
Higher Dimensional Trees, Algebraically

Neil Ghani1⋆ Alexander Kurz2⋆⋆

1 University of Nottingham
2 University of Leicester

Abstract. In formal language theory, James Rogers published a series of innovative
papers generalising strings and trees to higher dimensions.Motivated by applications in
linguistics, his goal was to smoothly extend the core theoryof the formal languages of
strings and trees to these higher dimensions.

Rogers’ definitions focussed on a specific representation ofhigher dimensional trees.
This paper presents an alternative approach which focussesmore on their universal prop-
erties and is based upon category theory, algebras, coalgebras and containers. Our ap-
proach reveals that Rogers’ trees are canonical constructions which are also particularly
beautiful. We also provide new theoretical results concerning higher dimensional trees.
Finally, we provide evidence for our devout conviction thatclean mathematical theories
provide the basis for clean implementations by showing how our abstract presentation
makes computing with higher dimensional trees easier.

1 Introduction

Strings occur in the study of formal languages where they areused to define complexity
classes such as those of regular expressions, context free languages, context sensitive lan-
guages etc. Trees also play a multitude of different roles and are often thought of as 2-
dimensional strings. For instance, there is a clear and welldefined theory of tree automata, of
tree transducers and other analogues of string-theoretic notions [6]. Indeed, the recent interest
in XML and its focus on 2-dimensional data has brought the formal language theory of trees
to a wider audience.

In a series of innovative papers (see [11] and references therein), James Rogers asked how
one can formalise, and hence extend, the idea that trees are two-dimensional strings to higher
dimensions. The desire togo up a dimensionis very natural - for example a parser will
turn a string into a tree. Thus higher dimensional trees willcertainly arise when parsing
2-dimensional trees and, more generally, when trees are considered not as part of the meta-
theory of the formal languages of strings, but as objects worthy of their own study. Rogers
came from a background in both formal languages and natural languages and his motivation
to study higher dimensional trees was rooted in the use of thelatter to study the former. For
example, his paper discusses applications to Tree Adjoining Grammars, Government Binding
Theory, and Generalised Phrase Structure Grammars.

Rogers’ work was highly imaginative and he certainly had great success in generalising for-
mal language theory from strings and trees to higher dimensions. However, his approach to

⋆

⋆⋆ Partially supported by EPSRC EP/C014014/1.



higher dimensional trees is very concrete and this makes hiswork notationally more cum-
bersome than one might prefer. For example, Rogers defines a tree as atree domain, ie a set
of paths satisfying the left-sibling and ancestor properties. Similarly, he defines higher di-
mensional trees to be sets of higher dimensional paths satisfying higher dimensional versions
of the ancestor and left-sibling properties. These conditions are notationally quite cumber-
some at the two dimensional level and this complexity is magnified at higher dimensions.
This has practical consequences as it is our belief that clean mathematical foundations are
required for clean implementations of both higher dimensional trees as data structures and the
algorithms which manipulate them. In particular, implementing higher dimensional trees as
higher dimensional tree domains involves the (potential) requirement to regularly verify that
algorithms preserve the well-formedness condition of the set of higher dimensional paths in a
higher dimensional tree domain.

We provide a more abstract treatment of higher dimensional trees where the fundamental con-
cept is not the path structure of tree domains but rather the notion of fixed point and initial
algebra. When viewed through this categorical prism, Rogers’ definitions and constructions
become very succinct and elegant. This is a tribute to both the sophistication of category the-
ory in capturing high level structure and also to Rogers’ insight in recognising these structures
as being of fundamental mathematical and computational interest. The overall contributions
of this paper are thus as follows:

– We provide a categorical reformulation of the definition of Rogers higher dimensional
trees. Remarkably, the central construction in our reformulation is the hitherto unused
quadrant of the space whose other members are the free monad,the completely iterative
monad, and the cofree comonad.

– To demonstrate that this research has both practical as wellas theoretical insight, we use
this reformulation to show that classical results of Arbib and Manes on ‘Machines in a
category’ apply to higher-dimensional automata. In particular, this gives procedures of
determinisation and minimisation.

– In a similar vein, we show that while clearly being comonadic, higher dimensional trees
are also monadic in nature. This is an example of the kind of result that is both funda-
mental and would be missed without the abstract categoricalformulation.

– We justify our belief that clean mathematical foundations leads to a clean computation
structure by implementing higher dimensional trees in the Haskell programming lan-
guage.

Our intention with this research is to try to synthesise our abstract approach with the intuitions
and applications of Rogers. This paper is just the beginningand we welcome feedback from
our own community before involving people who work higher dimensional trees and natural
languages. Connecting category theory, especially algebras and coalgebras, with other scien-
tific disciplines is an important and valuable goal if our ideas are to spread and we are also
to be open to influence from those outside of our field. To summarise what this paper of-
fers, we believe that our use of category theory tames the apparent complexity which Rogers’
definitions possess at first sight.

The paper is structured as follows.Section 2follows parts of Rogers [11] and presents his
notions of higher-dimensional trees and automata.Section 3presents our reformulation of
Rogers’ notions using fixed-point equations and coalgebras. Section 4shows that Rogers’
higher dimensional trees are examples ofcontainerswhich allows us to deduce several useful



meta-theoretic results needed later.Section 5defines a notion of deterministic higher dimen-
sional automaton and shows that the classical theorem of determinisation and minimisation
from automata theory hold.

