Higher Dimensional Trees, Algebraically

Neil Ghant* Alexander Kurz**

L University of Nottingham
2 University of Leicester

Abstract. In formal language theory, James Rogers published a sefriemavative
papers generalising strings and trees to higher dimendlotisated by applications in
linguistics, his goal was to smoothly extend the core thedihe formal languages of
strings and trees to these higher dimensions.

Rogers’ definitions focussed on a specific representatidmgtfer dimensional trees.
This paper presents an alternative approach which focasseson their universal prop-
erties and is based upon category theory, algebras, coatyahd containers. Our ap-
proach reveals that Rogers’ trees are canonical consinscivhich are also particularly
beautiful. We also provide new theoretical results concgrhigher dimensional trees.
Finally, we provide evidence for our devout conviction tblgan mathematical theories
provide the basis for clean implementations by showing hawatbstract presentation
makes computing with higher dimensional trees easier.

1 Introduction

Strings occur in the study of formal languages where theyuassl to define complexity
classes such as those of regular expressions, contextafngadges, context sensitive lan-
guages etc. Trees also play a multitude of different roled @ often thought of as 2-
dimensional strings. For instance, there is a clear anddeéihed theory of tree automata, of
tree transducers and other analogues of string-theowims [6]. Indeed, the recent interest
in XML and its focus on 2-dimensional data has brought thenfiddanguage theory of trees
to a wider audience.

In a series of innovative papers (see [11] and referencesit)eJames Rogers asked how
one can formalise, and hence extend, the idea that trees@udiinensional strings to higher
dimensions. The desire tgo up a dimensiors very natural - for example a parser will
turn a string into a tree. Thus higher dimensional trees eeélttainly arise when parsing
2-dimensional trees and, more generally, when trees argidemed not as part of the meta-
theory of the formal languages of strings, but as objectstwoof their own study. Rogers
came from a background in both formal languages and natmgllages and his motivation
to study higher dimensional trees was rooted in the use dbtter to study the former. For
example, his paper discusses applications to Tree AdgiBiammars, Government Binding
Theory, and Generalised Phrase Structure Grammars.

Rogers’ work was highly imaginative and he certainly hacageeiccess in generalising for-
mal language theory from strings and trees to higher dinsassiHowever, his approach to

*

** Partially supported by EPSRC EP/C014014/1.

higher dimensional trees is very concrete and this makewik notationally more cum-
bersome than one might prefer. For example, Rogers defines as dree domainie a set
of paths satisfying the left-sibling and ancestor progsttiSimilarly, he defines higher di-
mensional trees to be sets of higher dimensional path$gatgigher dimensional versions
of the ancestor and left-sibling properties. These comwfitiare notationally quite cumber-
some at the two dimensional level and this complexity is nifagghat higher dimensions.
This has practical consequences as it is our belief thahale@hematical foundations are
required for clean implementations of both higher dimenaidrees as data structures and the
algorithms which manipulate them. In particular, implenigg higher dimensional trees as
higher dimensional tree domains involves the (potenteduirement to regularly verify that
algorithms preserve the well-formedness condition of #te@thigher dimensional paths in a
higher dimensional tree domain.

We provide a more abstract treatment of higher dimensioeestwhere the fundamental con-
cept is not the path structure of tree domains but rather dtiemof fixed point and initial
algebra. When viewed through this categorical prism, Regiafinitions and constructions
become very succinct and elegant. This is a tribute to batlstphistication of category the-
ory in capturing high level structure and also to Rogersghsin recognising these structures
as being of fundamental mathematical and computationadést. The overall contributions
of this paper are thus as follows:

— We provide a categorical reformulation of the definition afgers higher dimensional
trees. Remarkably, the central construction in our refdatian is the hitherto unused
guadrant of the space whose other members are the free ntbaadmpletely iterative
monad, and the cofree comonad.

— To demonstrate that this research has both practical ase/élleoretical insight, we use
this reformulation to show that classical results of Arbitddanes on ‘Machines in a
category’ apply to higher-dimensional automata. In palég this gives procedures of
determinisation and minimisation.

— In a similar vein, we show that while clearly being comonadtigher dimensional trees
are also monadic in nature. This is an example of the kind siltehat is both funda-
mental and would be missed without the abstract categddoalulation.

— We justify our belief that clean mathematical foundatiogesds to a clean computation
structure by implementing higher dimensional trees in ttaskell programming lan-
guage.

Our intention with this research is to try to synthesise dastieact approach with the intuitions
and applications of Rogers. This paper is just the beginamjwe welcome feedback from
our own community before involving people who work highendinsional trees and natural
languages. Connecting category theory, especially adgedond coalgebras, with other scien-
tific disciplines is an important and valuable goal if ouradere to spread and we are also
to be open to influence from those outside of our field. To surismavhat this paper of-
fers, we believe that our use of category theory tames tharappcomplexity which Rogers’
definitions possess at first sight.

