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Abstract. Goldblatt and Thomason’s theorem on modally definable
classes of Kripke frames and Venema’s theorem on modally definable
classes of Kripke models are generalised to coalgebras.

1 Introduction

The Goldblatt-Thomason theorem [11] states that a class of Kripke frames closed
under ultrafilter extensions is modally definable if and only if it reflects ultrafilter
extensions and is closed under generated subframes, homomorphic images and
disjoint unions. The proof is based on the duality between Boolean algebras and
sets
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where Π is powerset and Σ assigns to a BA the set of ultrafilters. Σ is left-adjoint
to Π but, of course, this adjunction does not form a dual equivalence. The price
we have to pay for this is that going from Set to BA and back leaves us with
ΣΠX: If X is the carrier of a Kripke frame, then its ultrafilter extension has
carrier ΣΠX, which explains why ultrafilter extensions appear in the theorem.

Our generalisation from Kripke frames to T -coalgebras works as follows. Set
and BA are completions (with filtered colimits) of the categories Setω of finite
sets and BAω of finite Boolean algebras, respectively. BAω and Setω are dually
equivalent. Now, given a functor T on Set that preserves finite sets, we can
restrict T to Setω. Via the dual equivalence BAω ' Setopω , this gives us a functor
on BAω, which we can then lift to a functor L : BA→ BA.
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[17] showed the following: (i) L has a presentation and therefore determines
a logic for T -coalgebras, (ii) Π extends to a functor Coalg(T ) → Alg(L), (iii)
if T weakly preserves cofiltered limits, then Σ extends to a map on objects
Alg(L) → Coalg(T ). This note shows that the classical Goldblatt-Thomason
theorem generalises to those T -coalgebras where Σ : BA→ Set can be extended
to a functor Alg(L)→ Coalg(T ).

Alg(L)
Σ

11 Coalg(T )op
Π

rr (3)

The same argument also generalises a similar definability result for Kripke mod-
els due to Venema [22].

Related Work An algebraic semantics for logics for coalgebras and its inves-
tigation via the adjunction between BA and Set has been given in Jacobs [13].
The idea that a logic for T -coalgebras is a functor L on BA appears in [5,15] and
can be traced back to Abramsky [1,2] and Ghilardi [10]. It has been further de-
veloped in [6,16]. The general picture underlying diagram (2) has been discussed
in Lawvere [19] where it is attributed to Isbell. The implications of this Isbell-
conjugacy for logics for coalgebras are explained in [17]. For topological spaces,
which can be seen as particular coalgebras, the Goldblatt-Thomason theorem is
due to Gabelaia [9] and ten Cate et al [7].
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prompted the writing of this paper; and Neil Ghani for relating Conor McBride’s
statement about isomorphisms, see footnote 3. We are also grateful to the referees
for their suggestions.

2 Coalgebras and their logics

Definition 2.1. The category Coalg(T ) of coalgebras for a functor T on a cat-
egory X has as objects arrows ξ : X → TX in X and morphisms f : (X, ξ) →
(X ′, ξ′) are arrows f : X → X ′ such that Tf ◦ ξ = ξ′ ◦ f .

Examples of functors of interest to us in this paper are described by

Definition 2.2 (gKPF). A generalised Kripke polynomial functor (gKPF)
T : Set→ Set is built according to

T ::= Id | KC | T + T | T × T | T ◦ T | P | H

where Id is the identity functor, KC is the constant functor that maps all sets
to a finite set C, P is covariant powerset and H is 22− .



Remark 2.3. The term ‘Kripke polynomial functor’ was coined in Rößiger [20].
We add the functor H. H-coalgebras are known as neighbourhood frames in
modal logic and are investigated, from a coalgebraic point of view, in Hansen
and Kupke [12].

We describe logics for coalgebras by functors L on the category BA of Boolean
algebras. Although this approach differs conceptually from Jacobs’s [13], the
equations appearing in the example below are the same as his.

Example 2.4. We describe functors L : BA → BA or L : BA × BA → BA by
generators and relations as follows.