AcknowledgementsThe 2nd author wishes to thank Ichiro Hasuo for helpful discussions.We
are also grateful to the referees for their numerous comments that helped us to improve the
presentation.

2 Rogers’s Higher Dimensional Trees

The most pervasive definition of (finitely branching) trees is via the notion of a tree domain. A
tree domain is an enumeration of the paths in a tree - since a path is a list of natural numbers,
a tree domain is a subset of lists of natural numbers. However, there should be two conditions
on sets of paths reflecting the fact that i) if a node has ann+1’th child, then there should be an
n’th child; and ii) all nodes apart from the root have a parent.Thus tree domains are defined
as follows

Definition 2.1 (Tree Domains).A tree domainT ⊆ N
∗ is a subset of lists of natural numbers

such that

– (LS): If w.(n+1) ∈ T , thenw.n ∈ T

– (A): If w.n ∈ T , thenw ∈ T

We use. for the concatenation of a list with an element. We call the first condition the left-
sibling property (LS) and we call the second condition the ancestor property (A). Notice how
tree domains, by focusing on paths, will inevitably lead to aprocess of computation dominated
by the creation and consumption of sets of paths satisfying (LS) and (A). As we shall see later,
tree domains and the paths in them can be treated more abstractly, and in a cleaner fashion,
by the shapes and positions of the container reformulation of tree domains.

However, for now, we want to ask ourselves how the tree domains given above can be gener-
alised from being 2-dimensional structures ton-dimensional structures. In the 2-dimensional
case we had a notion of path as a list of natural numbers and then a tree domain consisted
of a set of paths satisfying the properties (LS) and (A). Rogers definesn-dimensional tree
domains by first defining what ann-dimensional path is and then defining ann-dimensional
tree domain to be a set ofn-dimensional paths satisfying higher dimensional variants of (LS)
and (A). So what is ann-dimensional path? Notice that a natural number is a list of 1s and
hence a list of natural numbers is a list of lists of 1s. Thus

Definition 2.2 (Higher Dimensional Paths [11, Def 2.1]).Then-dimensional paths form a
N-indexed setP with P0 = 1 (the one element set) and withPn+1 defined to be the least set
satisfying

– [] ∈ Pn+1

– If [x1, .., xm] ∈ Pn+1 andx ∈ Pn, then[x1, .., xm, x] ∈ Pn+1

A simpler definition would be thatPn = List
n1 but we wanted to give Roger’s definition

to highlight its concreteness. Having defined then-dimensional paths we can define then-
dimensional tree domains as follows



Definition 2.3 (Higher Dimensional Tree domains [11, Def 2.2]). LetT0 = {∅, 1}. The set
Tn+1 of n + 1-dimensional tree domains consists of those subsetsT ⊆ Pn+1 such that

– (HDLS): If s ∈ Pn+1, then{w ∈ Pn|s.w ∈ T } ∈ Tn

– (HDA): If s.w ∈ T , thens ∈ T

The first condition is the higher dimensional left sibling property (HDLS). It is slightly tricky
as, in higher dimensions, there is no unique left sibling andso one cannot simply say that if
a node has ann + 1’th child then the node has ann’th child. (HDLS) solves this problem
by saying the immediate children of a node in ann + 1-dimensional tree domain form an
n-dimensional tree domain. In the two dimensional case, (HDLS) is thus the requirement that
the children of a node in a tree form a list. (HDA) is a straightforward generalisation of the
2-dimensional ancestor property (A). The reader may wish tocheck that a one dimensional
tree domain is a set of lists over 1 closed under prefixes, thatis, T1 is bijective toList(1).
There are two zero dimensional tree domains which correspond to the empty tree and to the
tree which just contains one node and no children.

The notion of automata is central in formal language theory and generalises to higher dimen-
sions in a straightforward way. Firstly, we must extend treedomains so that higher dimen-
sional trees can actually store data - this is done by associating to each path in a tree domain,
a piece of data to be stored there.

Definition 2.4 (Labelled tree domains [11, Def 2.3]).A Σ-labelled tree domain is a map-
pingT → Σ, whereT is a tree domain andΣ a set (called the alphabet). We denote the set
of n-dimensionalΣ-labelled tree domains byTn(Σ).

Definition 2.5 (n-Automaton [11, Def 2.9]).An (n + 1)-dimensional automaton over an
alphabetΣ and a finite set of statesQ is a finite set of triples(σ, q, T ) whereσ ∈ Σ, q ∈ Q

andT is aQ-labelled tree domain of dimensionn.

Rogers goes on to define when an (n+1)-automaton licenses (oraccepts) ann+1-dimensional
tree as follows. A (Σ-labelled) local tree is an element ofΣ × Tn(Σ). An (n+1)-dimensional
grammar overΣ is a finite subset ofΣ × Tn(Σ), ie a finite set of local trees. An element
λ : T → Σ in Tn+1(Σ) is licensed by a grammar if for alls ∈ T , the pair(λ(s), λ′ : T ′ → Σ)
is in the grammar, whereT ′ = {w|s.w ∈ T } andλ′(w) = λ(s.w). In other words, a tree
is licensed by a grammar if it is constructed from the local trees of the grammar. Note that,
forgetting the alphabetΣ, an automaton can be seen as a grammar overQ. An element in
Tn+1(Σ) is now licensed by an automaton if it is an image of aQ-labelled tree licensed by
the grammar in which the the label of the root of each local tree has been replaced with a
symbol inΣ associated with that local tree in the automaton [11].