The paper is structured as followSection 2follows parts of Rogers [11] and presents his
notions of higher-dimensional trees and autom&tction 3presents our reformulation of
Rogers’ notions using fixed-point equations and coalgel8astion 4shows that Rogers’
higher dimensional trees are examplesaftainersvhich allows us to deduce several useful

meta-theoretic results needed latgection Sefines a notion of deterministic higher dimen-
sional automaton and shows that the classical theorem efrdatisation and minimisation
from automata theory hold.

AcknowledgementsThe 2nd author wishes to thank Ichiro Hasuo for helpful distans.We
are also grateful to the referees for their numerous comsrteat helped us to improve the
presentation.

2 Rogers’s Higher Dimensional Trees

The most pervasive definition of (finitely branching) treesgia the notion of a tree domain. A
tree domain is an enumeration of the paths in a tree - sincéhdga list of natural numbers,

a tree domain is a subset of lists of natural numbers. Howthene should be two conditions
on sets of paths reflecting the fact that i) if a node has-atith child, then there should be an
n'th child; and ii) all nodes apart from the root have a parghus tree domains are defined
as follows

Definition 2.1 (Tree Domains) A tree domairf’ C N* is a subset of lists of natural numbers
such that

- (LS): fw.(n+1) € T, thenwn €T
- (A):IfwneT, thenweT

We use. for the concatenation of a list with an element. We call the&t fiondition the left-
sibling property (LS) and we call the second condition theestor property (A). Notice how
tree domains, by focusing on paths, will inevitably lead ps@cess of computation dominated
by the creation and consumption of sets of paths satisfyiBy&nd (A). As we shall see later,
tree domains and the paths in them can be treated more dlystaad in a cleaner fashion,
by the shapes and positions of the container reformulafitree domains.

However, for now, we want to ask ourselves how the tree dosrgiiren above can be gener-
alised from being 2-dimensional structuresitoimensional structures. In the 2-dimensional
case we had a notion of path as a list of natural numbers amdattieee domain consisted
of a set of paths satisfying the properties (LS) and (A). Regiefinesh-dimensional tree
domains by first defining what afnrdimensional path is and then definingxatimensional
tree domain to be a set afdimensional paths satisfying higher dimensional vagarfitLS)
and (A). So what is am-dimensional path? Notice that a natural number is a listsoduid
hence a list of natural numbers is a list of lists of 1s. Thus

Definition 2.2 (Higher Dimensional Paths [11, Def 2.1])Then-dimensional paths form a
N-indexed sef with P, = 1 (the one element set) and wiit,,; defined to be the least set
satisfying

— 1€ Puna
— If [z1,..,2m] € Poy1 andx € Py, then[zy, .., xm, 2] € Py

A simpler definition would be thaP,, = List™1 but we wanted to give Roger’s definition
to highlight its concreteness. Having defined thdimensional paths we can define the
dimensional tree domains as follows

Definition 2.3 (Higher Dimensional Tree domains [11, Def 2. LetTy = {0, 1}. The set
T+ of n 4+ 1-dimensional tree domains consists of those sulis&tsP,, ; such that

— (HDLS): Ifs € P41, then{w € P, |sw e T} €T,
— (HDA): If ssaw € T, thens € T

The first condition is the higher dimensional left siblingperty (HDLS). It is slightly tricky
as, in higher dimensions, there is no unique left sibling smédne cannot simply say that if
a node has an + 1'th child then the node has awith child. (HDLS) solves this problem
by saying the immediate children of a node insar- 1-dimensional tree domain form an
n-dimensional tree domain. In the two dimensional case, (B& thus the requirement that
the children of a node in a tree form a list. (HDA) is a strafghtvard generalisation of the
2-dimensional ancestor property (A). The reader may wisthck that a one dimensional
tree domain is a set of lists over 1 closed under prefixes,ishd} is bijective toList(1).
There are two zero dimensional tree domains which correspmthe empty tree and to the
tree which just contains one node and no children.

The notion of automata is central in formal language theadygeneralises to higher dimen-
sions in a straightforward way. Firstly, we must extend tleenains so that higher dimen-
sional trees can actually store data - this is done by agswgim each path in a tree domain,
a piece of data to be stored there.

Definition 2.4 (Labelled tree domains [11, Def 2.3])A X-labelled tree domain is a map-
pingT — X, whereT is a tree domain and a set (called the alphabet). We denote the set
of n-dimensional>’-labelled tree domains by, (X).

Definition 2.5 (n-Automaton [11, Def 2.9]).An (n + 1)-dimensional automaton over an
alphabetX and a finite set of stateg is a finite set of triplegc, ¢, T') wheres € X, g € Q
andT is aQ-labelled tree domain of dimension

Rogers goes on to define when an (n+1)-automaton licensasgepts) an + 1-dimensional
tree as follows. A E-labelled) local tree is an element 8fx T,,(X). An (n+1)-dimensional
grammar overy is a finite subset o x T,,(X), ie a finite set of local trees. An element
A:T — XinT,11(X)islicensed by agrammar if for alle T', the pair(A(s), N : T/ — X)

is in the grammar, wher@’ = {w|s.w € T} and X (w) = A(s.w). In other words, a tree
is licensed by a grammar if it is constructed from the locaé$ of the grammar. Note that,
forgetting the alphabell, an automaton can be seen as a grammar @QveXn element in
Tn+1(X) is now licensed by an automaton if it is an image dpdabelled tree licensed by
the grammar in which the the label of the root of each loca tias been replaced with a
symbol inX’ associated with that local tree in the automaton [11].