1. LKC
(A) is the free BA given by generators c ∈ C and satisfying c1 ∧ c2 = ⊥

for all c1 6= c2 and
∨

c∈C c = >.
2. L+(A1, A2) is generated by [κ1]a1, [κ2]a2, ai ∈ Ai where the [κi] preserve

finite joins and binary meets and satisfy [κ1]a1∧ [κ2]a2 = ⊥, [κ1]>∨ [κ2]> =
>, ¬[κ1]a1 = [κ2]> ∨ [κ1]¬a1, ¬[κ2]a2 = [κ1]> ∨ [κ2]¬a2.

3. L×(A1, A2) is generated by [π1]a1, [π2]a2, ai ∈ Ai where [πi] preserve Boolean
operations.

4. LP(A) is generated by 2a, a ∈ A, and 2 preserves finite meets.
5. LH(A) is generated by 2a, a ∈ A (no equations).

Informally, the equations in the 2nd item are justified as follows. Take A1, A2

to be the collections of subsets of two sets X1, X2, take [κi]ai to be the direct
image of the injection κi : Xi → X1 +X2 and describe how the [κi] interact with
the Boolean operations, interpreting ∧ as ∩, etc.

More formally, we recall that sets and Boolean algebras are related by two func-
tors
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where Π maps a set to its powerset and Σ a Boolean algebra to the set of its
ultrafilters. On arrows, both functors are given by inverse image.

The justification for the presentations is now given, in essence, by the follow-
ing isomorphisms. For Boolean algebras A,A1, A2, we have LKC

(A) ∼= ΠC;
L+(A1, A2) ∼= A1 × A2; L×(A1, A2) ∼= A1 + A2. For finite sets X, we have
LP(ΠX) ∼= ΠPX; LH(ΠX) ∼= ΠHX. We will make this more precise in Defi-
nition 2.6 and Proposition 2.8.

Definition 2.5 (LT ). For each gKPF (see Definition 2.2) T : Set → Set we
define LT by the corresponding constructions of Example 2.4.

Example 2.4 illustrates how (a presentation of) a functor on BA describes the
syntax and proof system of a modal logic. The semantics is given by a natural
transformation

LΠX
δX // ΠTX, (5)



since this is exactly what is needed to define the extension [[−]] of formulas via the
unique morphism from the initial L-algebra LI → I. In detail, given a coalgebra
(X, ξ) we let [[−]] be as in

I

[[−]]

��

LIoo

L[[−]]

��
ΠX ΠTX

Πξ
oo LΠX

δX

oo

(6)

In our examples, for gKPFs T , we define δT : LT Π → ΠT as follows.

Definition 2.6 (δT ). We define Boolean algebra morphisms

1. LKC
ΠX → ΠC by c 7→ {c},

2. L+(ΠX1,ΠX2)→ Π(X1 + X2) by [κi]ai 7→ ai,
3. L×(ΠX,ΠY )→ Π(X1 ×X2) by [π1]a1 7→ a1 ×X2, [π2]a2 7→ X1 × a2,
4. LPΠX → ΠPX by 2a 7→ {b ⊆ X | b ⊆ a},
5. LHΠX → ΠHX by 2a 7→ {s ∈ HX | a ∈ s}.

and extend them inductively to δT : LT Π → ΠT for all gKPF T .

The definition exploits that BA-morphisms are determined by their action on
the generators.

Example 2.7. Together with (6), item 4 and 5 of Definition 2.6 give rise to the
Kripke and neighbourhood semantics of modal logic:

– For ξ : X → PX and 2ϕ in the initial LP -algebra, we have [[2ϕ]] = {x ∈
X | ξ(x) ⊆ [[ϕ]]};

– For ξ : X → HX and 2ϕ in the initial LH-algebra, we have [[2ϕ]] = {x ∈
X | [[ϕ]] ∈ ξ(x)}.

The justification for the definition of LT and δT is now given by the following
proposition. It says that (L, δ) completely captures the action of T on finite X;
and more can hardly be expected from a finitary logic of T .

