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Abstract

Coalgebras for a functorT on a categoryX model many different types of transition systems in a
uniform way. This paper focuses on a uniform account of finitary strongly complete specification
languages for Set-based coalgebras.

We show how to associate a finitary logic to any finite-sets preserving functorT and prove the
logic to be strongly complete under a mild condition onT . The proof is based on the following
result. An endofunctor on a variety has a presentation by operations and equations iff it preserves
sifted colimits.

1 Introduction

Coalgebras for a functorT on a categoryX model many different types of transition systems in a
uniform way. Coalgebras are dual to algebras and the logic of algebras is equational logic. But then,
what is the logic of coalgebras? Can logics for coalgebras be described in a uniform way, and their
properties be established in a uniform manner?

Our approach to these questions is based on Stone duality. We think of Stone duality [15, 2] as relating
a category of algebrasA representing a propositional logic to a category of topological spacesX
representing the state-based models of the logic. The duality is provided by two contravariant functors
P andS,
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P maps a spaceX to a propositional theory andS maps a propositional theory to its ‘canonical model’.
Abramsky [1] extended a basic Stone duality as in Diagram 1 by ‘synchronising’ dual constructions
on both sides of Diagram 1, thus providing a description of domain theory in logical form. This
suggests that the modal logic of a functorT should be given by its dualL onA:
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Then the category ofL-algebras is dual to the category ofT -coalgebras and the initialL-algebra
provides a propositional theory characterisingT -bisimilarity. Moreover, ifL can be presented by
generators and relations, one inherits a proof system from equational logic which is sound and strongly
complete. Thus, logics forT -coalgebras arise from presentations of the dual ofT by generators and
relations. We characterise those functorsL on varietiesA that have a finitary presentation.

Whereas the result above gives us logics for coalgebras, our next aim is to prove a strong completeness
result for finitary logics for Set-coalgebras. The approach indicated in Diagram 2 can be applied to
Set-coalgebras, but as the dual ofSet is the categoryCABA of completeatomic boolean algebras, the
corresponding logics are infinitary. Our solution is to consider two Stone dualities:
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The upper row is the duality between Stone spaces and Boolean algebras, accounting for (classical
finitary) propositional logic.L describes an expansion of propositional logic by modal operators and
axioms. The lower row is the duality where our Set-basedT -coalgebras live. How can these two
worlds be related?

The crucial observation is the following.BA is the Ind-completion of finite Boolean algebras, that is,
the completion of finite Boolean algebras under filtered colimits;Set is the Ind-completion of finite
sets; and finite sets are dual to finite Booleans algebras. In other words,Setop is the Pro-completion
of finite Boolean algebras, that is, the completion of finite Boolean algebras under cofiltered limits.

BAL
**

S

11 Setop
P

rr
T op

tt

BAω
∼= Setopω

ˆ(−)

ddIIIIIIIII ¯(−)

99ssssssssss

(4)

If T preserves finite sets then we can associate a modal logic toT by definingL to be the continuous
extension that agrees withT on finite sets. Moreover, we obtain a natural transformation

δ : LP → PT

giving the semantics to the logic by inducing a functorP̃ : Coalg(T ) → Alg(L). Similarly, if T
weakly preserves cofiltered limits, we obtain

h : SL→ TS

giving rise to a map on objects̃S : Alg(L) → Coalg(T ). From this, one obtains strong completeness:
We can associate to anyL-algebraA the coalgebrãSA, which provides a counter example for each
formula not holding inA.

Summary of Results Our main results are the following:

1. A functor on a varietyA has a presentation iff it preserves sifted colimits.

2. Algebras over Ind-completions can be represented via algebras over Pro-completions.

3. To any functor onStone that is determined by its action on finite Stone spaces, one can associate a
finitary strongly complete modal logic that characterisesT -bisimilarity.
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4. To any functor onSet that preserves finite sets and weakly preserves cofiltered limits, one can
associate a finitary strongly complete modal logic.

The first two results are of purely categorical nature and are treated in Sections 4 and 5. The next two
results are essentially corollaries of the first two and are described in Sections 7 and 8. The last one
generalises a result in modal logic known as bisimilarity-somewhere-else.

Comparison with other approachesIn his seminal paper [24], Moss described a coalgebraic logic
for any weak pullback preserving functor on sets, which to a large extent, answers our question for a
parametric logic for coalgebras. But his solution has some drawbacks. First, the restrictions to sets and
to weak-pullback preserving functors are essential to his approach. This prevents generalisations to
logics for systems modelled in a domain theoretic (ie topological) setting. And it prevents extensions
to situations where the modal law2ϕ ∧ 2ψ → 2(ϕ ∧ ψ) does not hold. This is typically the case
in logics for games where one takes2ϕ to mean that the player can play some move that restricts
the opponent to moves after whichϕ holds. Second, Moss’s logic does not provide modalities to
decompose the structure ofT , which is needed to allow for a flexible specification language. Related
to this, there is no proof system and no completeness result.

To address these issues, attention was focused on special classes of functors given by a restricted num-
ber of type constructors for which logics were built in an ad hoc manner [22, 27, 14]. Pattinson [25]
showed that these languages with their ad hoc modalities arise from modal operators given by certain
natural transformations, called predicate liftings, associated with the functorT . Schr̈oder [29] investi-
gates the logics given by all predicate liftings of finite arity and shows that these logics are expressive
for finitary functorsT . This restriction to finitary functors excludes traditional transition systems.
Moreover, it is not clear how this approach generalises to topological and domain theoretic settings.

