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We characterise quasivarieties and varieties of ordered algebras categorically in terms of

regularity, exactness and the existence of a suitable generator. The notions of regularity

and exactness need to be understood in the sense of category theory enriched over posets.

We also prove that finitary varieties of ordered algebras are cocompletions of their

theories under sifted colimits (again, in the enriched sense).

1. Introduction

Since the very beginning of the categorical approach to universal algebra, the intrinsic
characterisation of varieties and quasivarieties of algebras has become an interesting
question. First steps were taken already in John Isbell’s paper (Isbell 1964), William
Lawvere’s seminal PhD thesis (Lawvere 1963) and Fred Linton’s paper (Linton 1966). The
compact way of characterising varieties and quasivarieties can be, in modern language,
perhaps best stated as follows:

A category A is equivalent to a (quasi)variety of algebras i↵ it is (regular) exact and
it possesses a “nice” generator.

For the excellent modern categorical treatment of (quasi)varieties of algebras in the
sense of classical universal algebra, see the book by Jǐŕı Adámek, Jǐŕı Rosický and Enrico
Vitale (Adámek et al. 2011).
In the current paper, we will give a characterisation of categories of varieties and

quasivarieties of ordered algebras in essentially the same spirit:

A category A , enriched over posets, is equivalent to a (quasi)variety of ordered alge-
bras i↵ it is (regular) exact and it possesses a “nice” generator.

Above, however, the notions of regularity and exactness need to be reformulated so that
the notions suit the realm of categories enriched over posets.

†
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Foundation.
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There are at least two approaches to what an ordered algebra can be. Let us briefly
comment on both:

The approach of Bloom and Wright (Bloom and Wright 1983) A signature ⌃
specifies for each natural number n a set ⌃n of operation symbols. An algebra for a
signature ⌃ consists of a poset X, together with a monotone map [[�]] : Xn �! X, for
each specified n-ary operation �, where n is a set . A homomorphism is a monotone
map, preserving the operations on the nose.
Such a concept is a direct generalisation of the classical notion of an algebra (Cohn
1981).

The approach of Kelly and Power (Kelly and Power 1982) A signature ⌃ spec-
ifies for each finite poset n a set ⌃n of operation symbols. An algebra for a signature
⌃ consists of a poset X, together with a monotone map [[�]] : Xn �! X, for each
specified n-ary operation �. Here, Xn denotes the poset of all monotone maps from
n to X. A homomorphism is a monotone map, preserving the operations on the nose.
This concept stems from the theory of enriched monads. It allows for operations that
are defined only partially . As we will see later, such an approach is also quite natural
and handy in practice.

We will choose the first concept as the object of our study. For technical reasons, we will
also allow the collection ⌃n of all n-ary operations to be a poset. Then, for every algebra
for ⌃ on a poset X, the inequality [[�]]  [[⌧ ]] is required to hold in the poset of monotone
functions from Xn to X, whenever �  ⌧ holds in the poset ⌃n of all n-ary operations.
Varieties and quasivarieties in the first sense were studied by Stephen Bloom and Jesse

Wright in (Bloom 1976) and (Bloom and Wright 1983). In (Bloom 1976), a Birkho↵-style
characterisation of classes of algebras is given:

(1) Varieties are defined as classes of algebras satisfying formal inequalities of the form

t0 v t

where t0 and t are ⌃-terms. Varieties can be characterised as precisely the HSP-classes
of ⌃-algebras.

(2) Quasivarieties are defined as classes of algebras that satisfy formal implications (or,
quasi-inequalities) of the form

(
^

i2I

s0i v si) ) t0 v t

where I is a set, s0i, si, t
0 and t are ⌃-terms. Quasivarieties can be characterised as

precisely the SP-classes of ⌃-algebras.

One has to be precise, however, in saying what the closure operators H and S mean.
As it turns out, when choosing monotone surjections as the notion of a homomorphic
image, then the proper concept of a subalgebra is that of a monotone homomorphism
that reflects the orders This means that a subalgebra inherits not only the algebraic
structure but also the order structure.

Example 1.1 (Varieties).



Quasivarieties and varieties of ordered algebras 3

(1) Since a signature in the sense of Bloom and Wright specifies the same data as a
signature in the sense of ordinary universal algebra, it is the case that any ordinary
variety is contained in the variety of ordered algebras for the same signature and
equations, the ordinary algebras appearing as the algebras with a discrete order. This
gives rise to a large class of examples which includes ordered monoids and ordered
semigroups, which play an important role in automata theory, see (Pin 1997).

(2) In some important examples such as Boolean algebras, Heyting algebras or groups,
the discrete order is the only order that makes all operations monotone. In this case,
the varieties are just the ordinary varieties.

(3) Another important source of examples are ordinary varieties which have a semi-
lattice reduct. Then the order is equationally definable via x  y , x_ y = y. These
examples are varieties in the ordered sense if equipped with the above order, but
cannot be expected to be varieties in the ordered sense if they are equipped with the
discrete order, see the comment following Example 3.21.

(4) Ordered algebras arise naturally as solutions of domain equations. In order to build
semantic domains which contain both infinite elements (to give semantics to loops
and recursion) and their finite approximants, one works with ordered algebras, the
partial order capturing the order of approximation, see e.g. (Scott 1971). For example,
infinite lists over a set A and their finite approximants arise as a certain algebra for
the functor F : Pos �! Pos given by

FX = {?}+A⇥X = {(a, x) | a 2 A, x 2 X}/(8z.?  z)

F -algebras form a variety with the signature given by one constant ? and unary
operation symbols a for all a 2 A and with one inequality given by 8z.?  z. The
initial algebra contains all finite lists over A and is ordered by the prefix relation. Its
completion by !-chains or directed joins (Goguen et al. 1977) also contains the infinite
lists over A. This algebra can also be elegantly described as the final F -coalgebra.

Example 1.2 (Quasivarieties).

(1) Sets and mappings form a quasivariety of ordered algebras. More precisely:

(a) Let ⌃ be a signature with no specified operation. Hence ⌃-algebras are exactly
the posets and ⌃-homomorphisms are the monotone maps.

(b) Let the objects be ⌃-algebras, subject to the implication

x v y ) y v x

Clearly, any object can be identified with a set and ⌃-homomorphisms can be iden-
tified with mappings.
It is easy to see that Set is an SP-class in the category of all ⌃-algebras. But it is not
an HSP-class: consider the identity-on-objects monotone mapping e : 2 �! 2, where
2 is the discrete poset on two elements and 2 is the two-element chain. Then 2 is an
object of A , while 2 is not.

(2) More generally, since discreteness is definable by quasi-inequalities, any ordinary qua-
sivariety can be considered as a quasivariety of discrete algebras.

(3) Every ordinary quasivariety gives rise to a quasivariety of ordered algebras for the
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same signature and quasi-equations. For example, the quasivariety of cancellative
ordered monoids is a quasivariety which is not monadic in the ordered sense for the
same reason that cancellative monoids are not monadic in the ordinary sense.

(4) The Kleene algebras of (Kozen 1994), which axiomatize the algebra of regular lan-
guages, form a quasivariety of algebras in the order induced by the underlying semi-
ring.

(5) Continuing from Example 1.1(4), recursive functions on data-types are conveniently
defined using quasi-equations. For example, a function member(a,�) which takes as
an argument a list and returns a truth-value may be defined on finite lists as follows.
It would be natural to formulate this in a many-sorted setting, see Remark 5.11, but
for the purposes of this example just assume that we added a constant true to our
signature. Then

member(a, al) = true

member(a, l) = true ) member(a, bl) = true

is an axiomatic description of a function member.

Example 1.3 (Monadic categories).

(1) To continue from Example 1.2(1), the obvious discrete-poset functor U : Set �! Pos

is easily seen to be monadic. Hence Set appears as a “variety” in the world where
arities can be posets. More precisely: consider the signature �, where �2 = 2 and
�n = ; otherwise. Then the set of equations

�0(x, y) = y, �1(x, y) = x

defines Set over Pos equationally, where �0  �1 are the only elements of �2.
See (Kelly and Power 1982) for more details on presenting monads by operations
and equations.

(2) More generally, any ordinary variety gives rise to a monadic category of discretely
ordered algebras. Indeed, given a monadic functor K �! Set composition with the
discrete-poset functor Set �! Pos is monadic, as can easily be checked using Beck’s
theorem.

(3) An example of a monadic category that is not a quasivariety is given in Example 5.12.
(4) Examples of quasivarieties that are not monadic are cancellative monoids or Kleene

algebras.

Remark 1.4 ((Quasi)varieties vs monadic categories).

(1) Despite of the focus on (quasi)varieties, monadic categories still play an important
role both in (Bloom and Wright 1983) and in this paper. Indeed, an important ingre-
dient of the main results is the following relationship: Every quasivariety is the full
reflective subcategory of a monadic category for a surjection-preserving monad and
every monadic category for a surjection-preserving monad is a quasivariety.

(2) From the point of view of monads, one may ask why the restriction to surjection-
preserving monads is of special interest. One of the important good properties of
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universal algebra that one loses beyond the surjection-preserving situation is that
quotients are surjections. Indeed, for general monads on Pos it may happen that
the quotient A �! A0 of an algebra A by additional inequalities is not onto. The
reason is that in the presence of ordered arities, adding new inequations may lead to
the generation of new terms. (Hyland and Power 2006) give further reasons why the
restriction to discrete arities can be of interest.

(3) To summarize, the ordered universal algebra of (Bloom and Wright 1983) studied in
this paper is concerned with a universal algebra where taking a quotient means to
add further inequations without generating new elements.

(4) In the finitary case, a satisfactory reconciliation of varieties and monadic categories
is obtained in Theorem 6.9: The finitary varieties are the monadic categories for
sifted-colimits-preserving monads.

(5) Let us also emphasize that both in the approach of (Bloom and Wright 1983) and in
the approach of (Kelly and Power 1982) operations are monotone. An investigation
into a categorical universal algebra where operations such as negation, implication,
or inverse are antitone is outside the scope of this paper.

The system (monotone surjective maps, monotone maps reflecting orders) is a factori-
sation system in the category Pos of posets and monotone maps. One can therefore ask
whether this system can play the rôle of the (regular epi, mono) factorisation system
on the category of sets that is so vital in giving intrinsic categorical characterisations of
varieties and quasivarieties in classical universal algebra. We prove that this is the case,
if we pass from the world of categories to the world of categories enriched in posets.
Namely:

(1) We give the definition of regularity and exactness of a category enriched in posets.
We show that Pos is an exact category.

(2) We give intrinsic characterisations of both varieties and quasivarieties of ordered
algebras, see Theorems 5.9 and 5.13 below. Our main results then have the same
phrasing as in the classical case, the only di↵erence is that all the notions have their
meaning in category theory enriched in posets.