We will see in Section 5 that acceptance is more easily definedvia the unique morphism from
the initial algebra of trees. For coalgebraists let us note here already that automata are coal-
gebras. First, the notion of labelling means thatn-dimensional tree domains form a functor
Tn : Set → Set. In particularT0(X) = 1 + X andT1(X) = List(X). Now, ann+1-
dimensional automata overΣ is just a finite setQ and a functionQ → P(Σ × Tn(Q)).
Automata and their accepted languages will be discussed in detail in Section 5, but let us look
at two familiar examples already.

Example 2.6.A 1-automaton is essentially the standard notion of a non-deterministic string
automata — that is a functionQ → P(Σ × (1 + Q)) where each state can perform aΣ-
transition and either terminate or arrive at another state.



Example 2.7.A 2-automaton is a coalgebraδ : Q → P(Σ × T1(Q)), that is, a relation
δ ⊆ Q × (Σ × List(Q)) which can be understood as a non-deterministic tree automata (see
eg [6]): Given a stateq and a treeσ(t1, . . . tn) the automaton tries to recognise the tree by
guessing a triple(q, σ, [q1, . . . qn]) ∈ δ and continuing this procedure in the statesqi with
treesti. Whereas this coalgebraic definition has a top-down flavour,the accepted language is
most easily defined in an algebraic (bottom-up) fashion as follows. The relationδ gives rise
to a set ofQ-labelled terms (or bottom-upcomputations)C via

(q, σ, []) ∈ δ

qσ ∈ C

(q, σ, [q1, . . . qn]) ∈ δ, qiti ∈ C

qσ(t1, . . . tn) ∈ C

.

whereqσ ∈ C means the automata recognises theσ-labelled tree starting from the stateq.
One then defines, wrt a set of accepting statesQ0, that the automaton accepts a treet iff
qt ∈ C andq ∈ Q0.

3 Higher Dimensional Trees, Algebraically

Despite being a natural generalisation of a 2-dimensional tree domain to ann-dimensional
tree domain, Definition 2.3 is very concrete. For example, formalising the notion of licens-
ing (following Definition 2.5 above) is tedious. We will showthat a more abstract approach
to the definition of tree domains is possible. In particular,the 1-dimensional tree domains
are just the usual lists while the non-empty two-dimensional tree domains are known in the
functional programming community as rose trees with a simple syntax and semantics. That
is, categorically one may defineRoseX = µY.X × List Y and derive from this the equally
simple Haskell implementation

data Rose a = Node a [Rose a]

What is really pleasant about this categorical/functionalprogramming presentation of tree
domains is that initial algebra semantics provides powerful methods for writing and reasoning
about programs. In particular, it replaces fascination with the detailed representation of the
structure of paths and the (LS) and (A) properties with the more abstract universal property
of being an initial algebra. That is not to say paths are not important, just that they ought to be
(in our opinion) a derived concept. Indeed, we show later in Theorem 4.6 how to derive the
path algebra from the initial algebra semantics.

The natural question is whether we can give an initial algebra semantics for higher dimen-
sional trees. The answer is not just yes, but yes in a surprisingly beautiful and elegant manner.
As remarked earlier, the immediate children of a node in an(n + 1)-dimensional tree should
form ann-dimensional tree. This is formalised in

Definition 3.1. Define a family of functors by

R−1X = 0 TnX = 1 + RnX (n ≥ −1)
Rn+1X = µY.X × TnY

Note that we intendRn+1X to be the set ofnon-emptyn+1-dimensionalX-labelled tree
domains whileTn+1X is intended to be the set ofempty or non-emptyn+1-dimensional
X-labelled tree domains. ThusRn+1X should consist of an element ofX to be stored at



the root of the tree and a potentially emptyn-dimensional tree domain labelled with further
tree domains. While one could start indexing at0 by definingR0X = X , there is no harm in
starting one step before with the definition of−1-dimensional trees. As expected, calculations
show that

n RnX TnX

−1 0 1
0 X 1 + X

1 List
+(X) List(X)

2 Rose(X) 1 + Rose(X)

whereList
+(X) are the non-empty lists overX .

In fact, one can go further and not just define a sequence of functorsRn andTn, but a higher
order functor which maps a functorF to the functor sendingX to µY.X × FY . We find this
particularly interesting for both theoretical and practical reasons. At the theoretical level, we
note that this construction of a functor from a functor is thefinal piece of the jigsaw remarked
upon in [9] and summarised in

Monads Comonads

Initial Algebras µY. X + FY µY. X × FY

Final Coalgebras νY. X + FY νY. X × FY

In [9], the three other higher order functors were remarked upon as follows:

– The map sending a functor toF to the functorX 7→ µY.X + FY is the free monad
construction

– The map sending a functor toF to the functorX 7→ νY.X + FY is the free completely
iterative monad construction

– The map sending a functor toF to the functorX 7→ νY.X × FY is the cofree comonad
construction

Higher dimensional tree functors provide—to our knowledge—the first naturally arising in-
stance of the remaining quadrant of the table above. From [9], we have

Theorem 3.2. For any functorF , the mapX 7→ µY.X × FY is a comonad.