Our approach does not suffer any of these drawbacks. On the other hand, for Set-functors, we restrict
attention to those that preserve finite sets and weakly preserve cofiltered limits. As we will explain,
this is justified by focussing on strong completeness results.

The observation that all logics given by predicate liftings correspond to a functorL onBA was made
in [19]. That functors that have a presentation give rise to a logic for coalgebras was noted in [10].
Here we give a characterisation of the functors which have presentations. The process of taking a
finite set preserving functor and extending it toBA, and hence toStone, is related to a construction in
Worrell [33] where a Set-functor is lifted to complete ultrametric spaces.

2 Algebras and Coalgebras

Given a functorL on a categoryA, anL-algebra (notation:(A,α) or justα) is an arrowα : LA→ A.
A morphismf : α→ α′ is an arrowf : A→ A′ such thatf ◦ α = α′ ◦ Lf .

The category of algebras for a signatureΣ and equationsE is defined as usual (in particular, carriers
are sets) and denoted byAlg(Σ, E). We say that a categoryA, equipped with a forgetful functor
U : A → Set, has apresentationif there exists a signatureΣ and equationsE such thatA is
concretely isomorphic toAlg(Σ, E). A (or more preciselyU : A → Set) is monadic(overSet) iff A
has such a presentation andU : A → Set has a left adjoint.

A functor isfinitary if it preserves filtered colimits. An objectK of a categoryK is finitely presentable
if its hom-functorhom(K,−) : K → Set is finitary. In Set, the finitely presentable objects are
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precisely the finite sets and inAlg(Σ, E) they are the algebras described by a finite set of generators
and a finite set of relations.

A category monadic overSet is called avariety if it has a set of finitely presentable objects and every
object is a filtered colimit of these. This is the case whenever all operations inΣ are of finite arity. We
are particularly interested in the varietyBA of Boolean algebras and in the varietyDL of distributive
lattices (with top and bottom elements).

Given a functorT on a categoryX , aT -coalgebra(notation:(X, ξ) or justξ) is an arrowξ : X → TX
in X . A morphismf : ξ → ξ′ is an arrowf : X → X ′ such thatTf ◦ ξ = ξ′ ◦ f .

Throughout the paper it will be the case thatX is the categorySet or some category of topological
spaces. It makes therefore sense to speak of the elements, orstates, of someX ∈ X . We say that two
statesx, x′ of ξ : X → TX andξ′ : X ′ → TX ′ are behaviourally equivalent orbisimilar if there
are coalgebra morphismsf, f ′ with f(x) = f ′(x′). This notion of bisimilarity avoids the problems
of Aczel and Mendler [4] bisimulations, which do not work properly ifT does not preserve weak
pullbacks. It goes back to Aczel and Mendler [4], who use it to generalise the final coalgebra theorem
of Aczel [3] by removing the assumption of weak-pullback preservation.

3 Sifted Colimits Preserving Functors

Since a varietyA can be built from its finitely presentable algebras by using filtered colimits, filtered
colimits preserving functorsL : A → A are fully determined by their values on finitely presentable
algebras. The latter form a small part ofK in the sense that, up to an isomorphism, there is only a set
of them.

Filtered colimits are precisely those which commute in sets with finite limits. Thus they stem out
from the doctrine of finite limits while varieties are given by the doctrine of finite products, see Law-
vere [23]. It is therefore natural to consider colimits which commute in sets with finite products. These
colimits are calledsifted colimits. They were studied in [6] and the main result is that any variety can
be built up from its strongly finitely presentable algebras by using sifted colimits. Here, an algebra
A is strongly finitely presentableif hom(A,−) : A → Set preserves sifted colimits. These algebras
coincide with finitely presentable (regular) projective algebras, ie with retracts of finitely generated
free algebras. Any filtered colimit is of course sifted. Another important kind of sifted colimits are
reflexive coequalizers (a parallel pair of arrowsf, g is reflexive if there is t withft = gt = id).
Reflexive coequalizers include coequalizers of equivalence relations.

Sifted colimits preserving functorsL : A → A are fully determined by their values on finitely
generated free algebras. Their algebraic character is documented by the next result; recall that for a
functorL preserving filtered colimits,Alg(L) is only locally finitely presentable.

Theorem 3.1. LetA be a variety andL : A → A preserve sifted colimits. ThenAlg(L) is a variety.

Proof. Analogous to [5, Remark 2.75] using [7, 1.4.19].

The following result is a consequence of the fact that every finitely presentable algebra is a reflexive
coequalizer of finitely generated free algebras.

Proposition 3.2. LetA be a variety andL : A → A preserve filtered colimits and reflexive coequal-
izers. ThenL preserves sifted colimits.
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Proof. LetAfp be the full subcategory ofA consisting of finitely presentable objects andAsfp be the
full subcategory ofA consisting of strongly finitely presentable objects. Following [6, 2.3.(2)],Afp is
the (free) closure ofAsfp under reflexive coequalizers. ThusL is uniquely determined by its restriction
Lsfp onAsfp . SinceA is a (free) closure ofAsfp under sifted colimits,Lsfp has a unique extension
L′ : A → A preserving sifted colimits. Since both reflexive coequalizers and filtered colimits are
sifted colimits, we haveL′ = L. HenceL preserves sifted colimits.

In some very simple but important varieties like sets or linear spaces, every finitely presentable algebra
is projective. As a consequence we get the next result which, in particular, implies thatAlg(L) is a
variety.

Proposition 3.3. LetA be a variety such that every finitely presentable algebra is projective. Then
any functorL : A → A preserving filtered colimits preserves sifted colimits.