Related work

The notion of regularity and exactness for 2-categories goes back to Ross Street (Street
1982), but we were also much inspired by its polished version of Mike Shulman (Shulman)
and the recent PhD thesis of John Bourke (Bourke 2010). Bourke studies exactness for
a di↵erent factorisation system, though. After our submission, we learned of (Bourke
and Garner 2013), where general notions of regularity and exactness with respect to
a factorisation system are studied in the realm of enriched category theory. Varieties
and quasivarieties from the current text were named P-varieties and P-quasivarieties by
Stephen Bloom and Jesse Wright in (Bloom and Wright 1983). The authors did not use
the standard terminology and they only worked with kernel pairs (see Remark 3.9) and
not with congruences (Definition 3.8) and hence they missed the notion of exactness.
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However, they give an “almost intrinsic” characterisation of varieties and quasivarieties
that we found extremely useful.

Organisation of the text

The necessary notions of enriched category theory are recalled in Section 2. Regularity
and exactness are defined in Section 3. Section 4 contains the technicalities that we need
in order to prove our main characterisation results in Section 5. We prove in Section 6
that finitary varieties of ordered algebras can be characterised as algebras for a special
class of monads — the strongly finitary ones. In Section 7 we indicate directions for
future work.

Acknowledgement

The authors thank the referees for their valuable comments.

2. Preliminaries

We briefly recall the basic notions of enriched category that we will use later on. For
more details, see Max Kelly’s book (Kelly 1982a).
We will work with categories enriched in the cartesian closed category (Pos,⇥, 1) of

posets and monotone maps. We will omit the prefix Pos- when speaking of Pos-categories,
Pos-functors, etc. Thus, in what follows:

(1) A category X is given by objects X, Y , . . . such that every hom-object X (X,Y ) is
a poset. The partial order on X (X,Y ) is denoted by . We require the composition
to preserve the order in both arguments: (g0 · f 0)  (g · f) holds, whenever g0  g and
f 0  f .

(2) A functor F : A �! B is given by the functorial object-assignment that is locally
monotone, i.e., Ff  Fg holds, whenever f  g.

When we want to speak of non-enriched categories, functors, etc., we will call them
ordinary .

Example 2.1. The category Set is the category of sets and functions with discretely
ordered homsets. The category Pos is the category of posets and monotone maps with
the order on homsets Pos(X,Y ) induced by Y , that is, f  g if f(x)  g(x) for all
x 2 X. As ordinary categories Set and Pos do not have an order on their homsets. This
distinction is relevant: there is the ‘discrete’ functor D : Set �! Pos, but forgetting the
order is only an ordinary functor Pos �! Set. On the other hand, there is a ‘connected
component’ functor Pos �! Set, which is left-adjoint to the discrete functor D.

Remark 2.2. Categories and functors are called P-categories and P-functors in (Bloom
and Wright 1983).

In diagrams, we will denote, for parallel morphisms f , g, the fact f  g by an arrow
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between morphisms and we will speak of a 2-cell :

X
g
//

f
//

" Y

This notation complies with the fact that categories enriched in posets are (rather special)
2-categories.

The category of functors from A to B and natural transformations between them is
denoted by [A ,B]. The opposite category X op of X has just the sense of morphisms
reversed, the order on hom-posets remains unchanged.

The proper concept of a limit and a colimit in enriched category theory is that of
a weighted (co)limit. In our setting, the main reason for this is that pullbacks and co-
equalizers need to be adapted to inequalities. In particular, comma objects will replace
pullbacks in the construction of kernels and coinserters will replace coequalizers in the
construction of quotients.

More in detail, for every diagram D : D �! X , D small, we define its tilde-conjugate

eD : X �! [Dop ,Pos], X 7! X (D�, X)

and its hat-conjugate

bD : X �! [D ,Pos]op , X 7! X (X,D�)

Then a colimit of D weighted by W : Dop �! Pos is an object W ⇤D, together with an
isomorphism

X (W ⇤D,X) ⇠= [Dop ,Pos](W, eDX)

of posets, natural in X. A limit of D weighted by W : D �! Pos is an object {W,D},
together with an isomorphism

X (X, {W,D}) ⇠= [D ,Pos]op( bDX,W )

of posets, natural in X.

Hence, for a category X admitting all colimits of the diagram D : D �! X , the
assignment X 7! X ⇤D is the value of a left adjoint to eD : X �! [Dop ,Pos]. A
special instance is the case of a one-morphism category D : the diagram D : D �! X
can be identified with an object D of X , the functor eD is the representable functor
X (D,�) : X �! Pos and its left adjoint assigns the tensor X •D of the object D and
the poset X.

Analogously, the assignment X 7! {X,D} is a right adjoint to bD : X �! [D ,Pos]op

in case X admits all limits of D : D �! X .

Recall from (Kelly 1982b) that a (co)limit is finite, if it is weighted by a finite weight.
The latter is a functor W : D �! Pos such that D has finitely many objects, every
D(d0, d) is a finite poset, and every Wd is a finite poset.

We will, besides other finite (co)limits, use comma objects and coinserters.

(1) A comma object is a weighted limit. The weight W : D �! Pos for comma objects
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is the functor

b

g

✏✏
a

f
// c

7!

1

1
✏✏

1
0
// 2

In elementary terms, a comma object in X of a diagram

B

g

✏✏

A
f
// C

is a “lax commutative square” of the form

f/g
p1 //

p0

✏✏

B

g

✏✏

A
f
//

%

C

(i.e., the inequality f ·p0  g ·p1 holds) that satisfies the following universal property:

(a) Given any “lax commutative square”

Z
h1 //

h0

✏✏

B

g

✏✏

A
f
//

%

C

there is a unique h : Z �! f/g such that p0 · h = h0 and p1 · h = h1.
(b) For any parallel pair k0, k : Z �! f/g of morphisms such that p0 · k0  p0 · k and

p1 · k0  p1 · k, the inequality k0  k holds.

(2) A coinserter is a weighted colimit. The weight W : Dop �! Pos for coinserters has
D consisting of a parallel pair of morphisms that is sent to the parallel pair

1
1 //

0
// 2

in Pos. In elementary terms, a coinserter in X of a parallel pair

X1

d1 //

d0

// X0

consists of a morphism c : X0 �! C such that c · d0  c · d1 holds and such that it
satisfies the following couniversal property:

(a) For any h : X0 �! D such that h · d0  h · d1 there is a unique h] : C �! D such
that h] · c = h.

(b) For any pair k0, k : C �! D that satisfies k0 · c  k · c, the inequality k0  k holds.
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Thus the (co)universal property of a (co)limit has two aspects: the 1-dimensional aspect
(concerning 1-cells) and the 2-dimensional aspect (concerning the order between 1-cells).
This will be always the case for weighted (co)limits that we encounter and it is caused
by the fact that we enrich over posets. As such, our (co)limits will be rather special 2-
(co)limits. The enrichment in posets will usually simplify substantially the 2-dimensional
aspect of 2-(co)limits. See (Kelly 1989) for more details.

Example 2.3 (Explicit computation of comma objects in Pos). Suppose that a
diagram

B

g

✏✏

A
f
// C

in Pos is given. The “lax commutative square”

f/g
p1 //

p0

✏✏

B

g

✏✏

A
f
//

%

C

is a comma object of the above diagram, where by f/g we denote the poset of all pairs
(a, b) of elements of A and B such that fa  gb holds in C. The pairs (a, b) are ordered
pointwise, using the orders of A and B. The monotone maps p0 : f/g �! A and p1 :
f/g �! B are the projections.

Example 2.4 (Explicit computation of coinserters in Pos). Suppose that

X1

d1 //

d0

// X0

is a pair of morphisms in Pos. The coinserter c : X0 �! C of d0, d1 is obtained by
adding for all f 2 X1 an inequality d0(f)  d1(f) to X0 and can be described formally
as follows:

(1) Define a binary relation R on the set ob(X0) of objects of X0 as follows:

x0 R x i↵ there is a finite sequence f0, . . . , fn�1 of objects in X1 such that the
inequalities

x0  d0(f0), d1(f0)  d0(f1), d1(f1)  d0(f2), . . . , d1(fn�1)  x

hold in X0.

It is easy to see that R is reflexive and transitive. Put E = R \ Rop to obtain an
equivalence relation on the set ob(X0).

(2) The poset C has as ob(C) the quotient set ob(X0)/E, we put [x0]  [x] in C to hold
i↵ x0 R x holds. The monotone mapping c : X0 �! C is the canonical map sending
x to [x].

It is now routine to verify that we have defined a coinserter.
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Remark 2.5. Comma objects f/f are called P-kernels and coinserters are called P-

coequalizers in (Bloom and Wright 1983).

3. Regularity and exactness

Regularity and exactness in ordinary category theory (Barr et al. 1971) is defined relative
to a factorisation system. In this section we will introduce the factorisation system

(surjective on objects, representably fully faithful)

on the class of morphisms of a general category X . When X = Pos, the above sys-
tem coincides with the factorisation system (monotone surjective maps, monotone maps
reflecting orders).
We introduce the factorisation system by starting with its “mono” part. The “strong

epi” part of the factorisation system is then derived by the orthogonal property that is
appropriate for the enrichment in posets. We then show that, in cases of interest, the
“strong epi” part of the factorisation system is given by a suitable generalisation of a
coequaliser. This is the gist of the second part of this section: we introduce congruences
and their quotients and the corresponding notions of regularity and exactness.

3.A. The factorisation system

Definition 3.1. We say that m : X �! Y in X is representably fully faithful (or, that it
is an ↵-morphism), provided that the monotone map X (Z,m) : X (Z,X) �! X (Z, Y )
reflects orders (i.e., if it is fully faithful as a functor in Pos), for every Z.
A morphism e : A �! B is surjective on objects (or, that it is an so-morphism),

provided that the square

X (B,X)
X (e,X)

//

X (B,m)

✏✏

X (A,X)

X (A,m)

✏✏

X (B, Y )
X (e,Y )

// X (A, Y )

(3.1)

is a pullback in Pos, for every ↵-morphism m : X �! Y .
We say that X has (so,↵)-factorisations if every f can be factored as an so-morphism

followed by an ↵-morphism.

Example 3.2. A ↵-morphism is necessarily mono. In Pos, so-morphisms are exactly the
monotone surjections, ↵-morphisms are order-reflecting monotone maps. Clearly, Pos has
(so,↵)-factorisations.
The description extends to “presheaf” categories [S op ,Pos], where S is small, in the

usual “pointwise” way.

Remark 3.3. The ↵-morphisms are called P -monics in (Bloom and Wright 1983), and
chronic in (Street 1982). We choose the acronym ↵ to remind us of (representably) fully
faithful (Street andWalters 1978). The so-morphisms are called surjections in (Bloom and
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Wright 1983) and acute in (Street 1982). Our justification to replace familiar terminology
from posets such as monotone order-reflecting map by categorically terminology such as
↵-morphism is the following. The main idea of our approach here is to specialise methods
that work for categories enriched over categories to categories enriched over posets. Not
surprisingly, by going from categories to posets, notions that are di↵erent for categories
over categories collapse for categories over posets. Nevertheless it seems important to us
to use a terminology that remains valid if going to the richer setting of categories over
categories.