We will see in Section 5 that acceptance is more easily defiraethe unique morphism from
the initial algebra of trees. For coalgebraists let us nete lalready that automata are coal-
gebras. First, the notion of labelling means thadimensional tree domains form a functor
T, : Set — Set. In particularTy(X) = 1 + X andTy(X) = List(X). Now, ann+ 1-
dimensional automata over is just a finite set) and a function) — P(X x T,(Q)).
Automata and their accepted languages will be discusseetail th Section 5, but let us look
at two familiar examples already.

Example 2.6.A 1-automaton is essentially the standard notion of a ndardenistic string
automata — that is a functio — P(X x (1 + Q)) where each state can performa
transition and either terminate or arrive at another state.

Example 2.7.A 2-automaton is a coalgebi: @ — P(X x T1(Q)), that is, a relation

0 C Q x (X x List(Q)) which can be understood as a non-deterministic tree autofsae
eg [6]): Given a state and a trees (4, ... t,,) the automaton tries to recognise the tree by
guessing a tripléq, o, [¢1, .. .g»]) € ¢ and continuing this procedure in the statgswith
treest;. Whereas this coalgebraic definition has a top-down flastbaraccepted language is
most easily defined in an algebraic (bottom-up) fashion #ewis. The relationy gives rise

to a set of)-labelled terms (or bottom-umputationsy via

(q,U, []) €90 (Q707 [QIa . qn]) S 67 qit; € C.
qo e C qo(t1,...tp) € C

wherego € C means the automata recognisesdhlabelled tree starting from the staje
One then defines, wrt a set of accepting stapgs that the automaton accepts a tref
qt € C andq € Q.

3 Higher Dimensional Trees, Algebraically

Despite being a natural generalisation of a 2-dimensiageal domain to am-dimensional
tree domain, Definition 2.3 is very concrete. For examplanfdising the notion of licens-
ing (following Definition 2.5 above) is tedious. We will shdtvat a more abstract approach
to the definition of tree domains is possible. In particulbe 1-dimensional tree domains
are just the usual lists while the non-empty two-dimenditnee domains are known in the
functional programming community as rose trees with a singghtax and semantics. That
is, categorically one may defifose X = pY. X x List Y and derive from this the equally
simple Haskell implementation

data Rose a = Node a [Rose a]

What is really pleasant about this categorical/functigmalgramming presentation of tree
domainsis that initial algebra semantics provides powen&thods for writing and reasoning
about programs. In particular, it replaces fascinatiomlite detailed representation of the
structure of paths and the (LS) and (A) properties with theexabstract universal property
of being an initial algebra. That is not to say paths are npbirtant, just that they ought to be
(in our opinion) a derived concept. Indeed, we show laterhiedrem 4.6 how to derive the
path algebra from the initial algebra semantics.

The natural question is whether we can give an initial algefmantics for higher dimen-
sional trees. The answer is not just yes, but yes in a sunghsbeautiful and elegant manner.
As remarked earlier, the immediate children of a node ifvas 1)-dimensional tree should
form ann-dimensional tree. This is formalised in

Definition 3.1. Define a family of functors by

RX=0 T,X =1+ Ry X (n>—1)
Rn+1X = /LYX X TnY

Note that we intendR,,.; X to be the set ohon-emptyn + 1-dimensionalX -labelled tree
domains whileT,,.; X is intended to be the set @mpty or non-empty + 1-dimensional
X-labelled tree domains. Thug,,.; X should consist of an element &f to be stored at

the root of the tree and a potentially emptydimensional tree domain labelled with further
tree domains. While one could start indexin@ddy definingRo X = X, there is no harm in
starting one step before with the definition-ef-dimensional trees. As expected, calculations
show that

n | R,X | T, X
-1 0 1

0 X 1+X

1 List™ (X) List(X)

2 Rose(X) 1 + Rose(X)

whereList™ (X) are the non-empty lists ové¥.