The previous proposition can be extended to boolean algebras. In fact, the trivial Boolean algebra1

is the only finitely presentable that is not projective.1 is the reflexive coequalizer

F1
i //
o
// F0

s // 1 (5)

whereF is the left adjoint to the forgetful functorBA → Set, i maps the generator to the top, and
o maps the generator to the bottom. IfL : BA → BA preserves filtered colimits and the above
coequalizer, thenL preserves sifted colimits.

Proposition 3.4. For any filtered colimit preserving functorL : BA → BA there is a sifted colimit
preserving functorL′ : BA → BA such thatL andL′ are isomorphic when restricted to the full
subcategory ofBA without1. Moreover,Alg(L) = Alg(L′).

Proof. DefineL′ = L on the full subcategory ofBA not containing1, andL′1 such thatL′ preserves
the coequalizers in (5). Since there are no arrows1 → A other than the identity, we only have to
defineL′ on arrowsh : A → 1, A 6= 1. Choose an arrowf : A → F0 and defineL′h = L′s ◦ L′f .
This does not depend on the choice off . Indeed, for another arrowg : A→ F0, there isk : A→ F1
such thati ◦ k = f, o ◦ k = g. Finally, the proof thatL′ preserves sifted colimits is essentially the
same as the one of Proposition 3.2.

The proposition shows that as far as we are concerned with algebras overBA, we can assume any
finitary functor to preserve sifted colimits.

4 Presenting Functors on Varieties

We show that sifted colimits preserving functors are precisely those that can be presented by finitary
operations and equations in finite sets of variables.

4.1 Presentations of algebras and functors

An algebraA in a varietyA with forgetful functorU : A → Set is said to be presented by generators
G and relationsR ⊆ UFG× UFG if A is the coequalizer

FR
π]
2

//
π]
1 //

FG
q // A. (6)
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whereF is left-adjoint toU andπ]
1, π

]
2 come from the projections fromR toUFG. Each algebraA is

presented by its canonical presentation which has as set of generatorsUA and as relations the kernel
of the counitεA : FUA→ A.

Following [10], we define analogously the notion of a functorL : A → A having a presentation by
operations and equations. The generatorsGUA of LA are given by a Set-functorGX =

∐
k<ω Gk ×

Xk. The elements ofGk are thek-ary operations. Relations are now induced by equations over finite
setsV of variables, which are instantiated using valuationsv : V → UA. The point of (7) below is
that it generalises (6) in such a way that the generators and relations definingLA depend uniformly
onA.

Definition 4.1 ([10]). A finitary presentation by operations and equations of a functor is a pair〈G,E〉
whereG : Set → Set, GX =

∐
k<ω Gk × Xk andE = (EV )V ∈ω, EV ⊆ (UFGUFV )2. The

functorL presented by〈G,E〉 is the joint coequalizer

FEV

π]
1 //

π]
2

// FGUFV
FGUv// FGUA

qA // LA (7)

whereV ranges over finite cardinals andv over morphisms (valuations of variables)FV → A.

Example 4.2. A modal algebra, or Boolean algebra with operator (BAO), is the algebraic structure
required to interpret (classical) modal logic which consists of propositional logic plus a unary modal
operator2 preserving finite conjunctions. Modal algebras are therefore algebras for the functorL :
BA → BA, whereLA is defined by generators2a, a ∈ A, and relations2> = >, 2(a ∧ a′) =
2a ∧2a′. That is,GX = X, EV = ∅ for V 6= 2, E2 = {2> = >,2(v0 ∧ v1) = 2v0 ∧2v1}.
Remark 4.3. 1. That the generators appear now as a functor expresses that the same genera-

tors (the2 in the example above) are used for allLA. Similarly, the coequalizer (7) is ex-
pressed using equations in variablesV , that is, the same relations are used for allLA. In
EV ⊆ (UFGUFV )2 the innerUF allows for the conjunction in2(v0 ∧ v1) whereas the outer
UF allows for the conjunction in2v0 ∧2v1. Finally, note that relationship between the opera-
tor 2 and the boolean operators can not be expressed by a distributive law betweenL andUF
asL is not defined on sets but only on algebras.

2. In the works of [25, 19, 29] ‘modal axioms of rank 1’ play a prominent role. These are exactly
those which, considered as equations, are of the formEV ⊆ (UFGUFV )2.

Before we come to the main consequence of the definition, let us point out the useful fact:

Proposition 4.4. Consider a functorL on a varietyA. If L has a presentation thenL preserves
surjective morphisms and injective morphisms.

The main point of the definition is that one obtains a presentation ofAlg(L) from a presentation ofA
and from a presentation ofL.

Theorem 4.5 ([10]). Let A ∼= Alg(ΣA, EA) be a variety and〈ΣL, EL〉 a finitary presentation of
L : A → A. ThenAlg(ΣA +ΣL, EA +EL) is isomorphic toAlg(L), where equations inEA andEL

are understood as equations overΣA + ΣL.

Remark 4.6. 1. The logical significance of theorem is that it ensures that the Lindenbaum algebra
for the signatureΣA + ΣL and the equationsEA + EL is the initialL-algebra.

2. The special format of the equations is needed to guarantee that, given a presentation of a functor
〈Σ, E〉, the algebras for the presented functor satisfyE.
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4.2 The characterisation theorem

Before turning to functors on an arbitrary variety we have a look at functors onSet.

It is well known how to present a finitary endofunctorH on Set by operations and equations: Any
suchH is a quotient ∐

k<ω

Hk ×Xk τX−→ HX (8)

( σ , l ) 7→ Hl(σ) (9)

wherek = {0, . . . k − 1} andl : k → X. σ ∈ Hk is ank-ary operation and the quotient gives the
action ofσ on a list of argumentsl : k → X.