Remark 3.4. We defined the factorisation system in the manner that is common in
enriched category theory. More precisely, we chose the “monos” and defined the “epis”
via orthogonality expressed by a pullback in the base category of posets. That the dia-
gram (3.1) is a pullback on the level of sets states the usual “diagonal fill-in” property.
Hence classes of so-morphisms and ↵-morphisms are mutually orthogonal . This means
that in every commutative square

A
e //

u

✏✏

B

v

✏✏

d

~~

X
m
// Y

with e an so-morphism and m an ↵-morphism, there is a unique diagonal d as indicated,
making both triangles commutative.
That the diagram (3.1) is in fact a pullback on the level of posets describes a finer,

2-dimensional aspect of orthogonality.
Namely, for two pairs u1  u2 : A �! X, v1  v2 : B �! Y such that both squares

A
e //

u1

✏✏

B

v1

✏✏

X
m
// Y

A
e //

u2

✏✏

B

v2

✏✏

X
m
// Y

commute, we have an inequality d1  d2 for the respective diagonals. In fact, the 2-
dimensional aspect can be omitted here, since it follows from the fact that m is ↵.

3.B. Congruences and their quotients

We will define congruences and their quotients.† Since the general poset-enriched concept
of a congruence is rather technical, we start with the following intuition for equivalence
relations on sets:

An equivalence relation E on a set X is a “recipe” how to glue elements of X together.
That is: E imposes new equations on the set X, besides those already valid.

†
The standard terminology of 2-category theory for quotients is codescent , see (Lack 2002) or (Bourke

2010). We prefer to use the term quotient to comply with the intuitions of classical universal algebra.
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Remark 3.5 (Category object, equivalence relation). In a category with finite
limits an equivalence relation (Duskin 1969; Barr et al. 1971) is a diagram

A2

d2
2 //

d2
1
//

d2
0

//
A1

s

⇠⇠
d1
1 //

d1
0

//
A0i00

oo

where

(1) the square

A2
d2
2 //

d2
0

✏✏

A1

d1
0

✏✏

A1
d1
1 // A0

is a pullback

(2) d11 � d21 = d11 � d22, d10 � d21 = d10 � d20,
(3) d11 � i00 = d10 � i00 = id ,
(4) hd10, d11i : A1 �! A0 ⇥A0 is mono,
(5) d11 � s = d10, d

1
0 � s = d11.

Without s and under conditions (1)-(3) one speaks of a category object. (4) expresses
that A1 together with projections d10, d

1
1 is a relation on A0, (1-2) say that the relation is

transitive, (3) says that it is reflexive, and s and (5) are required to express symmetry.
The quotient of A0 by the equivalence relation can be computed as the coequalizer of
d10, d

1
1.

A congruence E on a poset X should impose new inequalities besides those already
valid. Moreover, E should be a poset again. Hence an “element” of a congruence E should
be a formal “broken” arrow x0 � //x that specifies the formal inequality x0 is smaller

than x. The formal arrows should interact nicely with the actual arrows (representing
already valid inequalities in X), i.e., both x00 //x0 � //x and x0 � //x //x00 should have an
unambiguous meaning (and both should compose to a “broken” arrow). Furthermore,
“broken” arrows should compose (imposing inequalities is reflexive and transitive).
The above can be stated more formally: a congruence is a category object, whose

domain-codomain span is a two-sided discrete fibration of a certain kind. Before giving
the precise definition (Definition 3.8 below), let us see an example of a congruence in
Pos:

Example 3.6 (Kernel congruences in posets). Every morphism f : A0 �! B in
Pos gives rise to a kernel congruence ker(f) on A0 as follows:

(1) Form a comma object

A1
d1
1 //

d1
0

✏✏

A0

f

✏✏

A0
f
//

%

B

That is: objects of A1 are pairs (a, b) such that fa  fb holds in B. The pair (a, b)
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should be thought of as a new inequality that we want to impose. We denote such a
formal inequality by a � //b .
The pairs (a, b) in A1 inherit the order from the product A0 ⇥ A0. In other words:
the map hd10, d11i : A1 �! A0 ⇥A0 is an ↵-morphism.
It will be useful to denote the inequality (a, b)  (a0, b0) in A1 by a formal square

a � //

✏✏

b

✏✏

a0 � // b0

Observe that there is an associative and unital way of vertical composition of formal
squares by pasting one on top of another.
It is well-known (see, e.g., (Street 1974)) that the span (d10, A1, d

1
1) is a (two-sided)

discrete fibration. This means that for every pair

a

✏✏

a0 � // b

a � // b

✏✏

b0

of “niches” there are “unique fill-ins” of the form

a � //

✏✏

b

a0 � // b

a � // b

✏✏

a � // b0

and that every formal square

a � //

✏✏

b

✏✏

a0 � // b0

can be written uniquely as a vertical composite

a � // b

✏✏

a � //

✏✏

b0

a0 � // b0

of such fillings.
(2) Besides pasting the formal squares vertically, we show how to paste them horizontally

as in

a � //

✏✏

b

✏✏

b � //

✏✏

c

✏✏
7!

a � //

✏✏

c

✏✏

a0 � // b0 b0 � // c0 a0 � // c0
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To allow for the horizontal composition of the squares, form a pullback

A2
d2
2 //

d2
0

✏✏

A1

d1
0

✏✏

A1
d1
1

// A0

It is straightforward to see that the elements of A2 are triples (a00, a0, a) satisfying
fa00  fa0  fa. The triples are ordered pointwise. Every such triple (a00, a0, a) can
be drawn as a “composable pair” a00 � //a0 � //a . of “broken” arrows. We now define
two monotone maps

d21 : A2 �! A1, d00 : A0 �! A1

with the intention that d21 (the composition map) sends a00 � //a0 � //a to a00 � //a and
d00 : A0 �! A1 (the identity map) sends each a in A0 to the “identity broken arrow”
a � //a .
One can use the universal property of the comma square to define d21 : A2 �! A1 as
the unique map such that the equality

A2

d2
1

  

A1
d1
1 //

d1
0

✏✏

A0

f

✏✏

A0
f
//

%

B

=

A2
d2
2 //

d2
0

✏✏

A1
d1
1 //

d1
0

✏✏

A0

f

✏✏

A1
d1
1 //

d1
0

✏✏

A0
f
//

f

✏✏

%

B

A0
f
//

%

B B

holds. It is clear that d21 sends (a00, a0, a) to (a00, a).
Analogously, one can define i00 : A0 �! A1 as the unique map such that the equality

A0

i00

  

A1
d1
1 //

d1
0

✏✏

A0

f

✏✏

A0
f
//

%

B

=

A0

f

  

B

holds. Explicitly: i00 sends a to the pair (a, a).

To summarise: the above constructions yield a category object

ker(f) ⌘ A2

d2
2 //

d2
1
//

d2
0

//
A1

d1
1 //

d1
0

//
A0i00

oo
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in Pos such that hd10, d11i is an ↵-morphism and the span (d10, A1, d
1
1) is a two-sided discrete

fibration.

Remark 3.7. Clearly, the steps of the above construction of ker(f) can be performed in
any category X admitting finite limits. In fact, the resulting category object will have
the two additional properties as well, since:

(1) A span (d10, A1, d
1
1) in a general category X is defined to be a two-sided discrete fibra-

tion if it is representably so. This means that the span (X (X, d10),X (X,A1),X (X, d11))
of monotone maps is a two-sided discrete fibration in Pos, for every X.

(2) The morphism hd10, d11i : A1 �! A0 ⇥ A0 is easily proved to be an ↵-morphism
in a general category X i↵ the morphism hX (X, d10),X (X, d11)i : X (X,A1) �!
X (X,A0)⇥ X (X,A0) is an ↵-morphism in Pos, for every X.

The above considerations lead us to the following definition:

Definition 3.8 ((Street 1982), (Shulman)). Suppose A0 is an object of X . We say
that a category object

⇠ ⌘ A2

d2
2 //

d2
1
//

d2
0

//
A1

d1
1 //

d1
0

//
A0i00

oo

in X , where the span (d10, A1, d
1
1) is a (two-sided) discrete fibration and hd10, d11i : A1 �!

A0 ⇥A0 is an ↵-morphism, is a congruence on A0.

Remark 3.9. For a congruence ⇠ as above, think of A0 as the object of objects, A1 as
the object of morphisms, i00 : A0 �! A1 picks up the identity morphisms, d10 : A1 �! A0

is the domain map, d11 : A1 �! A0 is the codomain map, A2 is the object of “composable
pairs of morphisms” (since A2 is the vertex of a pullback of d10 and d11), in a composable
pair, d20 : A2 �! A1 picks the “morphism on the left”, d22 : A2 �! A1 picks the
“morphism on the right”, and d21 : A2 �! A1 is the composition.
The same notion, in the category of posets, is used in (Pin 1997) in a non-categorical

setting (Pin speaks of stable quasi-orders and also calls them congruences).
In (Bloom and Wright 1983) a P-congruence is simply a pair (d10, d

1
1) of morphisms

that arises as a P-kernel (Remark 2.5) of some morphism. We need the more complicated
notion of congruence because we want to show that varieties are those quasivarieties
where all congruences arise as kernels.

To treat congruences and their quotients (the coinserters of the (d10, d
1
1), see Re-

mark 3.14) conceptually, let us introduce the following notation:

Notation 3.10 ((Bourke 2010)). Let 1, 2, 3 denote the chains on one, two, three
elements, respectively. We denote by ��

2 the simplicial category truncated at stage two
and with the morphisms between stage three and stage two omitted. More precisely: the
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category ��
2 is given by the graph

��
2 ⌘ 1

�11 //

�10

//
2

�20 //

�21
//

�22

//
◆00
oo 3

subject to equalities

◆00 · �10 = 1, ◆00 · �11 = 1, �20 · �11 = �22 · �10 , �21 · �10 = �20 · �10 , �21 · �11 = �21 · �11 .

We denote by J� : ��
2 �! Pos the inclusion.

Definition 3.11 ((Lack 2002)). A diagram D : ��
2
op �! X is called a coherence

datum in X . The colimit J� ⇤D is called a quotient of D.

Remark 3.12. The colimit J� ⇤D of a coherence datum is called a codescent of D

in (Lack 2002). In our context, we prefer to call the colimit J� ⇤D a quotient of D

rather than a codescent of D.

Since every congruence is a coherence datum, the above definition can be applied to
congruences. Thus

Definition 3.13. The quotient of a congruence is the quotient of the underlying coher-
ence datum.

Remark 3.14. Due to enrichment in posets, the computation of quotients of general
coherence data reduces to the computation of coinserters of D�10 , D�11 . This follows from
the general coherence conditions for a quotients (see (Lack 2002), where quotients are
called codescents), specialised to the case of enrichment over posets.
If a congruence happens to be an equivalence relation, then its quotient can be com-

puted as a coequalizer.
Although the computation of quotients of congruences can be simplified, the definition

of a congruence cannot be simplified. Observe that we need the full strength of the
definition of a congruence in the proof of exactness of Pos, see Proposition 3.20. More
in detail: congruences should be “transitive” and this is exactly what the object A2 and
the morphism d21 : A2 �! A1 are responsible for.

