logic. The usefulness of our framework stems from the
fact that a lifting of Stone duality to a duality between coalgebras and algebras automatically
gives rise to non-classical logics that are sound, complete, and expressive with respect to a
suitable relational semantics [4].

Our approach greatly differs from most of the work on distributive lattices with operators
we are aware of (e.g. [7, 36, 8, 22, 27, 9]), all based on canonical extensions of distributive
lattices. Canonical extensions are a very useful technique for enriching topological spaces with
relations, obtaining structures departing from classical constructors as studied in topology.
Our framework can be casted in terms of classical works on topology, universal algebra and
locale theory. For example we consider coalgebras arising from classical hyperspace construc-
tors [24, 26], and theories of operators on distributive lattices inducing functors on distributive
lattices that have been greatly studied in the context of domain theory and locales. This goes
back to Johnstone [17] where a dual of the Vietoris hyperspace, called Vietoris locale, is
described. Winskel [41] used additive and multiplicative operators to describe the Plotkin
powerdomain [29], and Robinson [32] established the connection between the work in domain
theory and that of Johnstone. Abramsky [1] extended these ideas to give logical descriptions
of domains for a large number of other functors. Bonsangue [3] and Brink and Rewitzky [31]
applied these ideas to the semantics of programming languages.

We argue that the category of topological spaces in general, and spectral spaces in partic-
ular, forms an interesting base category for coalgebras. In fact, most of the work with the aim
of giving semantics to coalgebraic logics (as e.g.[33, 15, 25]) can be casted in terms of so-called
predicate liftings, as in Pattinson [28].1 In [21] it was shown that any modal logic given by
predicate liftings in the sense of [28] can be described by a functor on Boolean algebras, or,
equivalently, by a category of Boolean algebras with operators. In [5] this was generalised to
other algebraic categories including distributive lattices.

We proceed as follows. In Section 2 we recall Stone’s representation theorem for distribu-
tive lattices, and, in Section 3, some basic notions from universal algebra and coalgebra. In
Section 4 we introduce a definition of algebraic theory of operators over distributive lattices
in a such way that it induces a canonical functor on distributive lattices. As in [5], algebras
over the induced functors are exactly algebras of the original theories of distributive lattices
with operators. Using Stone duality, we relate these algebras with coalgebras generated by a
suitable functor over spectral spaces. This abstract framework is then applied to theories of
additive and multiplicative operators. In Section 5 we extend the approach of [5] from sets
to posets, that is, we move to ordered algebras to consider theories of monotone operators
over distributive lattices, and give a new representation of distributive lattices with monotone
operators in terms of the double hyperspace, obtained by composing (in either order [20]) the
upper and lower hyperspace constructions, as extensively studied in [40].

1Given T :Set → Set, a predicate lifting is a natural transformation λX :2X → 2TX , which lifts predicates
over X to predicates over TX (2 is here the contravariant powerset functor). The import of predicate liftings
λ stems from the fact that they give semantics to modal operators �λ in a canonical way: Given a T -coalgebra
(X, ξ) and a predicate A ⊆ X, �λA is defined as �λA = ξ−1(λX(A)).
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2 Stone duality for distributive lattices

A distributive lattice D is a partial order that has join and meets for arbitrary finite subsets,
and it satisfies the distributive law

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

We denote by ⊤ the empty meet, and by ⊥ the empty join. For example, the two-element
partial order 2 with ⊥ ≤ ⊤ is a distributive lattice. Distributive lattices with functions
preserving both finite joins and finite meets form a category called DLat.

In what follows we will often refer to Stone’s representation theorem for distributive lat-
tice [38]. We mention below the main ingredients of Stone’s result. The points of a distribu-
tive lattice D are defined by the set S(D) of morphisms f :D → 2 in DLat. This set of points
can be equipped with a topology with basic opens defined, for every x ∈ D, by

△(x) = {f :D → 2 | f(x) = ⊤}

In particular, the distributive lattice 2 has one single point, the identity morphism id2:2 → 2,
and two basic opens, namely △(⊥) = ∅ and △(⊤) = {id2}.

Definition 2.1 A topological space X is spectral if it is sober and its compact opens form
a basis for X and are closed under finite intersections. If, moreover, the compact opens are
closed under complement, then X is said to be a Stone space.

For every distributive lattice D, the topological space S(D) is spectral. Spectral spaces
can be organized into a category Spec by taking as morphisms all continuous maps with
inverse preserving compact opens. Examples of spectral spaces are Scott domains taken with
the Scott topology [29].

Our interest in spectral spaces is justified by the following observation. Since finite unions
of compact opens are again compact, it follows that if X is a spectral space then the set K(X)
of its compact opens is a distributive lattice. Moreover, if f :X → Y is a morphism between
the spectral spaces X and Y then

K(f) = f−1:K(Y ) → K(X)

is well-defined and preserves finite meets and finite joins of the distributive lattice K(Y ).
Thus we have a functor K: Spec → DLatop.

Lemma 2.2 The assignment D 7→ S(D) for each distributive lattice D can be extended to a
functor from DLatop to Spec which is the right adjoint of K.