Now considerL : A → A. The idea behind (8) can also be applied to the set-valued functorUL. Since
(8) depends on considering aritiesk as objects in the domain ofH, we replacek by the free algebras
Fk ∈ A. SoHk becomesULFk andXk = Set(k,X) becomesA(Fk,A) ∼= Set(k, UA) = UAk,
which leads us to consider∐

k<ω

ULFk × UAk %A−→ ULA (10)

( σ , l ) 7→ (ULεA ◦ ULFl)(σ) (11)

This gives us a signature withk-ary operationsULFk, which we describe by the functor

GY =
∐
k<ω

ULFk × Y k. (12)

To obtain the equations from (10), since sifted colimit preserving functors are determined by their
action on free algebras, it is enough to consider the maps%FV . But the kernel of%FV : GUFV →
ULFV determines only the setULFV and not the algebraLFV . The equations in variablesV will
therefore be given by the kernel of the adjoint transpose of%

FGUFV
%]

FV−→ LFV.

Definition 4.7. Let L be an endofunctor on a varietyA. The finitary presentation〈G,E〉 of L (Def-
inition 4.1) is given by generatorsG : Set → Set as in (12) and equationsE = (EV )V ∈ω whereEV

is the kernelπ1, π2 : EV −→ UFGUFV of U%]
FV , with % as in (10).

We first show that the functor presented by〈G,E〉 agrees withL on finitely generated free algebras
Fn.

Lemma 4.8. Considern ∈ N. Then

FEV
//
// FGUFV

FGUv// FGUFn
%]

Fn // LFn (13)

is a joint coequalizer.
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Proof. We start by showing that

FEn

π]
1 //

π]
2

// FGUFn
%]

Fn // LFn (14)

is a coequalizer. LetP be the kernel pair of%]
Fn in A. UP = En. Moreover, theU -image of this

kernel pair is a split coequalizer. From this, it follows that theU -image of (14) is split, hence (14)
is a coequalizer inA. Next we show that the joint coequalizer of (13) agrees with the coequalizer of
(14). First, to see that all pairs in the kernel of%]

Fn are identified in the joint coequalizer it is enough
to chooseV = n andv = idV . Conversely, by the definition ofEV , a pair(s, t) in FGUFn is
identified in the joint coequalizer only if there isV andv : FV → Fn such that(s, t) is the image
underUFGUv of a pair in the kernel of%]

FV . So we have to show that the kernel of%]
FV is contained

in the kernel of%]
Fn ◦ FGUv. But this follows from the commutativity of

FGUFn
%]

Fn // LFn

FGUFV

FGUv

OO

%]
FV

// LFV

Lv

OO

which is due to naturality of%].

The characterisation theorem is now proved using that sifted colimits preserving functors are deter-
mined by their action on finitely generated free algebras.

Theorem 4.9. An endofunctor on a variety has a finitary presentation by operations and equations if
and only if it preserves sifted colimits.

Proof. Suppose first thatL has a presentation as in (7). Letci : Ai → A be a sifted colimit. We have
to show thatLci is a sifted colimit. Given a coconedi : LAi → L′ we have to show that there is a
uniquek as depicted in

FEV

π]
1 //

π]
2

// FGUFV //

FGUv]
&&LLLLLLLLLLL FGUAi

qAi //

FGUci

��

LAi

Lci

��

di

  @
@@

@@
@@

@

FGUA qA

//@A ��
h

OOLA
k
// L′

U preserves sifted colimits becauseA is a variety,G preserves sifted colimits because they commute
with finite products, andF preserves all colimits. Therefore we haveh with di ◦ qAi = h ◦ FGUci.
Thenk is obtained from the joint coequalizerqA once we show thath◦FGUv]◦π]

1 = h◦FGUv]◦π]
2

for all v : V → UA. For this considerv : V → UA. Sincehom(V,−) preserves sifted colimits
(V is finite) andU preserves sifted colimits, there is someAj and somew : V → UAj such that
v = Ucj ◦ v′. It follows v] = cj ◦ w], henceFGUv] = FGUcj ◦ FGUw].

For the converse, let〈G,E〉 be the presentation of a sifted colimits preserving functorL and denote
by L′ the functor presented by〈G,E〉. It follows from Lemma 4.8 thatL′Fn ∼= LFn on finitely
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generated free algebrasFn. We know from the first part of the proof thatL′ preserves sifted colimits.
HenceL andL′ are sifted colimits preserving functors which agree on finitely generated free algebras
and, therefore, are isomorphic.

The theorem will give rise to finitary logics for functors in Sections 7 and 8. But let us note two
immediate corollaries. First sifted colimit preserving functors preserve regular epis in general. Using
that they have a presentation, one can also show:

Corollary 4.10. A sifted colimit preserving functorL on a variety preserves monos.

The import of this proposition is the following. If we build the Lindenbaum algebra of a logic using
the initial algebra sequence0 → L0 → L20 . . . then the corollary implies that all arrows in the
sequence are injective. This means that logical equivalence of formulas of depthn can be decided at
leveln.

Using that sifted colimits preserving functors are closed under composition one immediately obtains:

Corollary 4.11. Functor having a finitary presentation are closed under composition.