Definition 3.15. We say that a morphism is e↵ective if it is a coinserter of some pair
and that a congruence is e↵ective if it is a kernel congruence.

Remark 3.16. E↵ective congruences are the ordered analogue of e↵ective equivalence
relations (Barr et al. 1971). E↵ective morphisms are called P-regular in (Bloom and
Wright 1983).

Lemma 3.17. Any e↵ective morphism is an so-morphism.

Proof. Easy: use couniversality of a coinserter. The 1-dimensional aspect yields the
required diagonal and the 2-dimensional aspect yields the 2-dimensional aspect of or-
thogonality.



Quasivarieties and varieties of ordered algebras 17

The above result establishes that “every reg-epi is strong epi” for our factorisation
system of so-morphisms and ↵-morphisms. The gist of the definition of regularity is the
converse of this statement. The gist of the definition of exactness is that “congruences
are precisely the kernel congruences”.

Definition 3.18. A category X is called regular , provided that the following four prop-
erties are satisfied:

(R1) X has finite limits.
(R2) X has (so,↵)-factorisations.
(R3) so-morphisms are stable under pullbacks.
(R4) so-morphisms are exactly the e↵ective morphisms.

If, in addition, X verifies the following condition

(Ex) Every congruence in X is e↵ective, i.e., it is of the form ker(f).

then X is called exact .

Remark 3.19. Let us stress our convention: when we say a category, we mean a category
enriched in posets. Categories that are not enriched, are called ordinary.
In Example 3.21 below we show that the enriched category Set is regular but not

exact in the enriched sense, although the ordinary category Set is exact in the ordinary
sense (see (Barr et al. 1971)). The intuitive reason for this is that sets are closed un-
der quotienting by equations, but discrete posets are not closed under quotienting by
inequations.

Proposition 3.20 (Exactness of Pos and presheaf categories). Every category
[S op ,Pos], S small, is exact.

Proof. We prove exactness of Pos, exactness of [S op ,Pos] follows by reasoning point-
wise.
The only non-trivial condition to verify is (Ex). Suppose therefore that

⇠ ⌘ A2

d2
2 //

d2
1
//

d2
0

//
A1

d1
1 //

d1
0

//
A0i00

oo

is a congruence on A0. Form its quotient q : A0 �! Q as in Example 2.4 and consider
the kernel

ker(q) ⌘ P2

p2
2 //

p2
1
//

p2
0

//
q/q

p1
1 //

p1
0

//
A0p0

0
oo

We claim that ker(q) = ⇠.
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Denote by z : A1 �! q/q the unique morphism such that the equality

A1

z

!!

q/q
p1
1 //

p1
0

✏✏

A0

q

✏✏

%

A0 q
// Q

=

A1
d1
1 //

d1
0

✏✏

A0

q

✏✏

%

A0 q
// Q

holds, where the lax square on the left is a comma object (see Example 2.3).
In particular, the diagram

A1
z //

hd1
0,d

1
1i ##

q/q

hp1
0,p

1
1i

✏✏

A0 ⇥A0

commutes. It follows that z reflects order, since hd10, d11i does (⇠ is a congruence). We
need to prove that z is surjective. To that end, consider an object of q/q, i.e., a pair (a0, a)
such that qa0  qa. Use now the description of inequality in a quotient of Example 2.4
to find a finite sequence f0, . . . , fn�1 of objects in A1 such that the inequalities

a0  d10(f0), d11(f0)  d10(f1), d11(f1)  d10(f2), . . . , d11(fn�1)  a

hold in A0.
Using the fact that the span (d10, A0, d

1
1) is a two-sided discrete fibration, one can find

a sequence f⇤
0 , . . . , f

⇤
n�1 of elements of A1 such that the equalities

a0 = d10(f
⇤
0 ), d11(f

⇤
0 ) = d10(f

⇤
1 ), d11(f

⇤
1 ) = d10(f

⇤
2 ), . . . , d11(f

⇤
n�1) = a

hold in A0. Since ⇠ is a category object, the sequence f⇤
0 , . . . , f

⇤
n�1 composes (using d21)

to an element f⇤ of A1 such that a0 = d10(f
⇤) and d11(f

⇤) = a. Hence z(f⇤) = (a0, a), and
we proved that z : A1 �! q/q is surjective.
Thus q/q = A1, hence A2 = P2 by uniqueness of pullbacks. It remains to be proved

that d21 = p21. But this follows easily.
We proved that ker(q) = ⇠, the proof of exactness of Pos is finished.

Example 3.21 (The category Set (having discrete orders on hom-sets) is reg-

ular but not exact). Regularity of Set is easy: observe that the e↵ective morphisms
are precisely the epis (and these are precisely the surjective mappings).
We exhibit a congruence that is not e↵ective. Consider the truncated nerve

nerve(2) ⌘ A2

d2
2 //

d2
1
//

d2
0

//
A1

d1
1 //

d1
0

//
A0i00

oo

of the two-element chain 2.
More in detail: A0 is the two-element set {0, 1}, the set A1 has as elements the pairs
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(i, j) with i  j in 2, the set A2 has as elements the triples (i, j, k) with i  j  k in 2.
All the connecting morphisms are defined in the obvious way.
It is easy to see that nerve(2) is a congruence. Yet there is no mapping f : A0 �! X

such that ker(f) would be nerve(2). Suppose the contrary. Since comma objects in Set

reduce to pullbacks (the orders on hom-sets of Set are discrete), ker(f) is the following
diagram

ker(f) ⌘ P2

d2
2 //

d2
1
//

d2
0

//
P1

d1
1 //

d1
0

//
A0i00

oo

and the set P1 has either two elements (0, 0) and (1, 1) in case f0 6= f1, or four elements
(0, 0), (0, 1), (1, 0) and (1, 1) in case f0 = f1. But A1 in nerve(2) has three elements:
(0, 0), (0, 1) and (1, 1).

If we equip the Ai in the proof above with the operations of a (semi)lattice, the same
argument shows that the categories of discretely ordered semilattices, or lattices, or
distributive lattices are not exact. But note that if (semi)lattices are equipped with their
natural order, then these categories are definable by inequalities and, as any variety, they
are exact (Theorem 5.9).
As we are going to show now, the situation is the converse for Boolean algebras:

Whereas lattices form a variety with their natural order but with the discrete order,
Boolean algebras form a variety with the discrete order but not with their natural order
(for lattices discreteness is not definable by inequalities, whereas Boolean algebras are
necessarily discrete).

Example 3.22 (The category of Boolean algebras (having discrete orders on

hom-sets) is exact). We first show that hom-sets must be discretely ordered. To this
end, assume that in some Boolean algebra we have elements a v b in some order v
about which we only assume that it makes all operations monotone. It follows from
a ! a = b ! b = 1 and implication being monotone that a ! b = 1 and b ! a = 1,
hence a = b. In other words, the discrete order is the only order that makes all operations
of a Boolean algebra monotone.
To show that Boolean algebras are exact, let

A2

d2
2 //

d2
1
//

d2
0

//
A1

d1
1 //

d1
0

//
A0i00

oo

be a congruence (in the ordered sense) of Boolean algebras. Due to A1 being an algebra,
if (a, b) 2 A1 then imitating the reasoning of the previous paragraph, we also obtain
(b, a) 2 A1. It follows that A1 is equipped with an operation s : A1 �! A1 making it into
an equivalence relation (see Remark 3.5). But since Boolean algebras form an ordinary
variety, we know that equivalence relations are e↵ective.

Remark 3.23.

(1) The above proof works verbatim for Heyting algebras instead of Boolean algebras.
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Actually, for Boolean algebras the argument in the second paragraph can be made
more succinct by noting that the morphism s is given by negation.

(2) More generally, it will follow from Theorem 5.9 that any variety of ordinary algebras
which can be equipped only with the discrete order is exact. A further example of
this situation is given by the variety of groups.

(3) The reason that Boolean algebras, Heyting algebras, and groups can only be dis-
cretely ordered is that the enriched categorical setting studied in this paper enforces
operations to be monotone and does not allow us to have negation, implication, or
inverse as non-monotone but antitone.

4. Some technical results

In this section we gather some auxiliary results that we will use in Section 5:

(1) We prove that the category Cong(X ) of all congruences on an exact category X has
all limits that X has.

(2) We summarise properties of an adjunction F a U : A �! X in case the counit
"A : FUA �! A is an e↵ective morphism (i.e., when it is a coinserter of some pair).

(3) We prove that the category X T of Eilenberg-Moore algebras for a monad T is regular,
whenever X is regular and the functor of the monad T preserves so-morphisms.

4.A. Limits of congruences

We denote by Cong(X ) the full subcategory of [��
2
op

,X ] spanned by congruences in
X . To be more specific: given coherence data

X ⌘ X2

d2
2 //

d2
1
//

d2
0

//
X1

d1
1 //

d1
0

//
X0i00

oo and Y ⌘ Y2

d2
2 //

d2
1
//

d2
0

//
Y1

d1
1 //

d1
0

//
Y0i00

oo

then a morphism f : X �! Y is a triple f0 : X0 �! Y0, f1 : X1 �! Y1, f2 : X2 �! Y2

of morphisms in X making all the relevant squares commutative. Given morphisms
f, g : X �! Y, we put f  g i↵ fi  gi for all i = 0, 1, 2.

Lemma 4.1. Suppose X is exact. Then the category Cong(X ) is reflective in [��
2
op

,X ].
In particular, Cong(X ) is closed in [��

2
op

,X ] under limits.

Proof. Suppose

X ⌘ X2

d2
2 //

d2
1
//

d2
0

//
X1

d1
1 //

d1
0

//
X0i00

oo

is a coherence datum. Define the congruence

X⇤ ⌘ X⇤
2

d2
2 //

d2
1
//

d2
0

//
X⇤

1

d1
1 //

d1
0

//
X⇤

0i00
oo
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as ker(q), where q : X0 �! Q is the quotient of X.
We claim that there is a morphism e : X �! X⇤ that is universal.

(1) Definition of e.
The morphism e has to be a natural transformation. Thus we define morphisms
e0 : X0 �! X⇤

0 , e1 : X1 �! X⇤
1 , e2 : X2 �! X⇤

2 , and prove that all the naturality
squares commute.
We put e0 = 1X0 , morphisms e1, e2 are defined using universal properties:

X⇤
0 q

((
X1

e1 // X⇤
1

d1
1 66

d1
0
((

Q

X⇤
0

q

66" =

X0 q

((
X1

d1
1 66

d1
0
((

Q

X0
q

66"

and

X⇤
0 d1

0

((
X2

e2 // X⇤
2

d2
2 66

d2
0
((

X⇤
0

X⇤
1

d1
1

66 =

X1
e1 // X⇤

1 d1
0

((
X2

d2
2 66

d2
0
((

X⇤
0

X1 e1
// X⇤

1
d1
1

66

where we use the universal property of a comma square and a pullback, respectively.
That e : X �! X⇤ is natural follows by straightforward computations.