At a practical level, this higher order functor translates into the following simple definition
of higher dimensional trees in Haskell, the canonical recursion combinator arising from the
initiality of higher dimensional trees and their comonadicstructure. In the following,Maybe
is Haskell implementation of the monad sendingX to 1 + X .

data Rose f a = Rose a (Maybe (f (Rose f a)))
type Tree f a = Maybe (Rose f a)

data Rose0 a = Rose0 a -- = \X -> X
type Rose1 = Rose Rose0 -- = \X -> Listˆ+(X)
type Rose2 = Rose Rose1 -- = \X -> Rose(X)
type Rose3 = Rose Rose2

cata :: Functor f => (a -> Maybe (f b) -> b) -> Rose f a -> b



cata g (Rose x xs) = g x (fmap (fmap (cata g)) xs)

instance Functor Rose0 where
fmap f (Rose0 a) = Rose0 (f a)

instance Functor f => Functor (Rose f)
where fmap f = cata act where act a t = Rose (f a) t

class Comonad f where
root :: f a -> a
comult :: f a -> f (f a)

instance Comonad Rose0 where
root (Rose0 x) = x
comult (Rose0 x) = Rose0 (Rose0 x)

instance Functor f => Comonad (Rose f) where
root (Rose x xs) = x
comult (Rose x xs) = Rose (Rose x xs) (fmap (fmap comult) xs)

As we have seen, higher dimensional trees are instances of canonical constructions which
always produce comonads. It is also well-known thatList

+ andList are monads. Less well
known is thatRose is a monad. ClearlyR0 is also a monad. Indeed we have

Theorem 3.3. For all n ≥ 0, Rn is a monad.

Space prevents us from detailing the proof of this theorem. However, it is important because
it allows computation with higher dimensional trees to be further simplified via the use of
the monadic notation available in Haskell to structure common patters of computation. For
example, parsing and filtering become particularly simple.

To summarise, we depart from Rogers in not defining higher dimensional trees in terms of
paths, but via the more abstract categorical notion of initial algebras. As a result, we take
the functorTn as primary as opposed to thesetof tree domains which one may then label.
This cleaner mathematical foundation reveals higher dimensional trees to be related to the
fundamental constructions of the free monad, free completely iterative monad and cofree
comonad. It also leads to a simple implementation of higher dimensional trees in Haskell.

4 Containers

Containers [8] are designed to represent those functors which are concrete data types and
those natural transformations which are polymorphic functions between such concrete data
types. Such data types include lists, trees etc, but not solutions of mixed variance recursive
domain equations such asµX.(X → X) + N. Containers take as primitive the idea that
concrete data types consist of its general form orshapesand, given such a shape, a set of
positionswhere data can be stored. Since Rogers’n-dimensional trees certainly store data
at the nodes of then-dimensional tree, it is natural to ask whether these trees are indeed
containers. In this section, we see that the functorsTn andRn are indeed containers and point
out the following theoretical and practical consequences:



– Many properties ofn-dimensional trees can be deduced from the fact that they arecon-
tainers. As just one example, our transformation of a non-deterministic automata into a
deterministic one requiresn-dimensional trees to preserve weak pullbacks. This follows
from the fact thatn-dimensional trees are containers.

– While we choose not to take paths and tree domains as primitive in our treatment of higher
dimensional trees, paths are nevertheless important. We want a capability to compute with
them but do not want the burden of verifying the (HDLS) and (HDA) properties. In par-
ticular, we want a purely inductive definition of tree domains and paths and, remarkably,
find that the shapes and positions of the containerTn provide that.

Containers are semantically equivalent tonormal functorsand a special case ofanalytic func-
tors. However, while containers talk about the different shapesa data structure can assume,
analytic functors talk about the number of structures of a given size and hence there is no
clear, simple and immediate connection between tree domains and paths on the one hand and
analytic functors on the other hand. Thus we use containers rather than analytic functors to
represent higher dimensional trees. In the rest of this section, we introduce containers and
recall some of the closure properties of containers. This proves sufficient to then show that
all Rogers’ trees are indeed containers. While the theory ofcontainers can be developed in
any locally cartesian closed category withW -types and disjoint coproducts, we restrict to the
category ofSet to keep things simple.

The simplest example of a data type which can be represented by a container is that of lists.
Indeed, any element of the typeList(X) of lists of X can be uniquely written as a natural
numbern given by the length of the list, together with a function{0, . . . , n− 1} → X which
labels each position within the list with an element fromX . Thus

List(X) =
∐

n∈N

{0 . . . n− 1} → X

More generally, we consider data types given by i)shapeswhich describe theformof the data
type; and ii) for each shape,s ∈ S, there is a set of positionsP (s). Thus we define

Definition 4.1 (Container). A container(S, P ) consists of a setS and anS-indexed family
P of sets, ie a functionP : S → Set.