5 Algebras on Ind and Pro Completions

As motivated in the introduction, we study the relation between two completions of a small categoryC
with finite limits and colimits: the completion̂(−) : C → IndC by filtered colimits and the completion
¯(−) : C → ProC by cofiltered limits. Consider

IndC
Σ

22 ProC
Π

rr

C
ˆ(−)

aaCCCCCCCC ¯(−)

==zzzzzzzz

(15)

whereΣ is the left Kan-extension of¯(−) along ˆ(−), andΠ is the right Kan-extension ofˆ(−) along
¯(−). In particular we have

ΣĈ = C̄ ΠC̄ = Ĉ (16)

Example 5.1. 1. C = BAω (finite Boolean algebras = finitely presentable Boolean algebras),
IndC = BA, ProC = Setop. ΣA is the set of ultrafilters overA and Π is (contravariant)
powerset.

2. C = DLω (finite distributive lattices = finitely presentable distributive lattices),IndC = DL,
ProC = Posetop. ΣA is the set of prime filters overA andΠ gives the set of downsets.

Proposition 5.2. Σ is left adjoint toΠ.

Proof. IndC is the subcategory ofSetC
op

of finite limit preserving functors, ˆ(−) is the codomain
restriction of the Yoneda embeddingC → SetC

op
, and ¯(−) is the codomain restriction of the dual of

the Yoneda embeddingCop → SetC . We need a natural isomorphism

ΣA→ X

A→ ΠX

9



SinceΣ is filtered colimit preserving andΠ cofiltered limit preserving,ProC is a (free) completion of
C under cofiltered limits andIndC is a (free) cocompletion ofC under filtered colimits, it suffices to
have natural isomorphisms

hom(C,−) → hom(D,−)
hom(−, C) → hom(−, D)

(becausêC = hom(−, C) andC̄ = hom(C,−)). Since the first line is in(SetC)op, we need a natural
isomorphism

hom(D,−) → hom(C,−)
hom(−, C) → hom(−, D)

where the both lines are in the corresponding functor categories. But this is evident.

We want to present algebras overIndC by algebras overProC

IndCH
**

Σ

22 ProC
Π

rr
K

tt
(17)

where we assume thatH andK agree onC, that is,

ΣHĈ = KC̄ ΠKC̄ = HĈ (18)

The natural transformation δ : HΠ → ΠK. ΠX is a filtered colimitĈi → ΠX. If H preserves
filtered colimits we therefore obtainHΠ → ΠK as in

ΠX HΠX
δX // ΠKX

Ĉi

ci

OO

HĈi

Hci

OO

= // ΠKΣĈi

ΠKc]
i

OO (19)

wherec]i : ΣĈi → X is the transpose ofci : Ĉi → ΠX. δ allows us to liftΠ to a functor

Alg(H) Alg(K)
Π̃qq

(20)

mapping aK-algebra(B, β) to theH-algebra(ΠB, β ◦ δB).

The transformation h : KΣ → ΣH. h is defined as in the following diagram where thedk are a
filtered colimit and we assume thatK weakly preserves filtered colimits.

A KΣA
hA // ΣHA

Âk

dk

OO

KΣÂk

OO

= // ΣHÂk

OO (21)

hA is not uniquely determined and we do not assume that it is natural. It allows to liftΣ to a map on
objects

Alg(H)
Σ̃

11 Alg(K) (22)
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RepresentingH-algebras asΠ-images ofK-algebras. Denote byι the unit of the adjunction
Σ a Π. Our next theorem states that for all algebrasHA→ A the following diagram commutes

A

ιA
��

HAoo

HιA
��

ΠΣA ΠΣHAoo ΠKΣA
ΠhAoo HΠΣA

δΣAoo

(23)

Theorem 5.3. Assume in Diagram 17 thatH preserves filtered colimits, thatK weakly preserves
filtered colimits, and thatH andK agree onC (ie the equations (18) hold). Then for anyH-algebra
(A,α) it holds thatιA : A→ ΠΣA is anH-algebra morphism(A,α) → Π̃(ΣA,α ◦ hA).

Proof. To show that Diagram 23 commutes, we have to show thatιA is anH-algebra morphism.
Sinceι is naturalιHA = ΠhA ◦ δΣA ◦ HιA does suffice, see the upper row of Diagram 24, where

HA
HιA
//

ιHA

,,
HΠΣA

δΣA

// ΠKΣA
ΠhA

// ΠΣA

HÂk

Hdk

OO

ιHÂk

22HĈi

Hci

OO

= // ΠKΣĈi

ΠKc]
i

;;wwwwwwwwwwww

ΠKΣÂk

ΠKΣdk

ccGGGGGGGGGGGG
= // ΠΣHÂk

ΠΣHdk

OO (24)

ci : Ĉi → ΠΣA anddk : Âk → A are filtered colimits. The left-hand quadrangle is Diagram 19 and
the right-hand quadrangle is theΠ-image of Diagram 21. The outer quadrangle commutes, henceιHA

is the unique arrow from the colimiting coconeHdk to the coconeΠΣHdk ◦ ιHÂk
. We have to show

thatΠhA ◦ δΣA ◦HιA is also an arrow between these cocones.