Proposition 2.8. Let T be a gKPF. Then (δT )X : LT ΠX → ΠTX is an
isomorphism for all finite sets X.

Proof. For finite X, (δT )X : LT ΠX → ΠTX is an isomorphism in all of the 5
cases of Definition 2.6. The result then follows by induction, using that all the
functors involved restrict to finite sets and finite BAs. ut

The property of Proposition 2.8, namely

LΠX ∼= ΠTX for all finite sets X, (7)

or, equivalently, LA ∼= ΠTΣA for finite A, is of central importance as it sets up
the relationship between the logic (=functors L given by a presentation) and the



semantics (=functor T ). (7) can be read in two different ways: If the logic (ie L
and LΠ → ΠT ) is given, then (7) is a requirement; on the other hand, given
T , we can take (7) also as a definition of L (up to isomorphism) and look for a
presentation of L, which then gives us a syntax and proof system of a logic for
T -coalgebras.1

To summarise, we might say the whole point of the paper is to show that, once we
presented a functor L satisfying (7), everything else flows from this: syntax and
proof system are determined by the presentation and the semantics is determined
by (7). This also means that the approach presented in the next section is not
restricted to gKPFs.

3 The Goldblatt-Thomason theorem for coalgebras

To clarify the relationship between L-algebras and T -coalgebras in diagram (2),
we review the categorical analysis given in [17], before returning the special case
of Boolean algebras and sets.

3.1 Algebras and coalgebras on Ind- and Pro-completions

The general picture2 underlying the situation discussed in the introduction is
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where C is a finitely complete and cocomplete category, IndC is the full subcat-
egory of SetC

op
of finite limit preserving functors, ˆ(−) and ¯(−) are the Yoneda

embeddings. It is well-known that, under these assumptions, IndC is the comple-
tion of C with filtered colimits, see eg [14, Chapter VI]. Dually,

ProC def= (IndCop)op

is the completion of C with cofiltered limits. Furthermore, we let Σ be the left
Kan-extension of ¯(−) along ˆ(−), and Π the right Kan-extension of ˆ(−) along
¯(−) (in particular, ΣĈ ∼= C̄, ΠC̄ ∼= Ĉ). Σ is left adjoint to Π.

Example 3.1. 1. C = BAω (finite Boolean algebras = finitely presentable Boolean
algebras), IndC = BA, ProC = Setop. ΣA is the set of ultrafilters over A and
Π is (contravariant) powerset.

1 For a general definition of ‘presentation of a functor’ and how presentations give rise
to logics see [6]. Further investigations can be found in [17] showing, for example,
that an endofunctor on BA has a finitary presentation iff it preserves filtered colimits.

2 Actually, the general picture is even more general, see Lawvere [19, Section 7], an
interesting special case of which is investigated in [18,21].



2. C = DLω (finite distributive lattices = finitely presentable distributive lat-
tices), IndC = DL, ProC = Posetop. ΣA is the set of prime filters over A and
Π gives the set of upsets.

3. In fact, (8) can be instantiated with any locally finite variety for IndC. (A
variety is locally finite if finitely generated free algebras are finite.)

We are interested in coalgebras over (IndCop), ie, algebras over ProC =
(IndCop)op. Consider

IndCL
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where we assume that L and T agree on C, that is,

LΠC̄ ∼= LĈ ∼= ΠTC̄ ΣLĈ ∼= TC̄ ∼= TΣĈ (10)

Example 3.2. For IndC = BA and ProC = Setop, the gKPF T and the L = LT

satisfy (10) by Proposition 2.8.

Remark 3.3. We will usually denote by the same symbol a functor and its dual,
writing eg T : K → K and T : Kop → Kop.

In order to lift Π and Σ to algebras, we extend the natural isomorphisms (10)
from C to IndC and ProC, respectively. As a result of the procedure below, the
lifted LΠ → ΠT and TΣ → ΣL will in general not be isomorphisms, the second
may even fail to be natural.