(2) Universality of e.
Given f : X �! Y where Y is a congruence, we define a unique f ] : X⇤ �! Y extending
f along e.
Since X is exact, there is z : Y0 �! K such that Y = ker(z). Further, the existence
of f yields z] : Q �! K such that the square

X0
q
//

f0

✏✏

Q

z]

✏✏

Y0 z
// K

commutes.
We put f ]

0 = f0, and f ]
1, f

]
2 are defined by universal properties:

Y ⇤
0 z

((
X⇤

1

f]
1 // Y ⇤

1

d1
1 66

d1
0
((

K

Y ⇤
0

z

66" =

X⇤
0 q

((
X⇤

1

d1
1 66

d1
0
((

Q
z]
// K

X⇤
0

q

66"

and

Y ⇤
1 d1

0

((
X⇤

2

f]
2 // Y ⇤

2

d2
2 66

d2
0
((

Y ⇤
0

Y ⇤
1

d1
1

66 =

X⇤
1 d1

0

((
X⇤

2

d2
2 66

d2
0
((

X⇤
0

f]
1 // Y ⇤

1

X⇤
1

d1
1

66
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where we have used the universal property of a comma square and a pullback, respec-
tively.
The 2-dimensional aspect of universality of e is verified analogously, using the 2-
dimensional aspects of universality of comma objects and pullbacks.

Remark 4.2. Lemma 4.1 is the generalisation of the case of classical universal algebra:
congruences form a complete lattice; meet of congruences is the intersection of the un-
derlying relations; join of congruences is the congruence generated by the union of the
underlying relations.
Indeed: Cong(X ) is as (co)complete as X . Reflectivity states that limits in Cong(X )

are formed on the level of [��
2
op

,X ]; whereas colimits in Cong(X ) are the reflections
of colimits in [��

2
op

,X ].

4.B. Properties of F a U with an e↵ective counit

In Proposition 4.7 below we show that, when the counit of F a U : A �! X is e↵ective,
then the underlying functor U has nice properties. The properties resemble the properties
of adjunctions of descent type in ordinary category theory. In proving these results we
were much inspired by arguments given by John Duskin in (Duskin 1969) for the case of
monadicity over set-like ordinary categories.
We first prove an easy result on the interaction of U with ↵-morphisms, which does

not depend on U having a left-adjoint.

Lemma 4.3. Suppose that A has finite limits and U : A �! X preserves them. Then
U preserves ↵-morphisms. If, moreover, U is conservative (i.e., if U reflects isomorphisms),
then U reflects ↵-morphisms.

Proof. It is easy to see that m : X �! Y is an ↵-morphism in A i↵ the canonical
map c(m) : 1X/1X �! m/m between the comma objects is an isomorphism. Hence U

preserves ↵-morphisms if U preserves comma objects.
If, moreover, U reflects isomorphisms, then U reflects ↵-morphisms, by the same ar-

gument.

For the proof of Proposition 4.7 we will need the following “dual” of ↵-morphisms.

Definition 4.4. We say that e : A �! B is a co-↵-morphism if it is ↵ in X op , or,
equivalently, if X (e, Z) : X (B,Z) �! X (A,Z) is order-reflecting, for every Z.

Remark 4.5. A co-↵-morphism is necessarily epi. Co-↵-morphisms are called P -epis
in (Bloom and Wright 1983), or absolutely dense in (El Bashir and Velebil 2002).

We recall that when we say limit we mean limit in the sense of enriched categories.

Lemma 4.6. Suppose X has finite limits. Then every so-morphism is a co-↵-morphism.

Proof. Let e : A �! B be an so-morphism. Consider u · e  v · e and form the inserter
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i of u and v. Consider the unique mediating map k : A �! E such that i · k = e. Then
the square

A
e //

k
✏✏

B

1B
✏✏

E
i
// B

commutes. Since i is ↵ by its universal property, we can infer that i is a split epi, hence
an isomorphism. Thus u  v and we proved that e is a co-↵-morphism.

Proposition 4.7. Suppose F a U : A �! X is an adjunction, such that every compo-
nent "A of the counit is e↵ective. Then the following hold:

(1) U is locally order-reflecting. That is, the monotone action UA0,A : A (A0, A) �!
X (UA0, UA) of the functor U is order-reflecting, for every A0, A.

(2) U preserves and reflects congruences.
(3) U preserves and reflects limits.
(4) The comparison functor K : A �! X T is fully faithful.
(5) If, moreover, A is regular, then U reflects e↵ective morphisms.

Proof.

(1) Every e↵ective morphism is a co-↵-morphism (use couniversal property of coinserters
for that).
Hence every "A is a co-↵-morphism. Since the diagram

A (A0, A)
UA0,A

//
Pos(UA0, UA) ⇠=

// A (FUA0, A)
✏✏

A ("A0 ,A)

commutes, the proof is finished.
(2) Since U is a right adjoint, it preserves congruences. Indeed: suppose

A2

d2
2 //

d2
1
//

d2
0

//
A1

d1
1 //

d1
0

//
A0d0

0
oo

is a congruence in A .
Since U preserves (finite) limits, it preserves category objects. Thus

UA2

Ud2
2 //

Ud2
1
//

Ud2
0

//
UA1

Ud1
1 //

Ud1
0

//
UA0Ud0

0
oo

is a category object in X .
By the same argument Uhd10, d11i ⇠= hUd10, Ud11i. Since U preserves ↵-morphisms (being
a right adjoint, see Lemma 4.3), we proved that hUd10, Ud11i is an ↵-morphism.
Since being a two-sided discrete fibration is a representable notion, see Remark 3.7,
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the isomorphisms

X (X, hUd10, Ud11i) ⇠= X (X,Uhd10, d11i) ⇠= X (FX, hd10, d11i)

prove that the span (X (X,Ud10)X (X,UA1),X (X,Ud11)) is a two-sided discrete fi-
bration, for any X. Hence the span (Ud10, UA1, Ud11) is a two-sided discrete fibration.
For the reflection of congruences, consider a coherence datum D : ��

2
op �! A

such that the composite UD : ��
2
op �! X is a congruence. To prove that D

is a congruence, we need to prove that the composite A (A,D) : ��
2
op �! Pos

is a congruence, for every A. Observe that every A (FX,D) is a congruence, since
A (FX,D) ⇠= X (X,UD) holds.
Thus it su�ces to present A (A,D) as a limit of congruences in Pos and then use
Lemma 4.1.
Since "A is assumed to be e↵ective, there is a a coinserter of the form

FUA "A
))A1

d1
1 55

d1
0

))

A

FUA
"A

55"

We claim that the pasting

FUA "A
))FUA1

"A1 // A1

d1
1 55

d1
0

))

A

FUA
"A

55"

is a coinserter diagram. That is easy: "A1 is a co-↵-morphism, hence coinserter “co-
cones” for d10, d

1
1 coincide with coinserter “cocones” for d10 · "A1 , d

1
1 · "A1 .

Therefore we have an inserter diagram

A (FUA,D)
A (d1

1"A1 ,D)

))

A (A,D)

A ("A,D)
66

A ("A,D) ((

A (FUA1,D)

A (FUA,D)
A (d1

0"A1 ,D)

55
"

in [��
2
op

,Pos]. But both A (FUA1,D) and A (FUA,D) are congruences. By Lemma 4.1,
A (A,D) is a congruence.

(3) U preserves limits since it is a right adjoint.
For reflecting limits, consider a diagram D : D �! A and a weight W : D �! Pos.
Suppose � : W �! A (A,D�) is a cylinder such that the composite

� ⌘ W
�
// A (A,D�)

UA,D�
// X (UA,UD�)

is a limit cylinder in X . This means that the monotone map

'X : X (X,UA) �! [D ,Pos](W,X (X,UD�)), f 7! X (f,�) · �

is an isomorphism, natural in X.
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We need to prove that the monotone map

'A0 : A (A0, A) �! [D ,Pos](W,A (A0, D�)), f 7! A (f,�) · �

is an isomorphism, naturally in A0.
We will use a similar trick to (2) above. For observe that 'FX is an isomorphism for
every X: this follows from the commutative square

A (FX,A)
'FX //

⇠=
✏✏

[D ,Pos](W,A (FX,D�))

⇠=
✏✏

X (X,UA)
'X

// [D ,Pos](W,X (X,UD�))

where the vertical maps are given by the adjunction bijections.
Expressing "A0 as a coinserter

FUA0
"A0

))
FUA0

1

d1
1 44

d1
0

**

A0

FUA0 "A0

55"

in the same way as in (2) above, we see that both

A (FUA0, A)
A (d1

1,A)

))

A (A0, A)

A ("A0 ,A)
66

A ("A0 ,A) ((

A (FUA0
1, A)

A (FUA0, A)
A (d1

0,A)

55
"

and

[D ,Pos](W,A (FUA0, D�)

[D,Pos](W,A (d1
1,D�))

++

[D ,Pos](W,A (A0, D�)

[D,Pos](W,A ("A0 ,D�))

44

[D,Pos](W,A ("A0 ,D�))

**

[D ,Pos](W,A (FUA0
1, D�)

[D ,Pos](W,A (FUA0, D�)

[D,Pos](W,A (d1
0,D�))

33
"

are inserters of isomorphic diagrams. Thus 'A is an isomorphism by the essential
uniqueness of inserters.

(4) Since U = UT ·K, the functor K is order-reflecting. In particular, K is faithful.
We prove that the functor K is full. To that end, consider f : KA �! KB. Thus
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suppose the square

UFUA
UFf

//

U"A
✏✏

UFUB

U"B
✏✏

UA
f

// UB

commutes.
Since "A : FUA �! A is e↵ective, there is a coinserter

FUA "A
))"A1

d1
1 44

d1
0

**

A

FUA "A

55

To prove that

FUA "B ·Ff

))"A1

d1
1 44

d1
0

**

B

FUA "B ·Ff

55

consider first the pasting

UFUA

U"A

$$

UFf
//

"

UFUB

U"B

""

UA1

Ud1
1

<<

Ud1
0 ""

UA
f
// UB

UFUA

U"A

::

UFf
// UFUB

U"B

<<

and then use that U is locally order-reflecting.
By the universal property of coinserters there is a unique h : A �! B such that the
square

FUA
Ff
//

"A

✏✏

FUB

"B

✏✏

A
h

// B

commutes. Therefore Uh ·U"A = f ·U"A holds (both are equal to U"B ·UFf). Since
U"A is epi, Uh = f follows. Hence K is full.

(5) To prove the last assertion, suppose e : A �! B is such that Ue is e↵ective in X .
Then FUe is e↵ective. Thus in the naturality square

FUA
FUe //

"A

✏✏

FUB

"B

✏✏

A
e

// B
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the passage first-right-then-down is an so-morphism (use that every e↵ective mor-
phism is an so-morphism in A ). Therefore e is an so-morphism, hence e↵ective.

The proof is finished.