As suggested above, lists can be presented as a container with shapesN and positions defined
by P (n) = {0, . . . , n − 1}. Similarly, any binary tree can be uniquely described by itsun-
derlying shape (which is obtained by deleting the data stored at the leaves) and a function
mapping the positions in this shape to the data thus:

•

• x3

x1 x2

∼=

•

•

x1
x2

x3
X

.

The extension of a container is an endofunctor defined as follows:

Definition 4.2 (Extension of a Container).Let (S, P ) be a container. Its extension, is the
functorT(S,P ) defined by

T(S,P )(X) =
∐

s∈S

P (s)→ X



Thus, an element ofT(S,P )(X) is a pair(s, f) wheres ∈ S is a shape andf : P (s) → X is
a labelling of the positions ofs with elements fromX . The action ofT(S,P ) on a morphism
g : X → Y sends the element(s, f) to the element(s, g · f). If F is a functor that is the
extension of a container, then the shapes of that container can simply be calculated asF1
— that isS = T(S,P )1. This corresponds to erasing the data in a data structure to reveal the
underlying shape. Containers have many good properties, inparticular, many constructions
on functors specialise to containers. These closure properties are summarised below

Theorem 4.3 (Closure properties of Containers [8]).The following are true

– The identity functor is the extension of the container with one shape and one position.
– The constantlyA valued functor has shapesA and positions given byPa = 0.
– Let (S1, P1) and(S2, P2) be containers. Then the functorT(S1,P1) + T(S2,P2) is the ex-

tensionT(S,P ) of the container(S, P ) defined by

S = S1 + S2 P (inl(s)) = P1s P (inr(s)) = P2s

– Let (S1, P1) and(S2, P2) be containers. Then the functorT(S1,P1) × T(S2,P2) is the ex-
tensionTS,P of the container(S, P ) defined by

S = S1 × S2 P (s1, s2) = P1s1 + P2s2

In order to show that containers are closed under fixed points, we need to introduce the notion
of a n-ary container to representn-ary functors. For the purposes of our work, we only need
bifunctors and so we restrict ourselves to binary containers

Definition 4.4 (Bi-Containers).A bi-container consists of two containers with the same un-
derlying shape. That is a setS and a pair of functionsP1, P2 : S → Set. The extension of a
binary container is a bifunctor given by

T(S,P1,P2)(X, Y ) =
∐

s∈S

(P1s→ X)× (P2s→ Y )

Given a bi-container(S, P1, P2), the functorX 7→ µY.F (X, Y ) is a container as demon-
strated by the following theorem

Theorem 4.5 (Fixed Points of Containers [8]).Let (S, P1, P2) be a bi-container and let
F (X, Y ) = T(S,P1,P2)(X, Y ) be its extension. Then the functorµY.F (X, Y ) is a container
with shapes given by

S = µY.T(S,P2)(Y )

and positions given by
P (s, f) = P1s +

∐

p∈P2s

P (fp)

To understand this theorem, think of an element ofµY.F (X, Y ) as a tree with a topF -
layer which stores elements fromX at theX positions in thisF -layer and further elements
of µY.F (X, Y ) at theY -positions of thisF -layer. We know that the shapes of the func-
tor µY.F (X, Y ) must be this functor at1, ie µY.F (1, Y ). More concretely, a shape for
µY.F (X, Y ) must thus be anF -shape for the top layer of a tree and, for eachY -position
of that shape, we must have a shape ofµY.F (X, Y ) to represent the tree recursively stored at



that position. As for the positions for storing data of typeX in a tree with shape(s, f) where
s ∈ S andf : P2s→ µY.F1Y , these should be either the positions for storingX-data in the
top layer given byP1s or, for each position inp ∈ P2s, a position in the subtree stored at that
position. Since that subtree has shapefp, we end up with the formula above.

Applying these closure properties, we derive the following

Theorem 4.6. Rogers’n-dimensional non-empty tree functorRn is the extension of a con-
tainer. That is,Rn = T(S+

n ,P
+
n ) where

S+
−1 = 0

S+
n+1 = µY.1 + RnY

P+
n+1(inl∗) = 1

P+
n+1(inr(s, f)) = 1 +

∐

p∈Pns

P+
n+1(fp)

As a corollary,Tn is also the extension of a container. That isTn = T(Sn,Pn) whereSn =
1 + S+

n , Pn(inl∗) = 0 andPn(inrs) = P+
n s. What is particularly nice about the container

presentation ofTn is that the shapesSn are in bijection with the tree domains while the paths
in any tree domain are in bijection with the positions of the equivalent shape. Further, the
paths are given by a purely inductive definition.

5 Automata, (Co)algebraically

We show that the classical automata-theoretic results about determinisation and minimisation
extend to the higher-dimensional automata of Rogers. Usingour reformulation of Rogers’
structures in Section 3 and the container-technology of Section 4, these results become special
cases of the classical results about automata as algebras for a functor, a theory initiated by
Arbib and Manes [2–4]. We also extend Rogers’ work by appropriate notions of signature
and deterministic automata.

We should like to point out that none of the constructions or proofs in this section requires the
explicit manipulation of trees or tree domains.