In fact, one can go further and not just define a sequence ofdts\?,, andT,,, but a higher
order functor which maps a functér to the functor sending to Y. X x FY. We find this
particularly interesting for both theoretical and praatieasons. At the theoretical level, we
note that this construction of a functor from a functor isfihal piece of the jigsaw remarked
upon in [9] and summarised in

| | Monads | Comonads |
Initial Algebras Y. X+FY | pY. X X FY
Final Coalgebras| vY. X +FY | vY. X x FY

In [9], the three other higher order functors were remarksahuas follows:

— The map sending a functor t6 to the functorX — uY.X + FY is the free monad
construction

— The map sending a functor 16 to the functorX — vY. X + FY is the free completely
iterative monad construction

— The map sending a functor # to the functorX — vY.X x FY is the cofree comonad
construction

Higher dimensional tree functors provide—to our knowledgke first naturally arising in-
stance of the remaining quadrant of the table above. Fronwi®have

Theorem 3.2. For any functorF’, the mapX — pY. X x FY is a comonad.

At a practical level, this higher order functor translatemithe following simple definition
of higher dimensional trees in Haskell, the canonical reiourcombinator arising from the
initiality of higher dimensional trees and their comonastiticture. In the followingMaybe

is Haskell implementation of the monad sendiXigo 1 + X.

data Rose f a = Rose a (Maybe (f (Rose f a)))
type Tree f a = Maybe (Rose f a)

data Rose0 a Rose0 a -- X > X

type Rosel Rose Rose0 - = \X -> List™+(X)
type Rose2 = Rose Rosel - = \X -> Rose(X)
type Rose3 = Rose Rose2

cata :: Functor f => (a -> Maybe (f b) -> b) -> Rose fa -> b

cata g (Rose x xs) = g x (fmap (fmap (cata g)) xs)

instance Functor Rose0 where
fmap f (Rose0 a) = RoseO (f a)

instance Functor f => Functor (Rose f)
where fmap f = cata act where act a t = Rose (f a) t

class Comonad f where
root nfa-—>a
comult = fa->f(fa)

instance Comonad Rose0 where
root (Rose0 X) = X
comult (Rose0 x) = Rose0 (Rose0 x)

instance Functor f => Comonad (Rose f) where
root (Rose x Xxs) = X
comult (Rose X Xxs) Rose (Rose x xs) (fmap (fmap comult) xs)

As we have seen, higher dimensional trees are instancesaiical constructions which
always produce comonads. It is also well-known thiat* andList are monads. Less well
known is thatRose is a monad. Clearlyz, is also a monad. Indeed we have

Theorem 3.3. For all n > 0, R,, is a monad.

Space prevents us from detailing the proof of this theoreowever, it is important because
it allows computation with higher dimensional trees to beffer simplified via the use of
the monadic notation available in Haskell to structure camrpatters of computation. For
example, parsing and filtering become particularly simple.

To summarise, we depart from Rogers in not defining higheedsional trees in terms of

paths, but via the more abstract categorical notion ofahaigebras. As a result, we take
thefunctor T, as primary as opposed to tlsetof tree domains which one may then label.
This cleaner mathematical foundation reveals higher dsiogral trees to be related to the
fundamental constructions of the free monad, free compléierative monad and cofree

comonad. It also leads to a simple implementation of higimaedsional trees in Haskell.

4 Containers

Containers [8] are designed to represent those functorshadrie concrete data types and
those natural transformations which are polymorphic fiomst between such concrete data
types. Such data types include lists, trees etc, but notisokiof mixed variance recursive
domain equations such asX.(X — X) + N. Containers take as primitive the idea that
concrete data types consist of its general fornstmpesand, given such a shape, a set of
positionswhere data can be stored. Since Rogerslimensional trees certainly store data
at the nodes of the-dimensional tree, it is natural to ask whether these treesraleed
containers. In this section, we see that the functgrandR,, are indeed containers and point
out the following theoretical and practical consequences:

— Many properties ofi-dimensional trees can be deduced from the fact that thegaare
tainers. As just one example, our transformation of a ndefd@nistic automata into a
deterministic one requires-dimensional trees to preserve weak pullbacks. This falow
from the fact that:-dimensional trees are containers.

— While we choose not to take paths and tree domains as pranitivur treatment of higher
dimensional trees, paths are nevertheless important. \Weanaapability to compute with
them but do not want the burden of verifying the (HDLS) and &jJproperties. In par-
ticular, we want a purely inductive definition of tree dongand paths and, remarkably,
find that the shapes and positions of the contdifgprovide that.

Containers are semantically equivalenbtrmal functorsand a special case ahalytic func-
tors. However, while containers talk about the different shapéata structure can assume,
analytic functors talk about the number of structures ofvegisize and hence there is no
clear, simple and immediate connection between tree danaaid paths on the one hand and
analytic functors on the other hand. Thus we use contaimgher than analytic functors to
represent higher dimensional trees. In the rest of this@gotve introduce containers and
recall some of the closure properties of containers. Thisgs sufficient to then show that
all Rogers’ trees are indeed containers. While the theogoatainers can be developed in
any locally cartesian closed category witfrtypes and disjoint coproducts, we restrict to the
category ofSet to keep things simple.