For a spectral space X, the unit ηX :X → S(K(X)) of the above adjunction, given by the
assignments

x 7→ px:K(X) → 2 where px(o) = ⊤ ⇐⇒ x ∈ o for o ∈ K(X),

is an isomorphism. The same holds also for the co-unit △(−):D → K(S(D)). This result,
originally due to M. Stone [38], can be viewed as a generalization of his famous representation
theorem for Boolean algebras [37].
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Theorem 2.3 The functors S and K establish a dual equivalence between the categories DLat

and Spec:

Spec
K

DLat
S

(1)

In other words, every distributive lattice D is isomorphic in DLat to K(S(D)) via △, and
every spectral space X is isomorphic in Spec to S(K(X)) via ηX . By definition of △(D) we
have the following corollary.

Corollary 2.4 For each distributive lattice D and d1, d2 ∈ D, if d1 6≤ d2 then there exists a
morphism f :D → 2 such f(d1) = ⊤ but f(d2) = ⊥.

3 Algebras and coalgebras

An algebraic theory T = (Σ, E) consists of a set Σ of function symbols σ, each with an
associated arity nσ, and a set E of equations consisting of pairs (el, er), where el and er are
expressions formed from a set of variables V by applying the given function symbols.

A T-algebra is a set A together with a corresponding function σA:Anσ → A for each
function symbol σ ∈ Σ, such that, independently of the way we substitute elements of A for
the variables, each equation in E holds in A as an identity. A homomorphism between two
T-algebras A and B is a function f :A → B such that σB ◦ fnσ = f ◦ σA for each function
symbol σ ∈ Σ. The category of T-algebras is denoted by Alg(T).

Given a functor F on a category A, an F -algebra (denoted by (A, α) or simply α) is a
morphism α:FA → A in A. A morphism f :α → α′ between two F -algebras is a morphism
f :A → A′ in A such that f ◦ α = α′ ◦ Ff . The category of F -algebras is denoted by Alg(F ).
Dually, given a functor T on a category X, a T -coalgebra (denoted by (X, ξ) or just ξ) is a
morphism ξ:X → TX in X. A morphism f :ξ → ξ′ between two T -coalgebras is a morphism
f :X → X ′ in X such that Tf ◦ξ = ξ′◦f . The category of T -coalgebras is denoted by Coalg(T ).

A category A, or more precisely, a functor U :A → Set is monadic if A is (isomorphic to) a
category Alg(T) of T-algebras over an algebraic theory T = (Σ, E) and, moreover, U has left
adjoint. The latter condition implies that a monadic category has free algebras. For example,
the category of distributive lattices DLat is monadic [16]. Indeed DLat ∼= Alg(D), where
D = (ΣD, ED) is the algebraic theory of distributive lattices with a signature ΣD consisting of
two function symbols of arity 0 (namely ⊤ and ⊥) and two binary function symbols (namely ∧
and ∨). The set of equations ED is as expected. Because the forgetful functor U :DLat → Set

is monadic, it has a left adjoint denoted by F throughout. Hence FX is the free distributive
lattice over X and UFX is the set of equivalence classes of ΣD-terms over X modulo the
equations ED.

We conclude by recalling a useful technique to describe objects of monadic categories (for
more see [39]). Let U :A → Set, be a monadic functor with left adjoint F . A presentation
A〈G | R〉 of an object of A consists of a set of generators G and a set of relations R ⊆
UFG × UFG. A morphism f :FG → A in A satisfies the relations R if (t, s) ∈ R implies
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Uf(t) = Uf(s). An object A is presented by A〈G | R〉 if

FG

ıA
f

A
f+

A′

• A comes with an insertion of generators ıA:FG → A satisfying the relations R,

• for all A′ ∈ A and all f :FG → A′ satisfying the relations R there is a unique f+:A → A′

with f+ ◦ ıA = f .

For example, each distributive lattice D can be presented in DLat by taking as genera-
tors the set {d̂ | d ∈ D} and as relations the set containing the pairs (⊤̂,⊤), (⊥̂,⊥), and

((d̂1 ∧ d2), d̂1 ∧ d̂2), (d̂1 ∨ d2, d̂1 ∨ d̂2) for all d1, d2 ∈ D.
The next proposition shows that also the converse holds.

Proposition 3.1 Every presentation A〈G | R〉 presents an object in A.

Proof: The proof relies on the fact that A, as a category monadic over Set, has coequaliz-
ers [23]. The object presented by A〈G | R〉 is given by the coequalizer

FR
π

♯
2

π
♯
1

FG
ıA

A.

where π
♯
1, π

♯
2 come from the projections π1, π2:R → UFG. ⊓⊔

4 Distributive lattices with operators

The algebraic theory D = (ΣD, ED) of distributive lattices can be extended with signature ΩO

for operators over distributive lattices and a set of identities IO relating the new operators
ω ∈ ΩO with the function symbols of the theory of distributive lattices. The corresponding
algebras are called distributive lattice with operators. In what follows we formally define an
algebraic theory for operators over distributive lattices, and introduce a framework relating
the category of algebras over the extended theory with a category of coalgebras over spectral
spaces.