Before starting on the topic of the section, we review the situation for string and tree
automata. Ignoring initial and accepting states, the situation is depicted in

(strings) non-det det

top-down Q → P(A × Q) Q → QA

bottom-up A × Q → PQ A × Q → Q

(trees) non-det det

top-down Q → P(FQ) —

bottom-up FQ → PQ FQ → Q

For both string and tree automata, the relationship betweennon-deterministic top-down au-
tomata (=coalgebras in the Kleisli-category ofP) and non-deterministic bottom-up automata
(=algebras in the Kleisli-category ofP) is straightforward: bothQ → P(FQ) andFQ →
PQ are just two different ways of denoting a relation⊆ Q× FQ. The relationship between
deterministic top-down automata (=coalgebras) and deterministic bottom-up automata (=al-
gebras) is given in the string case by the adjunctionA×− ⊣ (−)A (this situation is generalised



and studied in [3]). In the tree case,F is an arbitrary functor onSet and so has in general no
right-adjoint.1 It is still possible to describe deterministic top-down tree automata but they are
strictly less expressive [6, Chapter 1.6].

The familiar move from non-deterministic to deterministicstring automata can be summarised
as follows. Any non-deterministic transition structuref : Q → P(A ×Q) can be lifted to a
mapf̄ : PQ → P(A × Q) given byf̄(S) =

⋃
q∈S f(q). UsingP(A × Q) ∼= (PQ)A, f̄ is

a deterministic transition structurePQ→ (PQ)A onPQ. Determinisation for tree automata
will be discussed below.

5.1 Signatures

Rogers’ automata of Definition 2.5 do not associate arities to the symbols in the alphabet
Σ. For example, in the tree automata of Example 2.6, oneσ may appear in two triples
(q, σ, l1), (q, σ, l2) ∈ δ wherel1 and l2 are lists of different lengths. Thus the same ‘func-
tion symbol’σ may have different arities and theΣ-labelled trees are not exactly elements of
a term algebra.

To rectify this situation, we must ask ourselves what is the appropriate notion of arity if
operations take as input higher dimensional trees. In the two-dimensional case arities are
natural numbers: the arity of a function symbolσ is the number of its arguments. But, in
container terminology,N is just the the set of shapes ofT1 = List. Thus, when operations of
a signature are consuming higher dimensional trees, their arities should be the shapes of trees
one dimension lower. This leads to

Definition 5.1 ((n + 1)-dimensional signature).An (n + 1)-dimensional signature is a set
Σ with a mapΣ → Tn(1).

Example 5.2. 1. A 1-dimensional signature is a mapr : Σ → {0, 1}, due to the isomor-
phismT0(1) ∼= {0, 1}. We will see below (Example 5.4) that0 specifies nullary opera-
tions and1 specifies unary operations.

2. A 2-dimensional signature is a signature in the usual sense, due to the isomorphism
T1(1) ∼= N that maps a list to its length.

The next step is to associate to each signature a functor in such a way that the initial algebra
for the functor contains the elements of the language accepted by an automaton. The simplest
and most elegant way to do this is to construct a container anduse its extension. Recalling
thatPn : Sn → Set is the container whose extension isTn and thatSn = Tn(1), we can turn
any signaturer : Σ → Tn(1) into the container(Σ, Pr) as follows

Pr : Σ
r
−→ Sn

Pn−→ Set. (1)

Definition 5.3 (FΣ). The functorF(Σ,r), or briefly FΣ , associated to a signaturer : Σ →
Tn(1) is the extensionT(Σ,Pr) of the container (1), that is,FΣ(X) =

∐
σ∈Σ Pn(r(σ))→ X .

Example 5.4. 1. A 1-dimensional signaturer : Σ → {0, 1} gives rise to the functorFΣ(X) =
Σ0 + Σ1 ×X whereΣi = r−1(i).

2. A 2-dimensional signaturer : Σ → N gives rise to the functorFΣ(X) =
∐

σ∈Σ Xr(σ)

usually associated with a signature.

1 In fact, if F : Set → Set has a right-adjoint, thenF = A ×− for A = F1.



The next two propositions, which one might skip as a pedantictechnical interlude, make the
relation between an alphabetΣ′ and a signatureΣ → Tn(1) precise. The first proposition
says that trees for the signatureΣ → Tn(1) (ie elements of the initialFΣ-algebra) are also
trees over the alphabetΣ (ie elements ofTn+1(Σ)). The second proposition says that trees
over the alphabetΣ′ are the same as trees over the signatureΣ′ × Tn(1)→ Tn(1).

Proposition 5.5. For each(n + 1)-dimensional signatureΣ → Tn(1), there is a canonical
FΣ-algebra structure onTn+1(Σ). Moreover, the unique algebra morphism from the initial
FΣ-algebra toTn+1(Σ) is injective.

Proof. The carrier of the initialFΣ-algebra isµY.FΣ(Y ) andRn+1(Σ) is µY.Σ × Tn(Y ).
The injective morphism in question arises from the injective map of typeFΣ(Y ) → Σ ×
Tn(Y ), that is of type(

∐
σ∈Σ P (r(σ)) → Y ) → Σ × (

∐
s∈Sn

P (s) → Y ), which maps
pairs(σ, f) ∈ FΣ(Y ) to (σ, (r(σ), f)).