The simplest example of a data type which can be represegtadtbntainer is that of lists.
Indeed, any element of the typhést(X) of lists of X can be uniquely written as a natural
numbem given by the length of the list, together with a functifh ..., n — 1} — X which
labels each position within the list with an element frémThus

List(X) = [J{0..n—1} = X
neN

More generally, we consider data types given tshiapesvhich describe théorm of the data
type; and ii) for each shape,c S, there is a set of position3(s). Thus we define

Definition 4.1 (Container). A container(S, P) consists of a se$ and anS-indexed family
P of sets, ie a functio® : S — Set.

As suggested above, lists can be presented as a contaiheshajpesN and positions defined
by P(n) = {0,...,n — 1}. Similarly, any binary tree can be uniquely described byitis
derlying shape (which is obtained by deleting the data dtatethe leaves) and a function
mapping the positions in this shape to the data thus:

zJQ \

The extension of a container is an endofunctor defined am/sll
Definition 4.2 (Extension of a Container).Let (S, P) be a container. Its extension, is the
functorT(s py defined by

Tis,p)(X) = H P(s) — X
ses

Thus, an element df 5 py(X) is a pair(s, f) wheres € S'is a shape and : P(s) — X is

a labelling of the positions of with elements fromX . The action ofl| s py on a morphism
g : X — Y sends the elemers, f) to the elements, g - f). If F'is a functor that is the
extension of a container, then the shapes of that contaaresimnply be calculated a1
—thatisS = T(s py1. This corresponds to erasing the data in a data structuevéarthe
underlying shape. Containers have many good propertiggrincular, many constructions
on functors specialise to containers. These closure piiep@re summarised below

Theorem 4.3 (Closure properties of Containers [8])The following are true

— The identity functor is the extension of the container witl shape and one position.

— The constantlyd valued functor has shapesand positions given bfa = 0.

— Let (51, P1) and(S2, P;) be containers. Then the functdys, p,) + T(s,,p,) is the ex-
tensionT s py of the containexS, P) defined by

S=5+5; P(inl(s)) = P1s P(inr(s)) = Pas

— Let (51, P1) and(S2, P») be containers. Then the functdys, p,) x T(s,,p,) is the ex-
tensionT’s p of the containe(S, P) defined by

5251X52 P(81782)2P181+P282

In order to show that containers are closed under fixed paimsieed to introduce the notion
of an-ary container to representary functors. For the purposes of our work, we only need
bifunctors and so we restrict ourselves to binary container

Definition 4.4 (Bi-Containers).A bi-container consists of two containers with the same un-
derlying shape. That is a sétand a pair of functiong’;, P» : S — Set. The extension of a
binary container is a bifunctor given by

Tis,pyp)(X,Y) = [[(Prs — X) x (Pas = Y)
ses

Given a bi-containe(S, P;, P»), the functorX — pY.F(X,Y) is a container as demon-
strated by the following theorem

Theorem 4.5 (Fixed Points of Containers [8])Let (S, P;, P») be a bi-container and let
F(X,Y) = Tis,p,,p,)(X,Y) be its extension. Then the funcjeY” F'(X,Y) is a container
with shapes given by

S = pYT(s,p)(Y)

and positions given by

P(s,f) = Pis+ [] P(p)

p€P25

To understand this theorem, think of an elemen®TF(X,Y) as a tree with a togF-
layer which stores elements froM at the X' positions in thisF'-layer and further elements
of uY.F(X,Y) at theY-positions of thisF-layer. We know that the shapes of the func-
tor Y .F(X,Y) must be this functor at, ie uY.F(1,Y). More concretely, a shape for
wY.F(X,Y) must thus be arf-shape for the top layer of a tree and, for eattposition

of that shape, we must have a shapeBfF' (X, Y) to represent the tree recursively stored at

that position. As for the positions for storing data of tyjjen a tree with shapés, f) where
se Sandf : P,s — uY.F1Y, these should be either the positions for stotdglata in the
top layer given byP; s or, for each position ip € P, s, a position in the subtree stored at that
position. Since that subtree has shgpewe end up with the formula above.

Applying these closure properties, we derive the following

Theorem 4.6. Rogers’'n-dimensional non-empty tree functfy, is the extension of a con-
tainer. Thatis,R,, = T g+ p+) Where

St =0

St =pY1+RY
Pl (inlx) =1
PlyGnr(s,) =1+ [Pha(fp)

peEPys

As a corollary,T;, is also the extension of a container. Thaflis = T(s, p,) WhereS,, =
1+ S, P,(inlx) = 0 and P, (inrs) = P,fs. What is particularly nice about the container
presentation of;, is that the shapes,, are in bijection with the tree domains while the paths
in any tree domain are in bijection with the positions of tlygiigalent shape. Further, the
paths are given by a purely inductive definition.

5 Automata, (Co)algebraically

We show that the classical automata-theoretic resultstalaerminisation and minimisation
extend to the higher-dimensional automata of Rogers. Usirgeformulation of Rogers’
structures in Section 3 and the container-technology ai@e4, these results become special
cases of the classical results about automata as algeliragdactor, a theory initiated by
Arbib and Manes [2—-4]. We also extend Rogers’ work by appat@motions of signature
and deterministic automata.