The natural transformation δ : LΠ → ΠT . ΠX is a filtered colimit
Ĉi → ΠX. If L preserves filtered colimits we therefore obtain LΠ → ΠT as in

ΠX LΠX
δX // ΠTX

Ĉi

ci

OO

LĈi

Lci

OO

= // ΠTΣĈi

ΠTc]
i

OO (11)

where c]
i : ΣĈi → X is the transpose of ci : Ĉi → ΠX. δ allows us to lift Π to

a functor

Alg(L) Coalg(T )op
Π̃

rr (12)

mapping a T -algebra (X, ξ) to the L-algebra (ΠX, ξ ◦ δX).

Example 3.4. For IndC = BA, ProC = Setop, and T being one of P or H, δ has
been given explicitly in Definition 2.6.



The transformation h : TΣ → ΣL. We will need that there exists h such
that the following diagram commutes in ProC (where the dk are the filtered
colimit approximating A).

A TΣA
hA // ΣLA

Âk

dk

OO

TΣÂk

OO

= // ΣLÂk

OO (13)

Remark 3.5. A sufficient condition for the existence of h is that T weakly pre-
serves filtered colimits in ProC, or, equivalently, weakly preserves cofiltered limits
in (ProC)op. If T preserves these limits (non weakly) then h is natural.

Example 3.6. For gKPFs excluding H, the maps h have been described by Ja-
cobs [13, Definition 5.1]. We detail the definitions of the following to cases.

1. hA : ΣLPA→ PΣA maps v ∈ ΣLPA to {u ∈ ΣA | 2a ∈ v ⇒ a ∈ u}.
2. hA : ΣLHA→ HΣA maps v ∈ ΣLHA to {â ∈ 2ΣA | 2a ∈ v}.

Remark 3.7. There is a systematic way of calculating h from δ. For A ∈ C,
denoting the unit and counit of the adjunction Σ a Π by η and ε, hA is given
in (ProC)op (thinking of Set) by

ΣLA
(ΣLηA)◦−→ ΣLΠΣA

(ΣδΣA)◦−→ ΣΠTΣA
(εT ΣA)◦−→ TΣA (14)

Here we use that the arrows above are isos and we can take their inverse, denoted
by ◦. The calculations showing that Example 3.6 derives directly from (14) are
detailed3 in the appendix.

In general, hA is not uniquely determined by (13) and we cannot assume it
to be natural. Nevertheless, in the cases we are aware of h is natural.

Proposition 3.8. For gKPFs T , the map

h : ΣLT → TΣ

in Set is natural.

Proof. The type constructors KC ,+,× preserve cofiltered limits, hence the cor-
responding map h defined by (13) is uniquely determined and therefore natural.
In the other two cases, T = P and T = H, we take Example 3.6 as the definition
of h and verify that it is natural and satisfies (13). We detail this for T = H.
Note first that hA : ΣLA → HΣA is νΣA ◦ in−1

A where inA is the insertion of
generators A → LA, a 7→ 2a, and νX : X → HX maps x to {a ⊆ X | x ∈ a}.
Now both the commutativity of (13) and the naturality of h follow from natu-
rality of in and ν. ut
3 We hope these calculations show that isomorphisms do work. This balances Conor

McBride’s view, from a programming perspective, that isomorphisms cost.



To finish the category theoretic part of our development, we note that h
allows us to lift Σ to

Alg(L)
Σ̃

11 Coalg(T )op (15)

via (LA → A) 7→ (ΣA → ΣLA → TΣA). If h is natural, then this map is a
functor.

3.2 The Goldblatt-Thomason theorem for coalgebras

We used the general categorical framework to clarify the relationship between
the functors T and L. We will now return to the special case discussed in the
introduction. In particular, IndC = BA and IndCop = Set; Π : Set → BA maps
X to 2X and Σ : BA → Set maps a Boolean algebra A to the set of ultrafilters
over A.

We say that a functor T : Set→ Set preserves finite sets if T maps finite sets to
finite sets.