4.C. Regularity of X T

If an ordinary monad T on an ordinary category X preserves regular epis, then the
category X T of algebras for the monad T is regular, see (Barr et al. 1971). This result
extends to the ordered setting. The proof, following the same lines as (Barr et al. 1971),
is presented below.

Example 4.8 ((Bloom and Wright 1983), Section 8, Example 5). Consider the
adjunction � • 2 a [2,�] : Pos �! Pos. The resulting monad T = (T, ⌘, µ) on Pos does
not preserve the so-morphism e : 2 �! 2.

We will need the following technical notion.

Definition 4.9 ((Kurz and Velebil 2013)). Suppose U : A �! X is any functor.
We say that f : A �! B is U -final if the following commutative diagram

A (B,B0)
A (f,B0)

//

UB,B0

✏✏

A (A,B0)

UA,B0

✏✏

X (UB,UB0)
X (Uf,UB0)

// X (UA,UB0)

is a pullback, for every B0.

Remark 4.10. Thus, as expected, U -finality has two aspects:

(1) For every g : UB �! UB0, if g · Uf is of the form Uh, then there is a unique
g0 : B �! B0 such that Ug0 = g.

(2) If g1  g2 : UB �! UB0 and if g1 · Uf  g2 · Uf has the form Uh1  Uh2, then
g01  g02.

Lemma 4.11. Suppose X has finite limits and T is monad on X that preserves so-
morphisms. If UTe : A �! B is an so-morphism in X , then e : (A, a) �! (B, b) is
UT-final.

Proof. Consider f : B �! UT(C, c), such that the diagram

TA
Te //

a

✏✏

TB
Tf
//

b
✏✏

TC

c

✏✏

A
e
// B

f
// C

commutes. The morphism Te : TA �! TB is so, hence epi by Lemma 4.6. Thus f :
(B, b) �! (C, c) is a T-algebra morphism.
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The 2-dimensional aspect of finality follows analogously, using the fact that Te is a
co-↵-morphism by Lemma 4.6.

Proposition 4.12. Suppose X has finite limits and let T be a monad that preserves so-
morphisms. Then UT : X T �! X reflects so-morphisms. If X has (so,↵)-factorisations,
UT preserves so-morphisms.

Proof. Suppose e : (A, a) �! (B, b) is a T-algebra morphism such that UTe = e :
A �! B is an so-morphism. Consider a commutative square

(A, a)
e //

u

✏✏

(B, b)

v

✏✏

(X,x)
m
// (Y, y)

withm an ↵-morphism in X T. Since UT preserves and reflects ↵-morphisms by Lemma 4.3,
the square

A
e //

u

✏✏

B

v

✏✏

X
m
// Y

has a unique diagonal fill-in d : B �! X that is a T-algebra morphism by UT-finality.
This proves that UT reflects so-morphisms.
The preservation: consider an so-morphism e : (A, a) �! (B, b). Form the (so,↵)-

factorisation m · e0 of UTe. Then the diagram

TA
Te0
//

a

✏✏

TA0
Tm
//

a0

✏✏

TB

b

✏✏

✏✏

Te

A
e0 // A0 m // BOO

e

commutes and there is a diagonal fill-in a0 : TA0 �! A0 as indicated, since Te0 is an
so-morphism. The pair (A0, a0) is a T-algebra, since m is a monomorphism. Thus we have
e = m ·e0 in X T. But e is so and m is ↵ (by Lemma 4.3). Therefore m is an isomorphism
and we have proved that e = e0. Thus UT reflects so-morphisms.

Corollary 4.13. Suppose that X has finite limits and (so,↵)-factorisations. Suppose
further that T is any monad on X . Then the following are equivalent:

(1) T preserves so-morphisms.
(2) UT preserves so-morphisms.

Proof. By Proposition 4.12 it su�ces to prove that (2) implies (1). Suppose that e :
A �! B is an so-morphism. We prove that Te : (TA, µA) �! (TB, µB) is an so-
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morphism in X T. To that end, consider the square

(TA, µA)
Te //

u

✏✏

(TB, µB)

v

✏✏

(X,x)
m

// (Y, y)

with m an ↵-morphism in X T.
Then the square

A
e //

⌘A

✏✏

B

⌘B

✏✏

d

⇧⇧

TA

u

✏✏

TB

v

✏✏

X
m
// Y

commutes in X and the transpose d] : (TB, µB) �! (X,x) under FT a UT of the
unique diagonal d proves the 1-dimensional aspect of Te being an so-morphism. The
2-dimensional aspect is proved analogously.
Since Te : (TA, µB) �! (TB, µB) is an so-morphism in X T, so is UTTe = Te :

TA �! TB.

Corollary 4.14. Suppose X is regular and T is a monad preserving so-morphisms.
Then X T is regular.

Proof. X T has finite limits since X has them and UT creates limits. Proposition 4.12
and Lemma 4.3 prove that (so,↵)-factorisations exist in X T. Moreover, so-morphisms
in X T are pullback stable, since UT preserves pullbacks, and preserves and reflects so-
morphisms.
It remains to be proved that so-morphisms of X T are exactly the quotients of con-

gruences in X T. By Lemma 3.17 it su�ces to prove that every so-morphism in X T is
e↵ective.
Consider an so-morphism e : (A, a) �! (B, b) and form its kernel congruence ker(e).

By Proposition 4.7 UT ker(e) is a congruence and it is easy to see that UT ker(e) =
ker(UTe). Hence UTe is a quotient of UT ker(e), since X is regular. Now use UT-finality
of e : (A, a) �! (B, b) to conclude that e is a quotient of ker(e).

5. Quasivarieties and varieties

In this section we prove our main results (Theorems 5.9 and 5.13 below) that characterise
varieties and quasivarieties of ordered algebras for signatures in the sense of Stephen
Bloom and Jesse Wright (Bloom and Wright 1983).
We start with precise definitions of signatures and their algebras.

Definition 5.1. Let � be a regular cardinal. Denote by |Set�| the discrete category
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having sets of cardinality less than � as objects. A �-ary signature ⌃ is a functor ⌃ :
|Set�| �! Pos.

Thus, a signature is a collection (⌃n)n of posets, indexed by sets of cardinalities smaller
than �. The elements of the poset ⌃n are called n-ary operations .

Definition 5.2. Given a �-ary signature ⌃, we denote by H⌃ : Pos �! Pos the corre-
sponding polynomial functor , defined by

H⌃X =
a

n

Xn • ⌃n

where the coproduct ranges over sets of cardinality less than �. A category Alg(H⌃) of
⌃-algebras and their homomorphisms is the category of algebras for the functor H⌃ and
algebra homomorphisms.

In more detail, a ⌃-algebra is a morphism a : H⌃X �! X in Pos. Due to the definition
of H⌃, to give a amounts to giving a collection an : Xn • ⌃n �! X of monotone maps,
indexed by sets n of cardinality less than �. Each an yields, due to the definition of
a coproduct, a monotone mapping [[�]]Xn : ⌃n �! Pos(Xn, X). Thus it is convenient
to think of a ⌃-algebra as of a pair (X, [[�]]Xn ) consisting of a poset X and monotone
maps [[�]]Xn : Xn �! X for every � in ⌃n. If �  ⌧ in ⌃n, then there is an inequality
[[�]]n  [[⌧ ]]n in the poset Pos(Xn, X). When there is confusion likely, we will omit the
indices n and X in [[�]]Xn .
A homomorphism of algebras is a monotone map h making the square

H⌃X
H⌃h

//

a

✏✏

H⌃Y

b

✏✏

X
h

// Y

commutative. By reasoning similar to the above, a monotone map h : X �! Y is a
homomorphism i↵ the equality

h([[�]]Xn (xi)) = [[�]]Yn (hxi)

holds for all n and all n-tuples (xi) of elements of X.

Definition 5.3. Suppose that ⌃ is a �-ary signature. We say that

(1) A is a �-ary quasivariety if A is equivalent to a full subcategory of Alg(H⌃), defined
by implications of the form

^

i2I

(s0i(xij) v si(xij)) ) t0(xk) v t(xk)

where the cardinality of I is smaller than �.
(2) A is a �-ary variety if A is equivalent to a full subcategory of Alg(H⌃), defined by

inequalities of the form

t0(xk) v t(xk)
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Remark 5.4. Since we are dealing with �-ary signatures, one expects that �-filtered

colimits will play a prominent rôle. This is indeed the case: we only stress that all the
notions concerning �-filtered colimits are those that are appropriate for category theory
enriched in posets.
We briefly recall the basic notions of the theory of �-filtered colimits (and specialise

them for the enrichment in posets). For details, see Max Kelly’s paper (Kelly 1982b).
Notice that the phrasing and results are the same as in the case of ordinary categories,
see (Gabriel and Ulmer 1971) or (J. Adámek and J. Rosický 1994).

(1) By a �-filtered colimit in X we mean a conical colimit of an ordinary functor D :
D �! Xo, where D is a �-filtered ordinary category and Xo denotes the underlying
ordinary category of X .
Here, by a conical colimit of D : D �! Xo we understand a colimit weighted by the
functor that is constantly the one-element poset.

(2) A functor F : A �! B is called �-accessible if A has �-filtered colimits and F

preserves them.
(3) An object X is called �-presentable if the hom-functor X (X,�) : X �! Pos is

�-accessible.
(4) A category X is called locally �-presentable if X is cocomplete and there is a small

full dense subcategory E : X� �! X representing all �-presentable objects of X .

As examples of locally �-presentable categories serve: the category Pos, every category of
the form [A ,Pos] where A is small, every category of the form X T where X is locally
�-presentable and T is a �-accessible monad (i.e., one, whose underlying functor T is
�-accessible). See (Kelly 1982b) and (Bird 1984).

Every (quasi)variety A is equipped by a functor U : A �! Pos that arises as the
composite of the fully faithful functor K : A �! Pos

H⌃ and the �-accessible monadic
functor U⌃ : PosH⌃ �! Pos.

Lemma 5.5. Let A be a �-ary quasivariety. Then A has �-filtered colimits and the full
inclusion K : A �! Pos

H⌃ preserves them.

Proof. It su�ces to prove that if (C, [[�]]) is a conical �-filtered colimit of ⌃-algebras
(Dd, [[�]]d) satisfying an implication

^

i2I

(s0i(xij) v si(xij)) ) t0(xk) v t(xk)

then (C, [[�]]) satisfies this implication. Suppose therefore that [[(s0i(xij)]]  [[si(xij)]] holds
in (C, [[�]]), for all i. Since the diagram of (Dd, [[�]]d)’s is �-filtered and since ⌃ is a �-ary
signature, there is d0 such that [[(s0i(xij)]]d0  [[si(xij)]]d0 holds in (Dd0, [[�]]d0). There-
fore t0(xk) v t(xk) holds in (Dd0, [[�]]d0). Using monotonicity of the colimit injections,
t0(xk) v t(xk) holds in (C, [[�]]).