Definition 4.1 ([5]) Let U be the forgetful functor from DLat to Set with left adjoint F . A
theory O of operators over distributive lattices consists of

1. a signature Ω of operations ω ∈ Ω with arities nω which gives rise to a functor GΩ:Set →
Set, X 7→

∐
ω∈Ω Xnω ,

2. a set I of identities containing pairs of elements in UFGΩUFV , for some set V of
variables.
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Note that I ⊆ UFGΩUFV × UFGΩUFV means that the terms appearing in identities
may freely use the finite joins and finite meets of distributive lattices but do not contain
nested occurrences of operations from Ω. We will discuss this restriction in the conclusions.

For each algebraic theory O = (ΩO, IO) of operators over distributive lattices, let T =
(Σ, E) be the algebraic theory where Σ = ΣD + ΩO is the disjoint union of the signatures,
and E = ED + IO is the disjoint union of the equations. The equations in ED and IO are
understood as equations over ΣD + ΩO. 2 We define the category DLat(O) of distributive
lattices with operators in the algebraic theory O as the category of algebras Alg(T).

Next we set-up a framework for relating categories of distributive lattices with operators
to suitable categories of coalgebras over spectral spaces.

Definition 4.2 Given a theory of operators O = (Ω, I) and a functor L:DLat → DLat, we
say that a natural transformation f :FGΩU → L satisfies the identities I if for all distributive
lattices D and all morphisms v:FV → D (mapping variables to closed terms) it holds

(t, s) ∈ I ⇒ (fD ◦ FGΩUv)(t) = (fD ◦ FGΩUv)(s) .

Each theory of operators O = (Ω, I) defines a canonical functor LO:DLat → DLat that
comes equipped with a natural transformation ı satisfying the identities I. We define the
functor LO on a distributive lattice D as

FI

π
♯
1

π
♯
2

FGΩUFV
FGΩUv

FGΩUD
ıD

LOD

where the π
♯
1, π

♯
2 come from the projections π1, π2:I → UFGΩUFV , and ıD is the joint

coequalizer with respect to all pairs (FGΩUv◦π
♯
1, FGΩUv◦π

♯
2), for v:FV → D. The universal

property of LOD gives the action of LO on morphisms and the requested naturality of ı.
The distributive lattice LOD can be presented in DLat by taking as generators the set

GΩUD of all Ω terms over D, and as relations the set of all pairs

(UFGΩUv ◦ Uπ
♯
1(l), UFGΩUv ◦ Uπ

♯
2(r))

for all v:FV → D, and (l, r) ∈ UFI. More intuitively, we take as relations the set of all
instantiations of the identities I obtained by substituting the variables with elements of D.

Theorem 4.3 ([5]) Let O = (ΩO, IO) be a theory of operators for distributive lattices and
LO:DLat → DLat its associated canonical functor. Then the category of distributive lattices
with operators DLat(O) is isomorphic to the category Alg(LO).

Proof: Let Σ be ΣD + ΩO, and E be ED + IO. Consider an LO algebra α:LOD → D.
The corresponding Σ-algebra A has carrier UD and the interpretation ωA of the operations

ω ∈ ΩO is given by (UD)nω → UFGΩO
UD

UıD→ ULD
Uα
→ UD, where the leftmost arrow is

stemming from the composition of counit of the adjunction between DLat and Set with a

2Strictly speaking, IO was defined on equivalence classes of ΣD-terms. Formally, one obtains the new IO,
denoted I ′

O, as follows. Let TΣD
V be the set of ΣD-terms with variables in V . Consider a left-inverse m of

the quotient TΣD
GΩO

TΣD
V → UFGΩO

UFV (m chooses a representative for each equivalence class). Then
I ′

O = {(m(t), m(s)) | (t, s) ∈ IO}.
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suitable projection associated with the functor GΩO
. The algebra A satisfies the equations

ED because D does, and it satisfies the identities IO because ıD does.
Conversely, every (Σ, E)-algebra A is also a distributive lattice. We then obtain, from

the operations in ΩO, a function GΩO
UA → UA, i.e. a morphism f :FGΩO

UA → A. Since A

satisfies the equations IO we obtain the required LO algebra f+:LOA → A. ⊓⊔

To summarize the situation, for each theory O = (ΩO, IO) of operators for distributive
lattices, we have the following diagram:

Alg(LO) ∼= DLat(O)

Spec
K

DLat
S

LO

U

Set

F

(2)

The ultimate goal of this paper is to give coalgebraic representations of distributive lattices
with operators. The idea is to extend the duality generated by the functors K and S using a
functor on Spec dual to LO, where a functor T on Spec is called the dual of LO if there is a
natural isomorphism δ:LOK → KT .

The natural isomorphism δ gives us the link between the algebraic structure of distributive
lattices with operators and the relational structure of coalgebras. Indeed it allows us to extend
the equivalence in Diagram (1) to an equivalence of algebras and coalgebras by lifting the
functors K and S. Explicitly, on objects, the lifted K̃:Coalg(T ) → Alg(L) and S̃:Alg(LO) →
Coalg(T ) are given as

K̃(X, ξ) = LK(X)
δX−→ K(TX)

K(ξ)
−→ K(X)

S̃(D, α) = S(D)
S(α)
−→ S(LD) ∼= S(LK(S(D)))

(SδS)D
−→ S(K(TS(D))) ∼= TS(D)

We can thus fill, for each theory O = (ΩO, IO) of operators for distributive lattices, the upper
left corner of Diagram (2) as follows:

Coalg(T )
K̃

Alg(LO)

S̃

∼= DLat(O)

SpecT

K

DLat
S

LO

U

Set

F

If T is a dual functor of LO then we say that category Coalg(T ) is a representation of the
category of distributive lattices with operators in the theory O.