Thedk form the colimiting cocone for the diagram̂(−)↓A, theci for ˆ(−)↓ΠΣA. There is a functor
l : ˆ(−)↓A→ ˆ(−)↓ΠΣA takingk : B → A to l(k) = ιA ◦ k : B → ΠΣA. We haveĈl(k) = Ak and

ιA ◦dk = cl(k). It follows that theHÂk = HĈl(k) form a subdiagram of theHĈi and that any cocone

over theHĈl(k) induces a cocone over theHÂk; it is therefore enough to show that Diagram 25
commutes and that the lower line isιHĈl(k)

. The diagram commutes since the triangle in the middle

HA
HιA
// HΠΣA

δΣA

// ΠKΣA
ΠhA

// ΠΣA

HĈl(k)

Hdk

``BBBBBBBBBBB
Hcl(k)

OO

= // ΠKΣĈl(k)

ΠKc]
l(k)

;;vvvvvvvvvvvv
id

ΠKΣÂk

ΠKΣdk

ccGGGGGGGGGGGG
= // ΠΣHÂk

ΠΣHdk

OO (25)
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commutes, which follows from

ΠKΣĈl(k)

ΠKΣcl(k) // ΠKΣΠΣA
ΠKηΣA // ΠKΣA

ΠKΣÂk

id

OO

ΠKΣdk

// ΠKΣA

ΠKΣιA

OO

id

66nnnnnnnnnnnnnnn

where the right-hand triangle is one of the triangle equalities of the adjunction given byι : Id → ΠΣ
andη : Id → ΣΠ and the upper row isΠKc]l(k). Finally, using the other triangle equality and that the

units are isos on finite objects, the lower line is(ΠηKΣĈl(k)
)−1 = ιΠKΣĈl(k)

= ιHĈl(k)
.

This theorem will give rise to completeness of Set-coalgebras in Section 8. To illustrate the power of
the theorem we derive some corollaries.

1. (Stone [30]) ChooseC = BAω, H andK to be the identity. ThenIndC, ProC, Σ andΠ are as in
Example 5.1 and we obtain: Every boolean algebraA can be embedded into a powerset, with Boolean
operations receiving their set-theoretic interpretation.

2. (Jónsson and Tarski [17])C = BAω as above but takeH to be the functorL from Example 4.2 and
K to be powerset. With this data, our theorem states that every Boolean algebra with operators can be
embedded into a complete Boolean algebra whose carrier is a powerset.

3. (Stone [31]) ChooseC = DLω. ThenIndC, ProC, Σ andΠ are as in Example 5.1 and we obtain:
Every distributive latticeA can be embedded into the completely distributive lattice of subsetsΠΣA.

4. (Gehrke and J́onsson [11]) This is the generalisation of (2.) to distributive lattices. ForH one takes
the Vietoris functor of Johnstone [16], restricted toDL.

6 A Brief Review of Stone Duality

For most of the paper, we need from this subsection only the fact that there is a categoryStone of
topological spaces which is dually equivalent toBA. The reason for giving a more abstract account, is
that we will occasionally mention distributive lattices and want to indicate possible extensions of our
results.

To treat different Stone dualities simultaneously, one considers them as arising from the adjunction
of topological spacesTop and framesFrm [15]. Frm captures the algebraic properties of a topology,
namely, a frame is a distributive lattice with infinite joins that distribute over finite meets. There are
contravariant functors

Top
P ,,

Frm
S
kk

P (X,O) = O, P (f) = f−1, andS(A) = Frm(A,2), where2 is the two element frame (consisting
of ⊥,>). S(f) = λs ∈ S(A) . s ◦ f . The functorsP andS are adjoint on the right, that is, there is a
bijection, natural inX andA,

Top(X,SA) ∼= Frm(A,PX).
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We are interested in subcategories ofTop andFrm on which the adjunction restricts to a dual equiva-
lence, or duality for short.PX ∼= A then means thatA is an expressive and complete propositional
theory forX in the following sense

• for x 6= y ∈ X there isa ∈ PX separatingx andy,

• for a 6≤ b ∈ A there isx ∈ SA ∼= X such thatx(a) = 1 andx(b) = 0.

We read the second property as: ifa does not implyb then there is a counter-examplex. These two
properties are ultimately responsible for our expressiveness and completeness results.

Two examples of relevant subcategories are the categoryStone of Stone spaces, which is dual toBA.
And the categorySpec of spectral spaces (coherent spaces in [15]), which is dual toDL. For many
more examples see Abramsky and Jung [2] and Johnstone [15].

7 Adequate Modal Logics for Coalgebras

In this section we show how we can associate to a functorT a modal logic that is adequate forT
coalgebras in the sense that it is sound, complete, and characterises bisimilarity. We do this in two
steps.

1. First, abstracting from syntax, we simply consider as propositions of the logic the elements
of the initial L algebra, whereL is the dual ofT . We call this logic the abstract logic of
T -coalgebras.

2. Second, we obtain a syntax and a proof system for the abstract logic from a presentation of the
functorL. We call these logics the concrete logics ofT -coalgebras.

The point of the separation is that the results we prove about the concrete logics do not depend on the
chosen presentation and are conducted solely on the level of the abstract logics.

7.1 Abstract modal logics

Consider

Coalg(T )
P̃ --

��

Alg(L)
S̃

mm

��
XT
)) P

++

��

A
S

kk L
vv

U
��

Set Set

(26)

where we assume that

• the dual equivalence betweenX andA arises from the adjunction ofTop andFrm by restricting
to subcategoriesX andA,

• L is dual to T , that is, there is an isomorphism

δ : LP → PT

13



• A is a variety (see p.3).

δ allows us to extend the equivalence betweenX andA to an equivalence betweenCoalg(T ) and
Alg(L), whereP̃ maps a coalgebra(X, ξ) to (PX,Pξ ◦ δX). We can therefore considerAlg(L) as
providing a logic forCoalg(T ):

Definition 7.1. The algebra of propositions in variablesV is the freeL-algebraProp(V ) over V .
Given a coalgebra(X, ξ), we write[[−]](X,ξ,h) for the morphismProp(V ) → P̃ (X, ξ) determined by
the valuationh : V → UPX. The semantics of a propositionϕ is [[ϕ]](X,ξ,h) ⊆ X.