Proposition 5.6. Let Σ′ be a set (called an alphabet) andΣ be the signature given by the
projectionr : Σ′ × Tn(1) → Tn(1). ThenRn+1(Σ

′) is isomorphic to the (carrier of the)
initial FΣ-algebra.

Proof. The carrier of the initialFΣ -algebra isµY.FΣ(Y ) andRn+1(Σ
′) is µY.Σ′ × Tn(Y ).

ButΣ′×Tn(Y ) = Σ′×(
∐

s∈Sn
P (s)→ Y ) ∼=

∐
(σ,s)∈Σ′×Sn

P (s)→ Y =
∐

σ∈Σ P (r(σ))→

Y = FΣ(Y ).

5.2 Higher Dimensional Automata

Before giving a coalgebraic formulation of Rogers’ automata (Definition 5.10), we introduce
the corresponding notion of deterministic automaton (Definition 5.7), which has a particularly
simple definition of accepted language and is used in the nextsubsection on determinisation
and minimisation. (Recall Definition 5.3 ofFΣ .)

Definition 5.7. A deterministic(n+1)-dimensional automaton for the signatureΣ → Tn(1)
is a function

FΣQ→ Q.

Example 5.8. 1. To obtain the usual string automata over an alphabetA we consider a1-
dimensional signatureΣ consisting of the elements ofA as unary operation symbols plus
one additional nullary operation symbol (see Example 5.4.1). FΣ(Q) is then1 + A×Q.

2. A 2-dimensional automaton is the usual deterministic bottom-up tree automaton [6].

Definition 5.9. A stateq in a deterministic(n + 1)-dimensional automaton for the signature
Σ → Tn(1) accepts an(n + 1)-dimensional treet if the unique morphism from the initial
FΣ-algebra mapst to q.

We adapt Rogers’ definition of automata given in Definition 2.5:

Definition 5.10. An (n + 1)-dimensional automaton for the signatureΣ → Tn(1) is a func-
tion

Q→ P(FΣ(Q)).

Example 5.11. 1. In the case of string automata,FΣ(Q) is 1 + A × Q and an automaton
becomesQ → P(1 + A × Q) ∼= 2 × (PQ)A. The mapQ → 2 encodes the accepting
states and the mapQ→ (PQ)A gives the transition structure.



2. Comparing with the previous definition, a2-dimensional automatonδ : Q→ P(FΣ(Q))
can still be considered as a set of triplesδ ⊆ Q× (Σ × List(Q)), but not all such triples
are allowed: for(q, σ, 〈q1, . . . qn〉) ∈ δ it has to be the the case that the arity ofσ is n.
This coincides with the notion of a non-deterministic top-down tree automaton as in [6].

We have indicated how to define the accepted language of a (non-deterministic) automaton in
Example 2.7. In particular, we found it natural to give a bottom-up formulation. We will now
generalise this definition. The basic idea is as follows. We first observe that we cannot use
the final coalgebra for the functorPFΣ since this coalgebra would take the branching given
by P into account. Instead, the correct idea is to consider a non-deterministic automaton as
a FΣ-coalgebra in the category of relations. We first note the following proposition which
follows fromFΣ being the extension of a container.

Proposition 5.12. FΣ preserves weak pullbacks.

Now letRel denote the category of sets and relations.

Definition 5.13. Given a functorF on Set we defineF̄ to map setsX to F̄X = FX and
to map relationsX

π0← R
π1→ Y to F̄R = F (π0)

◦; F (π1) where(−)◦ denotes relational
converse and ‘;’ relational composition .

Barr [5] showed thatF̄ is a functor on Rel if and only if F preserves weak pullbacks. A
theorem of de Moor [7, Theorem 5] and Hasuo et al [10, Theorem 3.1] then guarantees that
the initial F -algebrai : FI → I in Set gives rise to the final̄F -coalgebrai◦ : I → F̄ I

in Rel. This gives a ‘coinductive’ definition of the accepted language of a non-deterministic
automaton:

Definition 5.14. The language accepted by a stateq of an (n + 1)-dimensional automa-
ton Q → P(FΣ(Q)) is given by the unique arrow (in the categoryRel) into the finalF̄Σ -
coalgebra .

Note that this definition associates toq a subset of the carrierI of the initialFΣ-algebra.

It is clear from the constructions that every deterministicautomaton can be considered as a
non-deterministic automaton, and that the two notions of accepted language agree. We make
this precise with the following definition and proposition.

Definition 5.15. The non-deterministic automaton corresponding to the deterministic au-
tomatonf : FΣQ → Q is given byf◦ : Q → PFΣQ (wheref◦ is again the converse
relation of (the graph of)f ).

Proposition 5.16. The deterministic automatonFΣQ → Q acceptst in q if and only if the
corresponding non-deterministic automatonQ→ PFΣQ hast in the language ofq.

5.3 Determinisation and Minimisation

This section follows the work by Arbib and Manes [2–4] on automata as algebras for a functor
on a category.