In the remainder of this section we give a few examples of functors T such that T -
coalgebras represent distributive lattices with operators. Our discussion follows a common
pattern. For each theory of operators O and each distributive lattice D, we give a pre-
sentation of the distributive lattice LOD by generators and relations. Our method for es-
tablishing a representation theorem for DLat(O) goes via the definition of an isomorphism
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δX :LOK(X) → KT (X) in DLat, where T is an assignment between spectral spaces. The
assignment T can be lifted to a functor using the isomorphism δX , the functor LO and the
unit η of the duality between Spec and DLat. More explicitly, we define the action of T on a
morphism f :X → Y as follows

T (f) = TX
ηTX−→ SKTX

SδX−→ SLOKX
SLOKf
−→ SLOKY

Sδ−1

X−→ SKTY
Sη−1

TY−→ TY .

This way δ is a natural isomorphism between the functors LOK(X) → KT (X). By the
discussion above we finally obtain the category Coalg(T ) as representation of the category
DLat(O).

4.1 Additive operators

Let us consider the theory of an additive operator A = (Ω, I), where Ω contains a unary
operation ♦. Further, taking V = {v0, v1} as set of variables, and, writing ”· = ·” instead of
”(·, ·)”, the set of identities I is given by

♦⊥ = ⊥ and ♦(v0 ∨ v1) = ♦v0 ∨ ♦v1 .

The theory A induces a functor LA:DLat → DLat, mapping each distributive lattice D to the
distributive lattice

LAD = DLat〈♦d:d ∈ D | ♦ preserves finite joins〉.

By Theorem 4.3, the category DLat(A) of distributive lattice with an additive unary operator
is isomorphic to the category of algebras Alg(LA). We want to find a functor on Spec dual
to LA. First we note that points of the distributive lattice LAD are related to sets of closed
subsets of points of D: The lemma below will allow us to associate f :LAD → 2 with the set
SD \

⋃
{∆(d′) | d′ ∈ D and f(♦d′) = ⊥}.

Lemma 4.4 Let D be a distributive lattice and d ∈ D. For every morphism f :LAD → 2 we
have

f(♦d) = ⊥ if and only if ∆(d) ⊆
⋃

{∆(d′) | d′ ∈ D and f(♦d′) = ⊥}

Proof: The direction from left to right is obvious. For the converse we first notice that the
right-hand side is a directed union of compact opens. Since ∆(d) is compact there exists
d′ ∈ D with f(♦d′) = ⊥ and ∆(d) ⊆ ∆(d′). Because ∆(−) is isomorphic as co-unit of the
adjunction, d ≤ d′, from which it follows f(♦d) ≤ f(♦d′) = ⊥ because both f and ♦ preserve
joins. ⊓⊔

Next we recall the definition of the topology of the lower hyperspace [24, 26].

Definition 4.5 For a spectral space X, we define the lower hyperspace L(X) to be the set of
all closed subsets of X taken with the topology generated by the sub-basic sets

Lo = {c ∈ L(X) | c ∩ o 6= ∅}

for each o ∈ K(X).
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Spectral spaces are closed under the lower hyperspace construction, that is, if X is a
spectral space then so is L(X) [35].

We can now state and prove the essential ingredient for a coalgebraic representation of
distributive lattices with additive operators.

Theorem 4.6 For each spectral space X, LAK(X) is isomorphic in DLat to KL(X).

Proof: Let X be a spectral space and o be a compact open of X. The assignment ♦o 7→ Lo

extends to a morphism γ:FGK(X) → KL(X), where GK(X) is the set of generators of LAK(X).
Since L∅ = ∅ and Lo1∪o2

= Lo1
∪ Lo2

, the morphism γ satisfies the relations of LAK(X).
Hence we obtain a canonical morphism γ+:LAK(X) → KL(X) in DLat, that is, by definition,
surjective as a function.

Next we prove that γ+ is an isomorphism. Because ♦ preserves joins, an element in
LAK(X) is the finite meet of elements in GK(X). Suppose

∧
I ♦oi 6≤

∧
J ♦oj , for some finite

index sets I and J , with all oi’s and oj ’s in K(X). By Corollary 2.4, there is a morphism
f :LAK(X) → 2 in DLat such that f(

∧
I ♦oi) = ⊤ but f(

∧
J ♦oj) = ⊥, that is, f(♦oi) = ⊤ for

all i ∈ I and there is a k ∈ J such that f(♦ok) = ⊥. Consider now the set

S =
⋃

{u ∈ K(X) | f(♦u) = ⊥} .

Its complement is closed, and hence in LK(X). Furthermore, by Lemma 4.4, ok ⊆ S whereas
oi 6⊆ S for all i ∈ I. Hence X \ S ∈

⋂
I Loi

but X \ S 6∈ Lok
. Therefore

⋂
I Loi

6⊆
⋂

J Loj
. ⊓⊔

We thus have a duality between the category DLat(A) of distributive lattices with a unary
additive operator and the category Coalg(L) of L-coalgebras over spectral spaces.