We define
Coalg(T ) |= (ϕ ` ψ)

if [[ϕ]](X,ξ,h) ⊆ [[ψ]](X,ξ,h) for all coalgebras and all valuations. For a collectionΓ of ‘sequents’
ϕi ` ψi, we writeΓ |= (ϕ ` ψ) if Coalg(T ) |= Γ ⇒ Coalg(T ) |= (ϕ ` ψ).

Remark 7.2. Because distributive lattices have no implication, the notation(ϕ ` ψ) is needed to
logically encode the order≤ of the lattices. This is as in [1].

Proposition 7.3. The logic forT -coalgebras given in the previous definition

1. respects bisimilarity: propositions are invariant under bisimilarity

2. is expressive: any two non-bisimilar states are distinguished by some proposition

3. Γ |= (ϕ ` ψ) iff ϕ ≤ ψ in the quotient ofProp(V ) wrt the equations{ϕi ∧ ψi = ϕi | (ϕi `
ψi) ∈ Γ}.

The proposition is an immediate consequence of Stone duality.

7.2 Concrete logics

We restrict our attention now to the duality ofBA andStone. In particular, in Diagram 26,P maps a
Stone space to its basis of clopens andS maps a Boolean algebra to the set of ultrafilters overA.

We will show that a modal logic enjoying the properties of Proposition 7.3 can be associated to any
functorT : Stone → Stone that is determined by its action on finite Stone spaces.

Let L = PTS be the dual ofT . ThatT is determined by its action on finite Stone spaces means
thatL preserves filtered colimits. By Proposition 3.4, we can assumeL to preserve sifted colimits.
It follows from Theorem 4.9 thatL has a presentation〈ΣL, EL〉 and from Theorem 4.5 that the free
L-algebrasProp(V ) are the Lindenbaum algebras of the equational logic(ΣBA + ΣL, EBA + EL).

To translate this equational logic into a modal logic is a standard procedure [9]. Each term in operation
symbols fromΣBA + ΣL is considered as a formula. Equationss = t are rendered ass ↔ t.
Conversely, any formulas can be read as an equations = > where> ∈ ΣBA. To summarise:

Theorem 7.4. LetT : Stone → Stone be a functor preserving cofiltered limits. ThenT has a sound
and strongly complete modal logic that characterises bisimilarity.
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Example 7.5. 1. Stone coalgebras for functors built according to

T ::= K | Id | T × T | T + T | TN | PT

(K a constant,N a finite constant,P powerspace) were considered in [21]. All these functors
preserve cofiltered limits and the above theorem summarises most aspects of that paper.

2. Given a Stone space(X,OX) defineH(X,OX) = (HX,HOX) asHX = {h ⊆ PX}.
HOX is generated by the sets22a = {h ∈ HX | a ∈ h}. ThenH is a functor onStone. Its
dual has a simple presentation: One unary operation2 and no equations.

3. DefineH↑(X) = {h ⊆ PX | h upward closed}. ThenH↑ is a functor onStone. Its dual is
presented by a unary operator2 and an equation saying that2 is monotone.H↑-coalgebras
were studied in [12].

8 The Finitary Modal Logic of Set-Coalgebras

The aim of this section is to associate a strongly complete modal logic to suitable functorsT : Set →
Set. As we are interested here in classical propositional logic the logic will be given by a functor
LT : BA → BA. That is we are concerned with the following situation

BALT

**

S

33 Set
P

ss
T

tt
(27)

whereS maps an algebra to the set of its ultrafilters andP is the contravariant powerset. Note thatS
andP take a meaning here that differs from the previous section.

Assuming thatT preserves finite sets, we defineLT to beLTA = PTSA on finite BAs and then
extendLT continuously to all ofBA. As LT preserves filtered colimits, we can associate a modal
logic to it, as explained in Section 7. This logic is sound and strongly complete for Stone-coalgebras
for the dualT̄ of LT . Here, we show that strong completeness also holds wrtT -coalgebras.

Note that Diagram 27 is an instance of Diagram 17. From (19) we obtain a natural transformation
δ : LTP → PT which in turn yields, as in (20), a functor̃P : Coalg(T ) → Alg(LT ). P̃ now induces
a semantics exactly as in Definition 7.1. But we cannot use Proposition 7.3 to prove completeness as
we do not have a dual equivalence betweenBA andSet. We proceed as follows:

SupposeΓ 6` ϕ. LetA be the freeLT algebra quotiented byΓ. By Theorem 5.3, there is aT -coalgebra
onSA such thatιA : A → PSA is anLT -algebra morphism.ιA maps all propositions inΓ to all of
SA, butϕ only to a proper subset. Therefore there is an element inSA satisfyingΓ and refutingϕ.
We have shown:

Theorem 8.1. Let T : Set → Set preserve finite sets and weakly preserve cofiltered limits. ThenT
has a sound and strongly complete modal logic.

Remark 8.2. 1. The weak preservation of cofiltered limits means, in particular, that all projections
in the final sequence are onto. The only example of a functor we are aware of that does not
satisfy this condition is the finite powerset functor, see [33]. And indeed, standard modal logic
is strongly complete wrt Kripke frames, but not wrt finitely branching ones.
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2. The probability distribution functor [32] does not preserve finite sets. And indeed, modal logics
for probabilistic transition systems, see eg [13], are not strongly complete. Similarly forTX =
K ×X whereK is an infinite constant.