Determinisation First observe that the elementship relation∋⊆ PX × X can be lifted to
F̄ (∋) ⊆ FPX × FX , which can be written as

FPX
τX−→ PFX (2)



τX is well-known to be natural inX wheneverF preserves weak pullbacks. Now, given a
non-deterministic automaton

Q→ PFΣQ (3)

we first turn it from top-down to bottom-up by going to the converse relation

FΣQ→ PQ (4)

and then lift it fromFΣQ toPFΣQ and precompose withτ to obtain

FΣPQ→ PFΣQ→ PQ (5)

Remark 5.17.The step from (4) to (5) is a special case of [4, Lemma 7] (whereP can be an
arbitrary monad on a base category).

Theorem 5.18.Given an(n + 1)-dimensional automatonQ → PFΣQ (Definition 5.10)
with accepting statesQ0 ⊆ Q, the stateQ0 in the corresponding deterministic automaton (5)
accepts the same language.

Minimisation A deterministic automaton with a set of accepting states is astructure

FΣQ
δ
−→ Q

α
−→ 2 (6)

We denote byFΣI → I the initial FΣ -algebra and byρ : I → Q the unique morphism
given by initiality. The mapβ = α ◦ ρ is called thebehaviourof (6) becauseβ(t) tells us
for anyt ∈ I whether it belongs to the accepted language or not. Note thatthe automata (6)
form a category, denotedDAut, which has as morphismf : (δ, α) → (δ′, α′) those algebra
morphismf : δ → δ′ satisfyingα′ ◦ f = α.

Definition 5.19 ([2, Section 4]).Let ι : FΣI → I be the initialFΣ -algebra. The automaton
(6) is reachableif the algebra morphismι→ δ is surjective and it is arealisationofβ : I → 2
iff there is a morphism(ι, β) → (δ, α) in DAut. Moreover, (6) is a minimal realisation ofβ
iff for all reachable realisations(δ′, α′) of β there is a unique surjectiveDAut-morphism
f : (δ′, α′)→ (δ, α).

Different minimal realisation theorems can be found in Arbib and Manes [2–4] and Adámek
and Trnková [1]. The theorem below follows [1, V.1.3].

Theorem 5.20.Let Σ be an(n + 1)-dimensional signature,FΣ the corresponding functor
andFΣI → I the initial FΣ -algebra. Then every mapβ : I → 2 has a minimal realisation.

Proof. Let ei : (ι, β) → (δi, αi) be the collection of all surjectiveDAut-morphisms with
domain(ι, β). Let fi be the multiple pushout ofei in Set andg = fi ◦ ei. The universal
property gives usα with α ◦ g = β. Being a containerFΣ is finitary and, therefore [1, V.1.5],
preserves the multiple pushout. Hence there isδ with δ◦FΣg = g◦ι. SinceFΣ preserves, like
any set-functor, surjective maps,δ is uniquely determined. We have constructed an automaton
(δ, α) that realisesβ. It is minimal because any other reachable realisation appears as one of
theei.



6 Conclusion

This paper applies (co)algebraic and categorical techniques to Rogers’ recent work in lin-
guistics on higher dimensional trees. In particular, we have given an algebraic formulation
of Rogers’ higher dimensional trees and automata. Our analysis shows that, just as ordinary
trees, the higher dimensional trees organise themselves inan initial algebra for a set-functor.
This allowed us to use Arbib and Manes’ theory of automata as algebras for a functor, yielding
simple definitions of accepted language and straightforward constructions of determinisation
and minimisation.

More importantly, as we have only been able to hint at, our algebraic formulation gives us
the possibility to write programs manipulating the trees infunctional programming languages
like Haskell that support polymorphic algebraic data types. Future work will be needed to
substantiate our claim that, in fact, our abstract categorical treatment is very concrete in the
sense that it will give rise to simple implementations of algorithms manipulation higher di-
mensional trees. A good starting point could be Rogers’ characterisation of non-strict tree
adjoining grammars as 3-dimensional automata [11, Thm 5.2].

References

1. J. Adámek and V. Trnková.Automata and Algebras in Categories. Kluwer, 1990.
2. M. A. Arbib and E. G. Manes. Machines in a category: An expository introduction.SIAM Review,

16, 1974.
3. M. A. Arbib and E. G. Manes. Adjoint machines, state-behaviour machines, and duality.Journ. of

Pure and Applied Algebra, 6, 1975.
4. M. A. Arbib and E. G. Manes. Fuzzy machines in a category.Bull. Austral. Math. Soc., 13, 1975.
5. M. Barr. Relational algebras.LNM, 137, 1970.
6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree automata techniques and applications, 1997. Available on:
http://www.grappa.univ-lille3.fr/tata .

7. O. de Moor. Inductive data types for predicate transformers. Information Processing Letters,
43(3):113–118, 1992.

8. N. Ghani, M. Abbott, and T. Altenkirch. Containers - constructing strictly positive types.Theoret-
ical Computer Science, 341(1):3–27, 2005.

9. N. Ghani, C. Lüth, F. de Marchi, and J. Power. Dualizing initial algebras.Mathematical Structures
in Computer Science, 13(1):349–370, 2003.

10. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory. In International Workshop on Coal-
gebraic Methods in Computer Science (CMCS 2006), volume 164 ofElect. Notes in Theor. Comp.
Sci., pages 47–65. Elsevier, 2006.

11. J. Rogers. Syntactic structures as multi-dimensional trees.Research on Language and Computation,
1(3-4):265–305, 2003.