Definition 3.9 (modal logic of a functor). The modal logic of a functor
T : Set→ Set is the pair (L, δ : LΠ → ΠT ) where L = ΠTΣ on finite Boolean
algebras and L is continuously extended to all of BA. δ is then given as in (11).

Remark 3.10. 1. The definition of L does not require T to preserve finite sets.
This condition, which implies the right-hand side of (10), is needed for h in
(13).

2. For gKPFs T , the modal logic corresponding to (L, δ) has been described
explicitly in Example 2.4. But we know from [17] that any L : BA → BA
arising from Definition 3.9 has such a presentation by modal operators and
axioms.

The notion of a modal theory now arises from the initial, or free, L-algebra, see
diagram (6).

Definition 3.11 (modal theory). Consider a functor T : Set → Set with its
associated modal logic (L, δ) and a T -coalgebra (X, ξ).

1. Let I be the initial L-algebra and [[−]] : I → Π(X, ξ) be the unique morphism.
Then the variable-free modal theory of (X, ξ) is {ϕ ∈ I | [[ϕ]] = X}.

2. Let IP be the free L-algebra over the free Boolean algebra generated by a
countable set P of propositional variables. Let [[−]]v : IP → Π(X, ξ) be the
unique morphism extending a valuation v : P → ΠX of the propositional
variables. Then the modal theory of (X, ξ) is {ϕ ∈ IP | [[ϕ]]v = X for all v :
P → ΠX}.

The next proposition provides the first main ingredient to the Goldblatt-Thomason
theorem, namely that modally definable classes ‘reflect’ ultrafilter extensions. In
case of variable-free theories, definable classes are also closed under ultrafilter
extensions.



Proposition 3.12. Let T : Set→ Set preserve finite sets and assume that h as
in (13) exists. Then

1. (X, ξ) and ΣΠ(X, ξ) have the same variable-free modal theory,
2. (X, ξ) satisfies the modal theory of ΣΠ(X, ξ).

Proof. (1): By construction of the logic from L, a formula ϕ is an element of the
initial L-algebra and (X, ξ) |= ϕ iff the unique morphism [[−]] from the initial
L-algebra to Π(X, ξ) maps ϕ to X ∈ Π(X, ξ) = 2X . Therefore4, to show that
(X, ξ) |= ϕ ⇔ Π(X, ξ) |= ϕ, it suffices to establish that the map ι : Π(X, ξ)→
ΠΣΠ(Xξ) is an injective algebra morphism. This follows from (the proof of)
Theorem 5.3 in [17] and Stone’s representation theorem for Boolean algebras.
(2): Suppose there is a valuation v showing that ϕ does not hold in (X, ξ), that
is, [[ϕ]]v 6= X. Then ι ◦ [[−]]v(ϕ) 6= ΣΠX, that is, there is a valuation showing
that ϕ does not hold in ΣΠ(X, ξ). ut

The second main ingredient (of the algebraic proof) of the Goldblatt-Thomason
theorem is Birkhoff’s variety theorem stating that a class of algebras is defin-
able by equations iff it is closed under homomorphic images (H), subalgebras
(S), and products (P ). A set of equations is called ground if it does not contain
any variables. This corresponds to the absence of propositional variables in a
modal theory, or, in other words, to treating Kripke models instead of Kripke
frames. The lesser expressivity of ground equations is reflected algebraically by
also closing under embeddings (E). Closure under H, S, P (and E) is equivalent
to closure under HSP (EHSP ).

Theorem 3.13 (Birkhoff’s variety theorem). A class of algebras is defin-
able by a set of

1. ground equations iff it is closed under EHSP ,
2. equations iff it is closed under HSP .

Proof. We sketch the proof of the less well-known 1st statement. It is routine to
check that a definable class of algebras enjoys the required closure properties.
Conversely, let K be a class of algebras closed under EHSP and let Φ be the
ground theory of K. Consider an algebra A with A |= Φ. We have to show that
A ∈ K. Since K is closed under SP , the quotient Q = I/Φ of the initial algebra I
by Φ is in K. A |= Φ then means that there is a morphism Q→ A, hence A ∈ K
by closure under EH.