3. In contrast, we can extend our result to functorsX 7→ (TX)K for infinite K if T preserves
finite sets. Indeed,TK is a cofiltered limit of the functorsTKi whereKi ranges over the finite
subsets ofK. We can now apply the theorem to obtain logicsLT Ki and then extend the result
to the colimit of theLT Ki and the limit of theTKi . This allows us to include functors such as
(PX)K ∼= P(K ×X),K infinite (which give rise to labelled transition systems).

4. In [20] it was shown that one can have such a theorem if a suitableh as in (21) exists. Here we
gave conditions under which this is indeed the case.

Example 8.3. 1. The functors built according to

T ::= N | Id | T × T | T + T | TK | PT

(K a constant,N a finite constant,P powerset) were studied in [26, 14]. Their completeness
results are extended here to strong completeness.

2. The double contravariant powerset functor22− does not preserve weak pullbacks [28] and there-
fore cannot be treated by Moss’s coalgebraic logic [24]. But it does satisfy the assumptions of
the theorem andL

22− has a particularly simple presentation: one unary operation symbol2

and no equations.

3. Similarly, but more importantly, the subfunctorUpX of 22X
, which takes as values upward

closed sets of subsets, does not preserve weak pullbacks [12].LUp can be presented by one
unary operator2 and one equation expressing that2 is monotone. Coalgebras for that functor
are also known as monotone predicate transformers. They provide a natural semantics for logics
of 2-player games, mentioned in the introduction.

9 Conclusion

Summary The purpose of the paper was to associate a finitary modal logic to a functorT , so that the
logic is strongly complete wrtT -coalgebras. We took up the idea, well-established in domain theory
[2], that a logic for the solution of a domain equationX ∼= TX is given by a presentation of the dual
L of T . We characterised those functors on a variety that have a presentation (Theorem 4.9).

In a second move, we related two pairs of Stone dualities, one for the logic and one for the semantics.
Distilling the essence of the algebraic completeness proof of modal logic via the Jónsson-Tarski The-
orem, our second main contribution is Theorem 5.3 relating algebras on Ind and Pro-completions. It
yields strong completeness for a large class of Set-functors, see Example 8.3.

One of the main aspects of this work is that it makes use of the notion of the presentation of a functor in
order to separate syntax and semantics. The syntax is given by the presentation, the semantics in terms
of natural transformations between functors. This led to a syntax-independent proof of Theorem 8.1.

An important point is that we do not need the assumption thatT is finitary. This assumption is
powerful when working withT -algebras, but it is much less so forT -coalgebras. Similarly, we do
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not need thatT preserves weak pullbacks. Each of these assumptions would exclude fundamental
examples.

Further, we find it important not to restrict our attention to Set-coalgebras. In all of domain theory,
the systems are based on topological spaces. In fact, in any situation where one wants to incorporate
a notion of admissible or observable subset, one is quickly led to a topological setting.

Future work Our approach can be extended to cover, on the semantic side, coalgebras over presheaves,
and on the algebraic side, many-sorted algebras. This will allow us to obtain results about logics for
name-passing calculi.

Can our characterisation theorem be extended to treat infinitary logics?

If Alg(L) is a variety, doesL : A → A then preserve sifted colimits (converse of Theorem 3.1)? It is
true forA = Set but the proof in [8, III.4.9] does not generalise.

The reason for getting strong completeness is that in a Stone duality any algebra can be represented
by a space (see eg Theorem 8.1). For completeness, it is enough if free algebras can be represented.
An example for this situation is propositional logic with countable conjunctions where strong com-
pleteness fails. Algebraically, this means that only the free countably complete Boolean algebras can
be represented as algebras of subsets [18]. It will be interesting to extend our approach to settings like
these.
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[8] J. Adámek and V. Trnkov́a. Automata and Algebras in Categories. Kluwer, 1990.

[9] P. Blackburn, M. de Rijke, and Y. Venema.Modal Logic. CUP, 2001.

[10] M. Bonsangue and A. Kurz. Presenting functors by operations and equations. InFoSSaCS’06,
LNCS, 2006.

[11] M. Gehrke and B. J́onsson. Bounded distributive lattices with operators.Math. Japonica, 40,
1994.

[12] H. Hansen and C. Kupke. A coalgebraic perspective on monotone modal logic. InCMCS’04,
ENTCS, 2004.

[13] A. Heifetz and P. Mongin. Probabilistic logic for type spaces.Games and Economic Behavior,
35, 2001.

17



[14] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study.Theor. Inform. Appl.,
35, 2001.

[15] P. Johnstone.Stone Spaces. CUP, 1982.

[16] P. Johnstone. Vietoris locales and localic semilattices. InContinuous Lattices and their Appli-
cations, volume 101 ofLecture Notes in Pure and Applied Mathematics. Marcel Dekker, 1985.

[17] B. Jónsson and A. Tarski. Boolean algebras with operators, part 1.Amer. J. Math., 73, 1951.

[18] C. Karp.Languages with Expressions of Infinite Length. North-Holland, 1964.

[19] C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic logics. InCMCS’04,
ENTCS, 2004.

[20] C. Kupke, A. Kurz, and D. Pattinson. Ultrafilter extensions of coalgebras. InCALCO 2005,
LNCS 3629, 2005.

[21] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras.Theoret. Comput. Sci., 327, 2004.

[22] A. Kurz. Specifying coalgebras with modal logic.Theoret. Comput. Sci., 260, 2001.

[23] F. W. Lawvere.Functorial Semantics of Algebraic Theories. PhD thesis, Columbia University,
1963.

[24] L. Moss. Coalgebraic logic.Annals of Pure and Applied Logic, 96, 1999.

[25] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local con-
sequence.Theoret. Comput. Sci., 309, 2003.
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