Recall that a join-hemimorphism is an n-ary operator on a distributive lattice additive on
each of its arguments [11, 12]. We leave it to the reader to verify that the functor induced by
the theory of a join-hemimorphism on distributive lattices is dual to the functor L

∏
n. More

generally, the following result holds.

Corollary 4.7 For a theory O with a signature Ω of operators additive in each of their
arguments, the functor LO is dual to the functor L

∐
ω∈Ω

∏
nω

.

4.2 Multiplicative operators

Next we consider the theory of a unary multiplicative operator M = (Ω, I), where Ω contains
a unary operation �, and the set of identities I over the set of variables V = {v0, v1} is given
by

�⊤ = ⊤ and �(v0 ∧ v1) = �v0 ∧ �v1 .

The theory M induces the functor LM:DLat → DLat, mapping each distributive lattice D to
the distributive lattice

LMD = DLat〈�d:d ∈ D | � preserves finite meets〉 .

By Theorem 4.3 we have that the category DLat(M) of distributive lattices with unary mul-
tiplicative operators is isomorphic to the category of algebras Alg(LM).

As for additive operators, we have the following lemma, relating points of the distributive
lattice LMD with saturated subsets of the representation of D: The lemma below will allow
us to associate f :LMD → 2 with

⋂
{∆(d′) | d′ ∈ D and f(�d′) = ⊤}. (Recall that a subset q

of a spectral space is saturated if q is the intersection of some compact opens.)
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Lemma 4.8 Let D be a distributive lattice and d ∈ D. For every morphism f :LMD → 2 we
have

f(�d) = ⊤ if and only if
⋂

{∆(d′) | d′ ∈ D and f(�d′) = ⊤} ⊆ ∆(d)

Proof: The direction from left to right is obvious. For the converse we first notice that right
hand side intersection is a filtered intersection of compact open subsets of S(D). Hence we can
apply the Hoffman-Mislove theorem [13, 39] to show that there exists d′ ∈ D with f(�d′) = ⊤
and ∆(d′) ⊆ ∆(d). Since ∆(−) is injective, d′ ≤ d, from which it follows ⊤ = f(�d′) ≤ f(�d)
because both f and � preserve finite meets ⊓⊔

Compact saturated subsets are used in the definition of the upper hyperspace [24, 26].

Definition 4.9 For a spectral space X we define the upper hyperspace U(X) to be the set of
all compact saturated subset of X taken with the topology generated by the basic sets

Uo = {q ∈ U(X) | q ⊆ o}

for each o ∈ K(X).

If X is a spectral space then U(X) is a Scott domain (taken with the Scott topology), and
hence spectral [39].

The proof of the theorem below follows the same line of reasoning as that of Theorem 4.6.
However the similarity is only apparent, as in one the additivity of the operators is translated
into closed sets whereas in the next theorem, the multiplicativity of the operators is trans-
lated into (compact) upward-closed sets, and not into (compact) opens as one would expect.
Moreover this similarity breaks down even more if one considers spaces that are not sober [3].

Theorem 4.10 For each spectral space X, LMK(X) is isomorphic in DLat to KU(X).

Proof: Let X be a spectral space and o be a compact open of X. The assignment �o 7→ Uo

extends to a morphism δ:FGK(X) → KU(X), where GK(X) is the set of generators of LMK(X).
Since UX = U(X) and Uo1∩o2

= Uo1
∩Uo2

, the morphism δ satisfies the relations of LMK(X).
Hence we obtain a canonical morphism δ+:LMK(X) → KU(X) that, by definition, surjective
as a function.

Next we prove that δ+ is an isomorphism in DLat. Because � preserves meets, an element
in LMK(X) is the finite join of elements in GK(X). Suppose

∨
I �oi 6≤

∨
J �oj , for some

finite index sets I and J , and with all oi’s and oj ’s in K(X). By Corollary 2.4, there is a
a morphism f :LMK(X) → 2 in DLat such that f(

∨
I �oi) = ⊤ but f(

∨
J �oj) = ⊥. Hence

there is k ∈ I such that f(�oi) = ⊤, and f(�oj) = ⊥ for all j ∈ J . Consider now the
set S =

⋂
{u ∈ K(X) | f(�u) = ⊤}. It is a compact saturated and hence in U(K(X)).

Furthermore, by Lemma 4.8, S ⊆ ok whereas S 6⊆ oj , for all j ∈ J . In other words, S ∈ Uok

but S 6∈
⋃

J Uoj
. Therefore

⋃
I Uoi

6⊆
⋃

J Uoj
. ⊓⊔

We thus have a duality between the category DLat(M) of distributive lattices with a unary
multiplicative operator and the category Coalg(U) of U-coalgebras over spectral spaces.

Corollary 4.11 For a theory O with a signature Ω of operators multiplicative on each of
their arguments, the functor LO is dual to the functor U

∐
ω∈Ω

∏
nω

.
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4.3 Additive and multiplicative operators, together

The above theories A of a unary additive operator and M of a unary multiplicative operator
can be combined in a single complex theory that relates the two operators. We define it by
V = (Ω, I), where the set Ω contains two unary operations ♦ and �, and the set of identities
I over the variables v0, v1 is given by

♦⊥ = ⊥ �⊤ = ⊤
♦(v0 ∨ v1) = ♦v0 ∨ ♦v1 �(v0 ∧ v1) = �v0 ∧ �v1

�(v0 ∨ v1) = �v0 ∨ (�(v0 ∨ v1) ∧ ♦v1) �v0 ∧ ♦v1 = �v0 ∧ ♦(v0 ∧ v1) .