The dual of closure under S and E is closure under quotients and domains of
quotients. This is equivalent to closure under ‘co-spans’ (X, ξ) � • � (X ′, ξ′),
or bisimilarity:

Definition 3.14 (bisimilarity). Two coalgebras (X, ξ), (X ′, ξ′) are bisimilar
if there are surjective coalgebra morphisms (X, ξ) � •� (X ′, ξ′).

4 Note that the top-element X of the BA Π(X, ξ) is preserved by algebra morphisms.



We can now generalise to coalgebras the Goldblatt-Thomason theorem [11]
for Kripke frames and Venema’s corresponding result for Kripke models [22]. For
a textbook account of the former see [3,4]. [4, Theorem 5.54] gives an excellent
account of the algebraic proof that we generalise, [4, Theorem 3.19] presents
an alternative model theoretic proof, and [4, Theorem 2.75] gives a version for
pointed Kripke models.

We say that a class K of coalgebras is closed under ultrafilter extensions if
(X, ξ) ∈ K ⇒ ΣΠ(X, ξ) ∈ K and that it reflects ultrafilter extensions if
ΣΠ(X, ξ) ∈ K ⇒ (X, ξ) ∈ K.

The first part of the theorem below is the definability result for coalgebras as
generalisations of Kripke models, the second part treats definability for coal-
gebras as generalisations of Kripke frames. The difference in the formulation,
apart from replacing closure under bisimilarity by closure under quotients, is
due to the fact that all modally definable classes of Kripke models but not all
modally definable classes of Kripke frames are closed under ultrafilter extensions
(compare the two items of Proposition 3.12).

Theorem 3.15. Let T : Set → Set preserve finite sets and assume there is a
natural transformation h satisfying (13).

1. A class K ⊆ Coalg(T ) is definable by a variable-free modal theory iff K is
closed under subcoalgebras, bisimilarity, coproducts and ultrafilter extensions
and K reflects ultrafilter extensions.

2. A class K ⊆ Coalg(T ) closed under ultrafilter extensions is definable by a
modal theory iff K is closed under subcoalgebras, quotients and coproducts
and K reflects ultrafilter extensions.

Proof. (1): For ‘if’ let X be a coalgebra that is a model of the theory of K,
that is, by Theorem 3.13.1, ΠX ∈ EHSP (ΠK) where ΠK = {ΠY | Y ∈ K}.
We have to show X ∈ K. ΠX embeds a quotient of a subalgebra of a product∏

i Π(Xi), Xi ∈ K. Since Π is right adjoint, we obtain
∏

i Π(Xi) ∼= Π(
∐

i Xi).
Since Σ maps injective maps to surjective maps and vice versa, we have

ΣΠX � • ↪→ •� ΣΠ(
∐

Xi).

The stipulated closure properties now imply X ∈ K. For ‘only if’, using that
ground equationally definable classes of algebras are closed under EHSP , it is
enough to observe (i) that Π maps surjective maps to injective maps and vice
versa, (ii) that Π maps coproducts to products, (iii) Proposition 3.12.1.
(2): The proof is a straightforward variation of the previous one. For ‘if’ let X
be a coalgebra that is a model of the theory of K, that is, by Theorem 3.13.2,
ΠX ∈ HSP (ΠK) where ΠK = {ΠY | Y ∈ K}. We have to show X ∈ K. ΠX
is a quotient of a subalgebra of a product

∏
i Π(Xi), Xi ∈ K. We have

ΣΠX ↪→ •� ΣΠ(
∐

Xi).

The stipulated closure properties now imply X ∈ K. For ‘only if’, we use (i) and
(ii) as in part 1 and (iii) Proposition 3.12.2. ut



Before deriving our main result as a corollary, let us analyse the hypotheses
needed for Theorem 3.15 in terms of the general setting discussed in Section 3.1.