We should like to point out that none of the constructionsropfs in this section requires the
explicit manipulation of trees or tree domains.

Before starting on the topic of the section, we review thaagibn for string and tree
automata. Ignoring initial and accepting states, the 8@nas depicted in
(strings) non-det det (trees) non-det det
top-down| Q — P(Ax Q)| Q— Q% top-down| Q@ — P(FQ) —
bottom-up AxQ —PQ |[AxQ — Q bottom-up FQ — PQ | FQ — Q

For both string and tree automata, the relationship betweandeterministic top-down au-
tomata (=coalgebras in the Kleisli-category/®fand non-deterministic bottom-up automata
(=algebras in the Kleisli-category @) is straightforward: botl) — P(FQ) andFQ —
PQ are just two different ways of denoting a relatian@ x F'Q. The relationship between
deterministic top-down automata (=coalgebras) and dénéstic bottom-up automata (=al-
gebras) is given in the string case by the adjuncion— 4 (—)# (this situation is generalised

and studied in [3]). In the tree cask,is an arbitrary functor o8et and so has in general no
right-adjoint? It is still possible to describe deterministic top-dowreteitomata but they are
strictly less expressive [6, Chapter 1.6].

The familiar move from non-deterministic to deterministiing automata can be summarised
as follows. Any non-deterministic transition structyre @ — P(A x @) can be lifted to a
mapf : PQ — P(A x Q) given by f(S) = U, f(q). USingP(A x Q) = (PQ)4, fis

a deterministic transition structuf®Q — (PQ)* onPQ. Determinisation for tree automata
will be discussed below.

5.1 Signatures

Rogers’ automata of Definition 2.5 do not associate aritiethé symbols in the alphabet
X, For example, in the tree automata of Example 2.6, en@ay appear in two triples
(g,0,01),(q,0,12) € § wherel; andl, are lists of different lengths. Thus the same ‘func-
tion symbol’c may have different arities and tle-labelled trees are not exactly elements of
aterm algebra.

To rectify this situation, we must ask ourselves what is tpprapriate notion of arity if
operations take as input higher dimensional trees. In tleedimensional case arities are
natural numbers: the arity of a function symhols the number of its arguments. But, in
container terminology is just the the set of shapesBf = List. Thus, when operations of
a signature are consuming higher dimensional trees, thiggsashould be the shapes of trees
one dimension lower. This leads to

Definition 5.1 ((n + 1)-dimensional signature).An (n + 1)-dimensional signature is a set
X with amapX — T, (1).

Example 5.2. 1. A 1-dimensional signature is a map: X' — {0,1}, due to the isomor-
phismTy(1) = {0,1}. We will see below (Example 5.4) thatspecifies nullary opera-
tions andl specifies unary operations.

2. A 2-dimensional signature is a signature in the usual sensetalthe isomorphism
T, (1) = N that maps a list to its length.

The next step is to associate to each signature a functochnaway that the initial algebra
for the functor contains the elements of the language aeddpt an automaton. The simplest
and most elegant way to do this is to construct a containeuaadts extension. Recalling
thatP, : S,, — Set is the container whose extensiorfis and thatS,, = T,,(1), we can turn
any signature : X' — T,,(1) into the containe(X’, P,) as follows

Py S, P oSet. 1

Definition 5.3 (Fx). The functorF| 5 ,, or briefly Fz;, associated to a signature: X' —
T, (1) is the extensioff| x;, p, of the container (1), that ish's (X) = [[,cx Pu(r(0)) — X.

Example 5.4. 1. A1-dimensionalsignature: X~ — {0, 1} gives rise to the functafs (X) =
Yo+ X1 x X whereX; = T‘_l(i).

2. A2-dimensional signature : ¥ — N gives rise to the functoFs (X) =[], o5 X"
usually associated with a signature.

Yinfact, if F : Set — Set has a right-adjoint, thef" = A x — for A = F'1.

The next two propositions, which one might skip as a pedaeticnical interlude, make the
relation between an alphab&Y and a signatures — T,,(1) precise. The first proposition
says that trees for the signatute— T,,(1) (ie elements of the initiaF'x,-algebra) are also
trees over the alphabét (ie elements off},;1(X)). The second proposition says that trees
over the alphabeX’ are the same as trees over the signakfre 7,,(1) — 7., (1).

Proposition 5.5. For each(n + 1)-dimensional signatur& — T,,(1), there is a canonical
Fs;-algebra structure orf;,4+1(X'). Moreover, the unique algebra morphism from the initial
Fx-algebratoT,,1(X) is injective.

Proof. The carrier of the initialF's-algebra isuY. Fx(Y) and R, 41 (X) is Y. X x T,,(Y).
The injective morphism in question arises from the injextiwap of typeFs(Y) — X x
T,(Y), that is of type(] [,c 5 P(r(0)) — V) — X x ([I,eq, P(s) — Y), which maps
pairs(o, f) € Fx(Y) to (o, (r(0), f)).