The theory V induces the functor LV:DLat → DLat, mapping each distributive lattice D to
the Vietoris locale of D [17]:

LVD = DLat〈�d, ♦d:d ∈ D | � preserves finite meets
♦ preserves finite joins
�(d ∨ d′) = �d ∨ (�(d ∨ d′) ∧ ♦d′)
�d ∧ ♦d′ = �d ∧ ♦(d ∧ d′) 〉 .

By Theorem 4.3 we have that the category DLat(V) is isomorphic to the category of algebras
Alg(LV).

Recall that a subset S of a topological space X is convex closed if S = ↑S ∩ S, where
↑S is the upper closure of S with respect to the order defined by its topology, and S is the
topological closure of S [24].

Definition 4.12 For a spectral space X we define the Vietoris hyperspace V(X) to be the set
of all compact convex subsets of X taken with the topology generated by the sub-basic sets Uo

and Lo for each o ∈ K(X).

If X is a spectral space then V(X) is also spectral [17, 39].

Theorem 4.13 For each spectral space X, LVK(X) is isomorphic in DLat to KV(X).

Proof: Let X be a spectral space and o be a compact open of X. The assignments �o 7→
Uo and ♦o 7→ Lo extends to a morphism ρ:FGK(X) → KV(X), where GK(X) is the set of
generators of LVK(X). It is not hard to see that ρ satisfies the relations of LVK(X). Hence
we obtain a canonical morphism ρ+:LVK(X) → KV(X) that is clearly surjective as a function.

Next we prove that ρ+ is an isomorphism in DLat. First of all we note that elements in
FGK(X) are finite joins of finite meets of generators in GK(X). Using the laws of distributive
lattices, because � preserves finite meets, ♦ preserves finite joins, and K(X) is closed under
finite unions and finite intersections, we have that every element in FGK(X) is identified to an
element of the form

∨
I(�oi ∧

∧
Ji

♦oj) for finite sets I and Ji’s, (i ∈ I), and compact opens
oi’s and oj ’s. Assume

d =
∨

I

(�oi ∧
∧

Ji

♦oj) 6≤
∨

N

(�on ∧
∧

Mn

♦om) = d′

By Corollary 2.4, there is a function f :LVK(X) → 2 such that f(d) = ⊤ but f(d′) = ⊥.
Because f is a morphism in DLat, the above means that

1. there exists i0 ∈ I such that f(�oi0) = ⊤ and f(♦oj) = ⊤ for all j ∈ Ji0 ;
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2. for all n ∈ N , f(�on) = ⊥ or there exists m0 ∈ Mn such that f(♦om0
) = ⊥.

Consider now the sets Q =
⋂
{u ∈ K(X) | f(�u) = ⊤}, O =

⋃
{u ∈ K(X) | f(♦u) = ⊥}

and C = Q ∩ (X \ O). The set Q is compact saturated (and hence upper closed), O is open
and C is compact because it is the intersection of a compact set with a closed one. Since
X \O is closed, C ⊆ X \O. Similarly, because Q is upper closed, ↑C ⊆ Q. Hence ↑C ∩C ⊆ C.
Since the other inclusion trivially holds, we have that C is a convex closed set. Therefore
C ∈ V(K(X)).

By Lemma 4.8 C ⊆ Q ⊆ oi0 , that is C ∈ Uoi0
. Further, for each u ∈ K(X) such that

f(�u) = ⊤ and for each j ∈ Ji0 we have

⊤ = f(�u) ∧ f(♦oj) = f(�u ∧ ♦oj) ≤ f(♦(u ∩ oj)) ,

where the last inequality follows from the relations in LVK(X) and because f is monotone.
Hence, by Lemma 4.4, u ∩ oj 6⊆ O for all u ∈ K(X) such that f(�u) = ⊤ and for all j ∈ Ji0 .
By definition, we thus have Q∩oj 6⊆ O, (or, equivalently, Q∩ (X \O)∩oj 6= ∅) for all j ∈ Ji0 .
Therefore C ∈

⋂
Ji0

Loj
, from which we finally obtain that C ∈

⋃
I(Uoi

∩
⋂

Ji
Loj

).

Similarly, by Lemma 4.4, if f(♦om0
) = ⊥ for some mo ∈ M then om0

⊆ O, from which it
follows that Q ∩ (X \ O) ∩ om0

= ∅, or, equivalently, C 6∈ Lom0
. On the other hand, for each

u ∈ K(X) such that f(♦u) = ⊥ and for each n ∈ N with f(�on) = ⊥ we have

f(�(on ∪ u)) ≤ f(�on ∨ ♦u) = f(�on) ∨ f(♦u) = ⊥ ,

where the first inequality follows from the relations in LVK(X) and because f is monotone.
Hence, by Lemma 4.8, Q 6⊆ on ∪ u for all u ∈ K(X) such that f(♦u) = ⊥ and for all n ∈ N

with f(�on) = ⊥. By definition, this is equivalent to say Q 6⊆ on ∪ O (or, equivalently,
Q ∩ (X \ O) 6⊆ on) for all n ∈ N with f(�on) = ⊥. Therefore C 6∈ Uon for each n ∈ N with
f(�on) = ⊥, showing that C 6∈