Thus, we can work with �-ary (quasi)varieties as categories equipped with a �-accessible
functor into Pos. Using this observation, we can reformulate the main result of (Bloom
and Wright 1983) as follows:
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Theorem 5.6 (The main theorem of (Bloom and Wright 1983)). Suppose U :
A �! Pos is a �-accessible functor. Then U exhibits A as a �-ary quasivariety i↵ the
following conditions

(Q1) A has coinserters.
(Q2) The action of U on hom-posets is order reflecting.
(Q3) U has a left adjoint F .
(Q4) U preserves and reflects e↵ective morphisms.
(Q5) U reflects isomorphisms.

are satisfied.
The functor U exhibits A as a variety for a bounded signature i↵, in addition, the

condition

(V) U reflects e↵ective congruences.

holds.

Definition 5.7. An object P of a cocomplete category A is called a �-algebraic gener-

ator , if it satisfies the following three properties:

(1) Tensors X • P exist for every poset X.
(2) P is a �-presentable object in A .
(3) P is projective w.r.t. so-morphisms.
(4) P is an so-generator, i.e., the canonical "A : A (P,A) • P �! A is an so-morphism.

Example 5.8. In any �-ary quasivariety the free algebra on one generator is a �-
algebraic generator. For example, the one-element set 1 is a free algebra on one generator
in the finitary quasivariety Set. Thus 1 is a finitary algebraic generator in Set. For a poset
X, the tensor X • 1 is the discrete poset of the connected components of X.

Our first intrinsic characterisation concerns varieties of ordered algebras. Compare the
phrasing with Corollary 5.13 of (Duskin 1969) and Proposition 3.2 of (Vitale 1994).

Theorem 5.9 (Intrinsic characterisation of �-ary varieties). For A , the following
are equivalent:

(1) There is a �-accessible functor U : A �! Pos, exhibiting (A , U) as a �-ary variety.
(2) A is exact and there is an equivalence A ' Pos

T, for a �-accessible monad T on Pos.
(3) A is exact, has coinserters, and possesses a �-algebraic generator.

Proof. (1) implies (2). By (Bloom and Wright 1983, Section 6, Lemma 4), U : A �!
Pos is a �-accessible monadic functor. Hence A ' Pos

T for the �-accessible monad T given
by U . Since U preserves so-morphisms, the category A is regular by Corollary 4.14. Since
U reflects e↵ective congruences, A is exact.

(2) implies (3). Assume A = Pos

T. Then A is a locally �-presentable category by (Bird
1984, Theorem 6.9). Thus A has coinserters.
To conclude the proof, put P to be the free algebra F1 on the one-element poset. We

prove that P is a �-algebraic generator.

(a) The tensor X • P is isomorphic to FX.
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(b)The functor UT ⇠= A (P,�) is �-accessible, hence P is �-presentable.
(c) Since UT ⇠= A (P,�) holds, A (P,�) preserves so-morphisms by Corollary 4.13. This

means precisely that P is so-projective.
(d)We only need to show that the counit "A of F a U is an so-morphism. But this

is trivial: U"A is a split epimorphism, hence an so-morphism in Pos. The monadic
functor UT : PosT �! Pos reflects so-morphisms, since T preserves so-morphisms by
Proposition 4.12.

(3) implies (1). Let P denote the �-algebraic generator. Define U = A (P,�). Then U

is �-accessible, since P is �-presentable. We verify conditions (Q1)–(Q5) and (V) for the
pair (A , U).

(Q1)A has coinserters.
Trivial.

(Q3)U has a left adjoint.
Easy: F ⇠= � • P .

(Q2)U is locally order-reflecting.
Since P is an so-generator, the counit "A of F a U is an so-morphism. Since A has
finite limits (being exact), every so-morphism is a co-↵-morphism, see Lemma 4.6.
Thus every A ("A0 , A) ⇠= UA0,A is order-reflecting.

(Q4)U preserves and reflects e↵ective morphisms.
Every e↵ective morphism in A is an so-morphism. But U preserves so-morphisms,
since P is so-projective. And every so-morphism in Pos is e↵ective.
U reflects e↵ective morphisms by Proposition 4.7.

(Q5)U reflects isomorphisms.
Suppose f : A �! B is such that Uf is an isomorphism. Since "A : FUA �! A

and "B : FUB �! B are so-morphisms, the naturality square

FUA
FUf

//

"A

✏✏

FUB

"B

✏✏

A
f

// B

tells us that f is an so-morphism.
We prove that f is an ↵-morphism. To that end, consider an inequality f ·u  f ·u.
Since Uf is an isomorphism, Uu  Uv holds. And u  v holds by (Q2).

(V) U reflects e↵ective congruences.
Use Proposition 4.7 and the fact that A is exact.

Next we give a fundamental example of a category which is a quasivariety but not a
variety.

Example 5.10 (The category Set is not a variety of ordered algebras). Recall
that from Example (1) the finitary monadic discrete-poset functor U : Set �! Pos. Hence
Set ' Pos

T for a finitary monad T. By Example 3.21, the category Set is not exact (in
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the enriched sense). Hence Set is not equivalent to any variety of ordered algebras by
Theorem 5.9. Of course, Set is a quasivariety of ordered algebras, see Example (1).

Remark 5.11. The equivalence of conditions of Theorem 5.9 can be easily extended to
the “many-sorted” case. More in detail: for a category A , the following conditions are
equivalent:

(1) A is an S-sorted variety of ordered ⌃-algebras for some set S and some �-ary signature
⌃ of S-sorted operations.

(2) A is exact and there is an equivalence A ' [S,Pos]T, for a �-accessible monad T on
[S,Pos], where S is a set, considered as a discrete category.

(3) A is exact, has coinserters, and there is a set S and a functor P : Sop �! A such
that:

(a) Colimits X ⇤P exist for every functor X : S �! Pos.

(b)P is a �-presentable object in [S,Pos].

(c) P is projective w.r.t. so-morphisms in [S,Pos].

(d)P is an so-generator, i.e., the canonical "A : A (P�, A) ⇤P �! A is an so-
morphism.

Above, by a many-sorted variety we mean the following: given a fixed set S of sorts, we
define an S-sorted �-ary signature ⌃ to consist of operation symbols � : (si | i < �) �! s.
An S-sorted algebra for ⌃ consists of an object X = (Xs | s 2 S) of [S,Pos] together
with a monotone map [[�]]X :

Q
i<� Xsi �! Xs for every operation symbol � : (si |

i < �) �! s in ⌃. Homomorphisms between ⌃-algebras are defined in the expected
way: they are the morphisms (fs | s 2 S) : (Xs | s 2 S) �! (Ys | s 2 S) in [S,Pos]
that preserve the operations specified by ⌃. The description of the resulting category
Alg(H⌃) of algebras and homomorphisms by means of the corresponding polynomial
functor H⌃ : [S,Pos] �! [S,Pos] in the manner of Definition 5.2 can be made. We refer
to (Kelly and Power 1982) for details.
Given an S-sorted signature ⌃, an S-sorted variety consists of algebras satisfying

inequalities of the form

t0(xk) v t(xk)

where t0 and t are S-sorted terms of the same sort.

Example 5.10 exhibited a finitary monad T on the category Pos such that PosT is not
a variety of ordered algebras. Next example shows that a category of the form Pos

T, T a
finitary monad, need not even be a quasivariety of ordered algebras (on the other hand
there are also quasivarieties that are not monadic).

Example 5.12 (Category of the form Pos

T
that is not a quasivariety). Let T be

the monad of the adjunction F a U : Pos �! Pos with UX = [2, X] and FX = X • 2.
The adjunction F a U is not monadic, since 2 is not projective w.r.t. so-morphisms.
This result is in contrast with the case of ordinary categories. See, e.g. (Métayer 2004)
for discussion of monadicity of functors of the form [S,�] : C �! C in regular ordinary
cartesian closed categories C .
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Moreover, the monad T of F a U does not preserve so-morphisms, see Example 4.8.
Therefore the category Pos

T is not a quasivariety by (Bloom and Wright 1983, Section 7,
Proposition 2).

The di↵erence between quasivarieties and varieties of ordered algebras is essentially
the di↵erence between regularity and exactness, as the next result shows.

Theorem 5.13 (Intrinsic characterisation of quasivarieties). For A , the following
are equivalent:

(1) There is a �-accessible functor U : A �! Pos such that (A , U) is a �-ary quasivariety.
(2) A is regular, has coinserters, and possesses a �-algebraic generator.

Proof. (1) implies (2). By assumption, there is an adjunction F a U . Define P as F1.
Then U is necessarily isomorphic to A (P,�) and F is isomorphic to � • P .
We need to prove that A is regular. Observe first that the counit "A of F a U is

e↵ective. This follows from the fact that U"A is e↵ective in Pos (being a split epi) and
U is assumed to reflect e↵ective morphisms. Hence Proposition 4.7(4) can be applied:
the comparison functor K : A �! Pos

T is fully faithful. Moreover, PosT is a regular
category by Corollary 4.14 and it is a quasivariety by (Bloom and Wright 1983, Section 7,
Proposition 2).

(R1)A has finite limits.
This follows from (Bloom and Wright 1983, Section 4, Corollary 1).

(R2)A has (so,↵)-factorisations.
First of all, U preserves and reflects ↵-morphisms by Lemma 4.3. Moreover, A clearly
has (e↵ective,↵)-factorisations. Furthermore K preserves e↵ective morphisms, since
U preserves them and UT reflects them (since Pos

T is a quasivariety).
Therefore K preserves (e↵ective, ↵)-factorisations, these being (so,↵)-factorisations
in the quasivariety Pos

T. Since K is fully faithful, K reflects so-morphisms and
therefore A has (so,↵)-factorisations.

(R3)so-morphisms are stable under pullbacks.
This follows from the fact that K is fully faithful, preserves limits, and Pos

T is
regular.

(R4)so-morphisms coincide with the e↵ective morphisms.
This follows from the above.

We proved that A is regular. We prove now that P is a �-algebraic generator.

(a) Tensors X • P exist for every poset X.
This is clear: X • P ⇠= FX.

(b)P is a �-presentable object.
Clear: U = A (P,�) is �-accessible.

(c) P is projective w.r.t. so-morphisms.
Clear: U = A (P,�) is assumed to preserve so-morphisms.

(d)P is an so-generator, i.e., the canonical "A : A (P,A) • P �! A is an so-morphism.
This was proved already.

(2) implies (1). Let P denote the �-algebraic generator of A . Define U = A (P,�). Then
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U is �-accessible and Conditions (Q1)–(Q5) for (A , U) are verified in the same way as
in the proof of Theorem 5.9.

Remark 5.14. Theorems 5.9 and 5.13 above were stated for an abstract category A .
Similar results can be stated for a pair (A , U) consisting of a category A and a functor U :
A �! Pos, since the properties of the algebraic generator P from the above statements
reflect the properties of U . More precisely, the algebraic generator P is the representing
object of U .

6. Finitary varieties and strongly finitary monads

In case when the signature ⌃ is finitary , i.e., when ⌃ : |Set
fp

| �! Pos, one can give yet
other characterisations of varieties of ⌃-algebras.