Proposition 5.6. Let X’ be a set (called an alphabet) ard be the signature given by the
projectionr : X’ x T,(1) — T,(1). ThenR, 1 (X") is isomorphic to the (carrier of the)
initial F'»;-algebra.

Proof. The carrier of the initiaF's-algebra isuY. Fx (Y) and R, 1 (X") is uY. X" x T,,(Y).
ButX'xT,,(Y) = X' x([Lses, P(s) = Y) =, gesixs, P(s) =Y =[l,ex P(r(o)) —
Y = Fy(Y).

5.2 Higher Dimensional Automata

Before giving a coalgebraic formulation of Rogers’ autoan@efinition 5.10), we introduce
the corresponding notion of deterministic automaton (D&fim5.7), which has a particularly
simple definition of accepted language and is used in thesudbdection on determinisation
and minimisation. (Recall Definition 5.3 dfy;.)

Definition 5.7. A deterministiqn + 1)-dimensional automaton for the signatute— 7,(1)
is a function

FxQ — Q.

Example 5.8. 1. To obtain the usual string automata over an alphabet consider d-
dimensional signatur®’ consisting of the elements dfas unary operation symbols plus
one additional nullary operation symbol (see Example $.4%(Q) is thenl + A x Q.

2. A 2-dimensional automaton is the usual deterministitdmoetup tree automaton [6].

Definition 5.9. A stateg in a deterministiq» + 1)-dimensional automaton for the signature
Y — T,(1) accepts an(n + 1)-dimensional tree if the uniqgue morphism from the initial
F’s;-algebra maps to q.

We adapt Rogers’ definition of automata given in Definitiob: 2.
Definition 5.10. An (n + 1)-dimensional automaton for the signatute— 7,,(1) is a func-
tion
Q — P(F=(Q)).
Example 5.11. 1. In the case of string automat&y (@) is 1 + A x @ and an automaton

becomes) — P(1+ A x Q) = 2 x (PQ)“. The mapQ — 2 encodes the accepting
states and the map — (PQ)“ gives the transition structure.

2. Comparing with the previous definition2adimensional automatah: @ — P(Fx(Q))
can still be considered as a set of tripfe§ @ x (X' x List(Q)), but not all such triples
are allowed: for(q, o, {(q1,...¢,)) € ¢ it has to be the the case that the arityoois n.
This coincides with the notion of a non-deterministic topath tree automaton as in [6].

We have indicated how to define the accepted language of ad@@nministic) automaton in
Example 2.7. In particular, we found it natural to give a bottup formulation. We will now
generalise this definition. The basic idea is as follows. W& &ibserve that we cannot use
the final coalgebra for the funct@® F’s; since this coalgebra would take the branching given
by P into account. Instead, the correct idea is to consider adeterministic automaton as
a Fx-coalgebra in the category of relations. We first note thiofghg proposition which
follows from F's; being the extension of a container.

Proposition 5.12. Fy;, preserves weak pullbacks.
Now let Rel denote the category of sets and relations.

Definition 5.13. Given a functorF" on Set we defineF to map setsX to FX = FX and
to map relationsX & R & Y to FR = F(m)°; F(m) where(—)° denotes relational
converse and ;' relational composition .

Barr [5] showed thaf is afunctor on Rel if and only if F' preserves weak pullbacks. A
theorem of de Moor [7, Theorem 5] and Hasuo et al [10, TheordhtBen guarantees that
the initial F-algebrai : FI — I in Set gives rise to the finaF-coalgebra® : I — FI
in Rel. This gives a ‘coinductive’ definition of the accepted laage of a non-deterministic
automaton:

Definition 5.14. The language accepted by a statef an (n + 1)-dimensional automa-
tonQ — P(Fx(Q)) is given by the unique arrow (in the categdryl) into the final F's;-
coalgebra .

Note that this definition associates¢@a subset of the carridrof the initial F's,-algebra.

Itis clear from the constructions that every determiniatitomaton can be considered as a
non-deterministic automaton, and that the two notions oépted language agree. We make
this precise with the following definition and proposition.

Definition 5.15. The non-deterministic automaton corresponding to the rdgtastic au-
tomatonf : Fx@Q — Q is given byf° : Q@ — PFx(Q (where f° is again the converse
relation of (the graph of)).

Proposition 5.16. The deterministic automatafz(Q — @ accepts in ¢ if and only if the
corresponding non-deterministic automat@Qn— P F'xQ hast in the language of.

5.3 Determinisation and Minimisation

This section follows the work by Arbib and Manes [2—4] on an&ta as algebras for a functor
on a category.

Determinisation First observe that the elementship relatia PX x X can be lifted to

F(3) C FPX x FX,which can be written as

FPX =5 PFX (2)

Tx is well-known to be natural ifX wheneverF' preserves weak pullbacks. Now, given a
non-deterministic automaton

Q — PFxQ (3

we first turn it from top-down to bottom-up by going to the cerse relation
FxQ — PQ (4)
and then lift it fromFxQ to P F'x@Q and precompose with to obtain
FsPQ — PFxQ — PQ)

Remark 5.17 The step from (4) to (5) is a special case of [4, Lemma 7] (whieran be an
arbitrary monad on a base category).