⋃
M (Uom ∩

⋂
Nm

Lon).
Summarizing, we have thus seen that

ρ+(d) =
⋃

I

(Uoi
∩

⋂

Ji

Loj
) 6⊆

⋃

M

(Uom ∩
⋂

Nm

Lon) = ρ+(d′) ,

proving that ρ+ is order preserving and hence an isomorphism in DLat. ⊓⊔

As a corollary we obtain a duality between the category DLat(V) of distributive lattices with
two unary operators and the category Coalg(V) of V-coalgebras over spectral spaces.

5 Ordered algebras and monotone operators

An ordered algebra (posalg in short) is an algebra with a partially ordered carrier set and
monotone operators [10]. More specifically, for an algebraic theory T = (Σ, E), a T-posalg is
a poset A together with a corresponding monotone function σA:Anσ → A for each function
symbol σ ∈ Σ, such that, independently of the way we substitute elements of A for the
variables, each equation in E holds in A as an identity. A homomorphism between two T-
posalg A and B is a monotone function f :A → B such that σB ◦fnσ = f ◦σA for each function
symbol σ ∈ Σ. The category of T-posalg is denoted by PosAlg(T).

Clearly every T-algebra is a T-posalg. The converse holds, for example, for the theory
D of distributive lattices, because every partial order on a distributive lattice that makes
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its operations monotone coincides with the partial order of the distributive lattice itself. It
follows that DLat ∼= PosAlg(D). Let PoSet be the category of posets with monotone functions
as morphisms. The forgetful functor U :DLat → PoSet has a left adjoint denoted by F ,
mapping a poset P to the distributive lattice FP presented by taking as generators the
underlying set of P and as relations the pairs p∧ p′ = p for all p ≤ p′ in P . Further, products
and coproducts in PoSet are computed as in Set.

Definition 5.1 Let U be the forgetful functor from DLat to PoSet with left adjoint F . A
theory O of monotone operators over distributive lattices consists of

1. a signature Ω of operations ω ∈ Ω with arities nω which gives rise to a functor GΩ:PoSet →
PoSet, X 7→

∐
ω∈Ω Xnω ,

2. a set I of identities containing pairs of elements of the underlying set of UFGΩUFV ,
for some poset V of variables.

For each algebraic theory O = (ΩO, IO) of monotone operators over distributive lattices we
define the category DLat(O) of distributive lattices with monotone operators as the category
of PosAlg(T). Here T = (ΣD +ΩO, ED +IO), where the equations in ED and IO are understood
as equations over ΣD + ΩO.

Definition 5.2 Given a theory of monotone operators O = (Ω, I) and a functor L:DLat →
DLat, we say that a natural transformation f :FGΩU → L satisfies the identities I if for all
distributive lattices D and all morphism v:FV → D (mapping variables to closed terms) it
holds

(t, s) ∈ I ⇒ (fD ◦ FGΩUv)(t) = (fD ◦ FGΩUv)(s) .

In a similar way as we have already seen in the previous section, a theory of monotone
operators O = (Ω, I) defines a canonical functor LO:DLat → DLat that comes equipped with a
natural transformation ı satisfying the identities I. We define the functor LO on a distributive
lattice D as

FI

π
♯
1

π
♯
2

FGΩUFV
FGΩUv

FGΩUD
ıD

LOD

where the π
♯
1, π

♯
2 come from the projections π1, π2:I → UFGΩUFV , and ıD is the joint

coequalizer with respect to to all pairs (FGΩUv ◦ π
♯
1, FGΩUv ◦ π

♯
2), for v:FV → D. The

universal property of LOD gives the action of LO on morphisms and the naturality of ı. With
a proof similar to that of Theorem 4.3, we have that the category of distributive lattices with
monotone operators DLat(O) is isomorphic to the category Alg(LO). Therefore we can give
a coalgebraic representation of a category of distributive lattices with monotone operators
DLat(O) by finding a dual functor T :Spec → Spec.

5.1 Monotone operators

Let us consider the theory of monotone operators P = (Ω, I), where Ω contains a single unary
monotone operation © and there are no identities, that is, I = ∅. Then GΩP = P and, for
each distributive lattice D, LPD can be presented by

DLat〈©a:a ∈ D | © preserves order〉

13



The representation of the distributive lattice LPD is obtained by consecutively applying the
lower and upper hyperspace construction.

Theorem 5.3 For every spectral space X, LU(X) ∼= SLPK(X).

Proof: For S ∈ LU(X) define γ(S):K(X) → 2 by

γ(S)(o) = ⊤ iff o ∈ S .

Note that if o1 ⊆ o2 and o1 ∈ S for some lower closed subset of U(X), then also o2 ∈ S. Hence
γ(S) is monotone, i.e. it satisfies the relations of LPK(X). We can therefore extend γ(S) to
a distributive lattice morphism γ+(S) ∈ LPK(X) → 2, that is γ+:LU(X) → SLPK(X). To
prove that γ+ is continuous we see that, for each o ∈ K(X),

γ+−1

(∆(o)) = {S ∈ LU(X) | γ(S) ∈ ∆(o)}
= {S ∈ LU(X) | γ(S)(o) = ⊤}
= {S ∈ LU(X) | o ∈ S} .