Remark 3.16. The following ingredients are used in the proof of Theorem 3.15.

1. C in diagram (8) has all finite limits and finite colimits. This is a strong
requirement. But it holds if IndC is a locally finite variety and C is the
subcategory of finitely presentable algebras. This includes BA and DL.

2. A → ΣΠA is injective. This is unlikely to hold in the generality of dia-
gram (8) but it seems to be a rather mild requirement: For example, it holds
for (subvarieties of) BA and DL.

3. T preserves finite sets (or, more generally, T restricts to Cop). This is needed
in diagram 13. It excludes polynomial functors with infinite constants and the
probability distribution functor. For a further discussion and the connection
with strong completeness see [17].

4. h exists and is natural. The status of this requirement remains somewhat
unclear. As emphasised by the corollary, it is satisfied in important examples.
Let us note here that h is certainly natural if T preserves cofiltered limits.
This is the case for all polynomial functors. The example we are aware of
where the existence of h fails, is if T is the finite powerset functor (the
ultrafilter extension of a Kripke frame is not finitely branching).

The main result of the paper is the following corollary. The second part gen-
eralises the Goldblatt-Thomason theorem from Kripke frames to all gKPF-
coalgebras and the first part generalises Venema’s definability theorem for Kripke
models to all gKPF-coalgebras.

Corollary 3.17. Let T be a gKPF.

1. A class K ⊆ Coalg(T ) is definable by a variable-free modal theory iff K is
closed under subcoalgebras, bisimilarity, coproducts and ultrafilter extensions
and K reflects ultrafilter extensions.

2. A class K ⊆ Coalg(T ) closed under ultrafilter extensions is definable by a
modal theory iff K is closed under subcoalgebras, quotients and coproducts
and K reflects ultrafilter extensions.

Remark 3.18. 1. As far as we know, the special case of H-coalgebras (neigh-
bourhood frames) is a new result.

2. In the statement of the theorem, we can replace “Coalg(T )” by a modally
definable full subcategory of Coalg(T ). For example, the theorem holds for
monotone neighbourhood frames or topological neighbourhood frames. For
topological spaces, the result is due to Gabelaia [9, Theorem 2.3.4], but see
also ten Cate et al [7].

The original formulation of Venema’s theorem [22] has closure under surjective
bisimulations instead of closure under subcoalgebras and bisimilarity. The rela-
tionship between the two formulations is as follows. For functors T that preserve
weak pullbacks, one can use ‘spans’ (X, ξ) � • � (X ′, ξ′) in the definition of



bisimilarity instead of co-spans (X, ξ) � • � (X ′, ξ′) as above. Closure under
subcoalgebras (or generated submodels in the parlance of [22]) is incorporated
in the notion of surjective bisimulation by not forcing the left-hand projection
of the span to be surjective: A class K is closed under surjective bisimulations iff
for all (X, ξ) ∈ K and all (X, ξ)← •� (X ′, ξ′) also (X ′, ξ′) ∈ K. Since H is the
only ingredient of a gKPF that does not preserve weak pullbacks, we obtain the
following generalisation of Venema’s definability theorem for Kripke models.

Corollary 3.19. Let T be a KPF (ie a gKPF built without using H). A class
K ⊆ Coalg(T ) is definable by a variable-free modal theory iff K is closed under
coproducts and surjective bisimulations and K reflects ultrafilter extensions.

4 Conclusion

The basic idea underlying this (and previous) work is to consider the logics for
coalgebras as functors L on a category of propositional logics such as BA. Let
us summarise some features of this approach.

– The functor L packages up all the information about modal operators and
their axioms. In this way the functor L acts as an interface to the syntax,
which is given by a presentation of L.

– As long as we only use abstract properties of L, such as (7), we can prove
theorems about modal logics in a syntax free way, see Corollary 3.17 or the
Jónsson-Tarski theorem [17, Thm 5.3] for examples. This gives rise not only
to simpler proofs, but also to more general results.