Theorem 5.18. Given an(n + 1)-dimensional automato) — PFx(Q (Definition 5.10)
with accepting stateQ, C @, the state), in the corresponding deterministic automaton (5)
accepts the same language.

Minimisation A deterministic automaton with a set of accepting statessisucture
FsQ Q=2 6)

We denote byF',I — I the initial F';-algebra and by : I — @ the unique morphism
given by initiality. The map3 = « o p is called thebehaviourof (6) becauses(t) tells us
for anyt € I whether it belongs to the accepted language or not. Notdhbautomata (6)
form a category, denotedAut, which has as morphistfi : (§,a) — (',) those algebra
morphismf : § — ¢’ satisfyinga’ o f = «.

Definition 5.19 ([2, Section 4])Let. : FxI — I be the initial F;-algebra. The automaton
(6) isreachabléf the algebra morphism — ¢ is surjective and it is aealisatiorof 5 : I — 2
iff there is @ morphisnic,) — (4, «) in DAut. Moreover, (6) is a minimal realisation ¢f
iff for all reachable realisationg¢’, o’) of 3 there is a unique surjectiv®Aut-morphism
f:(8,d)— (6,0).

Different minimal realisation theorems can be found in Arahd Manes [2—4] and Adamek
and Trnkova [1]. The theorem below follows [1, V.1.3].

Theorem 5.20.Let X' be an(n + 1)-dimensional signaturef’s; the corresponding functor
and F'x,I — I the initial F'»-algebra. Then every map: I — 2 has a minimal realisation.

Proof. Lete; : (1,8) — (d;, ;) be the collection of all surjectivBAut-morphisms with
domain(¢, 3). Let f; be the multiple pushout of; in Set andg = f; o e;. The universal
property gives us with « o g = 3. Being a containeF’y, is finitary and, therefore [1, V.1.5],
preserves the multiple pushout. Hence thetandth o F's;g = got. SinceF's, preserves, like
any set-functor, surjective mapsis uniquely determined. We have constructed an automaton
(0,) that realiseg3. It is minimal because any other reachable realisationaspes one of
theei.

6 Conclusion

This paper applies (co)algebraic and categorical tecksiqa Rogers’ recent work in lin-

guistics on higher dimensional trees. In particular, weehgiven an algebraic formulation
of Rogers’ higher dimensional trees and automata. Our aisadyiows that, just as ordinary
trees, the higher dimensional trees organise themsehasiimtial algebra for a set-functor.
This allowed us to use Arbib and Manes’ theory of automatdgebaas for a functor, yielding

simple definitions of accepted language and straightfahwanstructions of determinisation
and minimisation.

More importantly, as we have only been able to hint at, owelalgic formulation gives us
the possibility to write programs manipulating the treeimctional programming languages
like Haskell that support polymorphic algebraic data tygagure work will be needed to
substantiate our claim that, in fact, our abstract categbtieatment is very concrete in the
sense that it will give rise to simple implementations ofcaithms manipulation higher di-
mensional trees. A good starting point could be Rogers’attarisation of non-strict tree
adjoining grammars as 3-dimensional automata [11, Thm 5.2]

References

[En

. J. Adamek and V. Trnkov&utomata and Algebras in Categorigsluwer, 1990.

M. A. Arbib and E. G. Manes. Machines in a category: An expog introduction. SIAM Review

16, 1974.

3. M. A. Arbib and E. G. Manes. Adjoint machines, state-bémavmachines, and dualitylourn. of

Pure and Applied Algebres, 1975.

. M. A. Arbib and E. G. Manes. Fuzzy machines in a categBoyl. Austral. Math. So¢.13, 1975.

. M. Barr. Relational algebras.NM, 137, 1970.

6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Llugies. Tison, and
M. Tommasi. Tree automata techniques and applications,7.199 Available on:
http://www.grappa.univ-lille3.fr/tata .

7. O. de Moor. Inductive data types for predicate transfosmenformation Processing Letters
43(3):113-118, 1992.

8. N. Ghani, M. Abbott, and T. Altenkirch. Containers - cansting strictly positive typesTheoret-
ical Computer Scienc&41(1):3-27, 2005.

9. N. Ghani, C. Luth, F. de Marchi, and J. Power. Dualizirahalgebras.Mathematical Structures
in Computer Scien¢d 3(1):349-370, 2003.

10. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace yhénrinternational Workshop on Coal-
gebraic Methods in Computer Science (CMCS 2006lume 164 ofElect. Notes in Theor. Comp.
Sci, pages 47-65. Elsevier, 2006.

11. J. Rogers. Syntactic structures as multi-dimensioeastResearch on Language and Computation

1(3-4):265-305, 2003.

n

[0~