But o ∈ S ∈ LU(X) if and only if S ∩ Uo 6= ∅. Indeed, o ∈ Uo by definition, hence if o ∈ S

then S ∩Uo 6= ∅. Conversely, if q ∈ Uo then q ⊆ o. Thus, by lower closure of S, if q ∈ S, then
also o ∈ S. It follows that γ+−1

(∆(o)) = LUo .
Next define, for f ∈ SLPK(X),

η(f) = {q ∈ U(X) |
∧

q⊆o

f(o) = ⊤} .

For q1, q2 ∈ U(X), if q1 ⊇ q2 and
∧

q2⊆o f(o) = ⊤, then also
∧

q1⊆o f(o). Hence η(f) is lower
closed, that is, η:SLPK(X) → LU(X). To show that η is a continuous function, we have, for
each o ∈ K(X),

η−1(LUo) = {f ∈ SLPK(X) | η(f) ∩ Uo 6= ∅}
= {f ∈ SLPK(X) | o ∈ η(f)}
= {f :LPK(X) → 2 | f(o) = ⊤}
= ∆(o) ,

where the second equality holds because o ∈ S ∈ LU(X) if and only if S ∩Uo 6= ∅, as we have
already seen above.

The function η is inverse of γ. Indeed, for f ∈ SLPK(X) and o ∈ K(X) we have

γ(η(f))(o) = ⊤ ⇐⇒ o ∈ η(f)
⇐⇒

∧
o⊆o′ f(o′) = ⊤

⇐⇒ f(o) = ⊤ [f is monotone]

and also, for S ∈ LU(X) and q ∈ U(X),

q ∈ η(γ(S)) ⇐⇒
∧

q⊆o γ(S)(o) = ⊤

⇐⇒ ∀q ⊆ o.o ∈ S

⇐⇒ q ∈ S

where the last implication from right to left holds because S is lower closed, whereas the
implication from left to right holds because U(X) is a Scott domain, thus S is Scott closed.
Since the set {o | q ⊆ o} is directed in U(X), it follows that its least upper bound q must be
in S. ⊓⊔

Since the continuous image of compact opens is compact, as a corollary we obtain an isomor-
phism in DLat between KLU(X) and LPK(X). Thus it follows that the category of distributive
lattices with a unary monotone operator is isomorphic to the category of LU-coalgebras.

14



6 Conclusion and future directions

In this paper we presented a framework for a coalgebraic representation of distributive lattices
with operators. We have applied our method to several theories of operators, including
additive, multiplicative and monotone operators.

An immediate investigation is to apply our framework to similar operators but contravari-
ant in their arguments, as studied, for example, in [36]. One intriguing way to define suitable
coalgebraic representations could be to re-consider the definitions of the sub-basic opens of
the lower, upper and Vietoris hyperspaces by indexing them with closed sets rather than with
opens.

Although we have considered here only operators on distributive lattices, our framework
could be applied to any category of algebras over Set (with minor changes for infinitary
algebras to take into account equations involving infinitary operations) for which a dual
category is known [5]. For example, to consider additional properties such as completeness of
the lattice operations and of the operators, we can take the category of algebraic completely
distributive lattices (the canonical extensions of distributive lattices [7, 8, 9]) as starting point
of our investigations. Its dual is well-known: the category of PoSet.

Let us point out that our approach allows us to treat theories with arbitrary nesting of
operators in their identities, although, according to Definitions 4.1 and 5.1, terms appearing in
equations may not contain nested occurrences of operations from the theory O of operators.
Intuitively, this restriction arises from our interest in a representation via coalgebras for a
functor T dual to LO. In contrast to coalgebras for a comonad, a T -coalgebra encodes the
operational view of what a system can perform in one single step [34]. From this point of
view, our format of the equation is not a restriction, but formalizes that we do not need
nested modalities to describe a single step (nested modalities describe sequences of steps), see
[5]. In other words, identities with nested operators are not identities on distributive lattices,
but rather on the algebras for the induced functor from the simple identities. Additional
identities with nested operators can be dealt with without problems. They specify particular
equationally/modally definable full subcategories of algebras/coalgebras for dual functors.

For example, it is routine to see that the addition of the nested identity �v0 ∨ v0 = v0

(i.e. �v0 ≤ v0) on the theory M of a unary multiplicative operator characterizes those LM

algebras that are represented by reflexive U-coalgebras on spectral spaces, that is, coalgebras
α:X → U(X) such that x ∈ α(x) for all x ∈ X. More interestingly, the theory of distributive
lattices with a monadic universal quantifier, obtained by adding the nested equations

�v0 ∨ v0 = �v0 and �(v0 ∨ �v1) = �v0 ∨ �v1

to the theory of M of a unary multiplicative operator, characterizes those LM algebras that
are represented by U-coalgebras α:X → U(X) with α an equivalence relation on X such that
α(o) ∈ K(X) for each o ∈ K(X) (i.e. α is an open equivalence relation on X) and the quotient
of X with respect to α is a T0 space [2].
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