– If we instantiate our abstract categories and functors with concrete presenta-
tions, we not only get back all the riches of syntax, but find that the categor-
ical constructions actually do work for us. For example, in diagram (8), if we
let C = BAω and Cop = Setω, then the fact that Π is contravariant powerset
and Σ is ultrafilters, follows from the end/coend formula for right/left Kan
extensions. Another example of this phenomenon is detailed in the appendix.

Another point is that the generality of our approach suggests further work. Let
us mention the following:

– It is possible to replace Boolean algebras by distributive lattices. It could be
of interest to look at the details.

– It should be possible to alleviate the restriction to finite constants insofar as
infinite ‘input’ constants C as in TKC can be allowed. But the restriction to
finite ‘output’ sets is important, see Friggens and Goldblatt [8] for a detailed
discussion.

– Is it possible to generalise definability results for pointed models or frames
in the same framework?

– It should be of interest to instantiate IndC in diagram (8) with other locally
finite varieties.



– Diagram (8) can also be varied in many directions, for example, considering
other completions than Ind or going to an enriched setting (for example, for
posets (ie enrichment over 2) the Galois closed subsets of the adjunction
Σ a Π describe the elements of the MacNeille completion of C).

Finally, and from the point of view of logics for coalgebras, most importantly:
Can we find a similarly nice and abstract account for functors T that do not
preserve finite sets?

A Appendix

We show that the h in Example 3.6 are derived from (14). To this end we first
state a lemma on ultrafilters, which is a straightforward consequence of the
respective definitions.

Notation η : Id → ΠΣ and ε : Id → ΣΠ are the (co)unit of the adjunction
Σ a Π (note that we wrote ε here as an arrow in Set and not in Setop). f◦

denotes the converse of a bijection f . For a ∈ A we abbreviate η(a) = {u ∈
ΠΣA | a ∈ u} by â. The complement X \ S of a subset S of X is written as
−S.

Lemma A.1. Let A be a finite BA, Y a finite set and L one of LP , LH.

1. Every ultrafilter u ∈ ΣA has a smallest element given by
∧

a∈u a.
2. (εY )◦ : ΣΠY → Y maps u to y, where {y} is the smallest element of u.
3. Every ultrafilter v ∈ ΣLA is determined by the set {2a | a ∈ A,2a ∈ v}.
4. The smallest element of v ∈ ΣLA is given by

∧
2a∈v 2a ∧

∧
2a/∈v ¬2a.

Also note that for isos f we have that (Σf)◦ is the direct image map of f . We
obtain for L = LP :

(ΣLηA)◦ maps v to the ultrafilter determined by {2â | 2a ∈ v},
(ΣδΣA)◦ maps {2â | 2a ∈ v} to {{t ∈ PΣA | t ⊆ â} | 2a ∈ v},
(εPΣA)◦ maps the ultrafilter determined by {{t ∈ PΣA | t ⊆ â} | 2a ∈ v} to⋂

2a∈v{t ∈ PΣA | t ⊆ â} ∩
⋂

2a/∈v −{t ∈ PΣA | t ⊆ â}.

It is now a straightforward verification to check that this last set contains exactly
one t which is {u ∈ ΣA | 2a ∈ v ⇒ a ∈ u}. Hence we obtained the h described
in Example 3.6.1.

For L = LH we have:

(ΣLηA)◦ maps v to the ultrafilter determined by {2â | 2a ∈ v},
(ΣδΣA)◦ maps {2â | 2a ∈ v} to {{t ∈ HΣA | â ∈ t} | 2a ∈ v},
(εHΣA)◦ maps the ultrafilter determined by {{t ∈ HΣA | â ∈ t} | 2a ∈ v} to⋂

2a∈v{t ∈ HΣA | â ∈ t} ∩
⋂

2a/∈v −{t ∈ HΣA | â ∈ t}.

It is now a straightforward verification that this last set contains exactly one
t which is {â ∈ 2ΣA | 2a ∈ v}. Hence we obtained the h described in Exam-
ple 3.6.2.
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