(1) The first characterisation involves the notion of strongly finitary functors introduced
by Max Kelly and Steve Lack in (Kelly and Lack 1993).
We prove in Theorem 6.9 below that finitary varieties over Pos are precisely the
strongly finitary monadic categories over Pos.

(2) The notion of strongly finitary functors is closely related to a certain class of weighted
colimits, called sifted , see e.g. (Bourke 2010).
We prove in Theorem 6.12 that finitary varieties are precisely free cocompletions of
their theories under sifted colimits.

Definition 6.1 ((Kelly and Lack 1993)). A functor H : Pos �! Pos is strongly

finitary if it is a left Kan extension of its restriction along the discrete-poset functor
D : Set

fp

�! Pos, where Set

fp

is the category of finite sets with discrete order on hom-
sets.
A monad T on Pos is strongly finitary if its functor is strongly finitary.

Remark 6.2. By definition, a functor H : Pos �! Pos is strongly finitary i↵ it has a
coend expansion

HX =

Z n:Set
fp

Pos(Dn,X) •Hn

for every poset X.
Since every Dn is a finitely presentable object in Pos, every strongly finitary functor

H is a fortiori finitary.

Lemma 6.3. Every strongly finitary functor H : Pos �! Pos preserves so-morphisms.

Proof. Consider an so-morphism e : A �! B. Then He : HA �! HB has a coend
expansion

Z n:Set
fp

Pos(Dn, e) •Hn :

Z n:Set
fp

Pos(Dn,A) •Hn �!
Z n:Set

fp

Pos(Dn,B) •Hn

Since every Pos(Dn, e) : Pos(Dn,A) �! Pos(Dn,B) is surjective, so is every

Pos(Dn, e) •Hm : Pos(Dn,A) •Hm �! Pos(Dn,B) •Hm
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Thus He is surjective as a colimit of surjections.

Example 6.4. None of the implications strongly finitary ) finitary and so-preserving

) finitary can be reversed.

(1) The functor T : X 7! [2, X •2] is finitary but it does not preserve so-morphisms. This
follows from Example 4.8.

(2) Consider the connected-component functor ⇡0 : Pos �! Pos. It preserves so-morphisms
and it is finitary. The functor ⇡0 is, however, not strongly finitary. Suppose it were,
then

⇡0(X) =

Z n:Set
fp

Pos(Dn,X) • ⇡0n =

Z n:Set
fp

Pos(Dn,X) • n = X

would hold for every poset X: use that ⇡0n = n for every discrete poset and, for the
last equality, use that the inclusion D : Set

fp

�! Pos is dense. But ⇡0(2) = 1 6⇠= 2.

Incidentally, both T and ⇡0 have the structure of a monad: for T , consider the adjunction
� • 2 a [2,�], and for ⇡0, consider the (monadic) adjunction C a U : Set �! Pos, where
U is the discrete-poset functor and C assigns the set of components to a poset.

It can be proved that D : Set
fp

�! Pos exhibits Pos as a free cocompletion of Set
fp

w.r.t. a certain class of colimits that include filtered colimits and an enriched analogue
of reflexive coequalizers, namely quotients of reflexive coherence data (see below). This
follows by a modification of arguments given in (Bourke 2010, Section 8.4).

Definition 6.5 ((Bourke 2010)). Denote by �2 the full simplicial category truncated
at stage two. That is, �2 is given by the graph

�2 ⌘ 1

�11 //

�10

//
2

�20 //

�21
//

�22

//

◆00
oo 3

◆10
oo

◆11
oo

subject to simplicial equalities. See, e.g., (Mac Lane 1971).
A reflexive coherence datum in X is a diagram R : �2

op �! X . A quotient of a
reflexive coherence datum R : �2

op �! X is a colimit J ⇤R, where J : �2 �! Pos

denotes the full inclusion.

Remark 6.6. The category ��
2 introduced in Notation 3.10 is a subcategory of �2.

Hence every reflexive coherence datum is a coherence datum (Definition 3.11).

Filtered colimits and quotients of reflexive coherence data form a density presentation
in the sense of (Kelly 1982a) of the fully faithful dense functor D : Set

fp

�! Pos.
The saturation (the closure, in the terminology of (Albert and Kelly 1988)) of the class

of filtered colimits and quotients of reflexive coherence data is the class of weights, called
sifted . This is in analogy to the case of ordinary sifted colimits introduced by Christian
Lair (Lair 1996). More in detail: a weight W : Dop �! Pos is called sifted , if the n-fold
product functor ⇧n : [n,Pos] �! Pos preserves W -colimits, for every finite discrete poset
n.
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Example 6.7. Every filtered colimit and every quotient of a reflexive coherence datum
is an example of a sifted colimit. Every reflexive coequaliser is a sifted colimit.

Using various types of sifted colimits, we can give a characterisation of functors preserv-
ing sifted colimits. We formulate the result for functors preserving finite limits between
exact categories, since this is how we will need it.

Proposition 6.8. Suppose H : K �! L preserves finite limits and suppose K and
L are cocomplete exact categories. Then the following are equivalent:

(1)H preserves sifted colimits.
(2)H preserves filtered colimits and quotients of reflexive coherence data.
(3)H preserves filtered colimits and quotients of congruences.

Proof. Clearly, (1) is equivalent to (2). That (2) implies (3) follows from the fact that
every congruence is a reflexive coherence datum. For (3) implies (2) it su�ces to prove
that H preserves quotients of reflexive coherence data. Consider a reflexive coherence
datum

D ⌘ X2

d2
2 //

d2
1
//

d2
0

//

X1

d1
1 //

d1
0

//i11
oo

i10
oo

X0i00
oo

and observe that, for the quotient q : X0 �! X of D, the congruence ker(q) has the same
cocones as D.

We can now formulate the first characterisation of finitary varieties.

Theorem 6.9. For a category A , the following conditions are equivalent:

(1) A is equivalent to a variety of algebras for a finitary signature.
(2) A is equivalent to Pos

T for a strongly finitary monad T on Pos.

Proof. (1) implies (2). By Theorem 5.9 we know that A is an exact category and that
A is equivalent to Pos

T for a finitary monad T on Pos. Moreover, the monad T is given
by the adjunction � • P a A (P,�), where P is a free algebra on 1.
To prove that the monad T is strongly finitary, by Proposition 6.8 it therefore su�ces

to prove that its functor X 7! A (P,X • P ) preserves quotients of congruences in Pos.
The left adjoint X 7! X •P preserves all colimits. And A (P,�) does preserve quotients
of congruences, since A is a variety.

(2) implies (1). We only need to prove that PosT is an exact category. Since T preserves
so-morphisms by Lemma 6.3, the category Pos

T is regular by Corollary 4.14. Thus it
remains to be proved that congruences are e↵ective in Pos

T. To that end, consider a
congruence

⇠ ⌘ (X2, a2)

d2
2 //

d2
1
//

d2
0

//
(X1, a1)

d1
1 //

d1
0

//
(X0, a0)i00

oo
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in Pos

T. Then there is f : X0 �! X in Pos such that UT(⇠) = ker(f). Since T preserves
quotients of congruences, we can form

TUT(⇠) ⌘ TX2

Td2
2 //

Td2
1
//

Td2
0

//
TX1

Td1
1 //

Td1
0

//
TX0Ti00

oo

having Tf : TX0 �! TX as its quotient. Define a : TX �! X as the unique mediating
map:

TX2

Td2
2 //

Td2
1
//

Td2
0

//

a2

✏✏

TX1

Td1
1 //

Td1
0

//

a1

✏✏

TX0Ti00
oo

Tf
//

a0

✏✏

TX

a

✏✏

X2

d2
2 //

d2
1
//

d2
0

//
X1

d1
1 //

d1
0

//
X0i00

oo
f
// X

It is then easy to see that (X, a) is a T-algebra and f is a T-algebra homomorphism.
Moreover, ⇠ = ker(f) in Pos

T.

We prove now that finitary varieties of ordered algebras are free cocompletions of
certain small categories under sifted colimits.

Definition 6.10. Suppose T = (T, ⌘, µ) is a strongly finitary monad on Pos. By Th(T)
we denote the full subcategory of PosT spanned by free T-algebras on objects of Set

fp

.
The category Th(T) is called the theory of T.

Remark 6.11. The duals of categories of the form Th(T) are discrete (finitary) Lawvere
theories in the sense of (Hyland and Power 2006).

The following result states that the category of algebras for T is the free cocompletion
of Th(T) under sifted colimits. This is the enriched analogue of the classical result. See,
e.g., Theorem 4.13 of (Adámek et al. 2011).

Theorem 6.12. Let T = (T, ⌘, µ) be a strongly finitary monad on Pos. Then the em-
bedding E : Th(T) �! Pos

T exhibits Pos

T as a free cocompletion of Th(T) under sifted
colimits.

Proof. We will use Proposition 4.2 of (Kelly and Schmitt 2005). Since E is fully faithful
and Pos

T cocomplete, we only need to prove that PosT is the closure of Th(T) under sifted
colimits and that every functor PosT((Tn, µn),�) : PosT �! Pos, where n is discrete and
finite poset, preserves sifted colimits.

(1) We prove that every T-algebra is an iterated sifted colimit of T-algebras free on
discrete posets. This is done in three steps:

(a) Using quotients of truncated nerves that are reflexive coherence data, one can
exhibit every algebra free on a finite poset.
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More in detail: given a finite poset P , exhibit it as a quotient q : P0 �! P of its
truncated nerve

nerve(P ) ⌘ P2

d2
2 //

d2
1
//

d2
0

//
P1

d1
1 //

d1
0

//
P0i00

oo

in an analogous way as it was done for 2 in Example 3.21. Since nerve(P ) can
clearly be augmented to form a reflexive coherence datum, we proved that FTP

arises as a sifted colimit of free algebras on finite discrete posets.

(b) Further, using filtered colimits, one can exhibit every algebra free on a poset.
More in detail: suppose X is any poset. Then X can be written as a filtered colimit
of finite posets. Hence FTX is a filtered (hence, sifted) colimit of algebras of the
form FTP , where P is a finite poset.

(c) Finally, using canonical presentations that are reflexive coequalizers, one can ex-
hibit every T-algebra.
More in detail, given a T-algebra (X, a), consider the diagram

(TTX, µTX)
Ta //

µX

// (TX, µX)
a // (X, a)

that is a reflexive coequaliser in Pos

T. Hence (TX, a) is a sifted colimit of free
algebras.

(2) The functor PosT((Tn, µn),�) ⇠= Pos(n, UT�) = Pos(n,�) · UT, preserves sifted col-
imits, since every Pos(n,�) does and UT preserves filtered colimits and quotients of
congruences. Hence, by Proposition 6.8, UT preserves sifted colimits.

This concludes the proof.

7. Conclusions and future work

We gave intrinsic characterisations of categories equivalent to (quasi)varieties of ordered
algebras in the sense of Stephen Bloom and Jesse Wright. Namely, we showed that,
for the notion of an ordered algebra as a poset equipped with monotone operations of
discrete arities, such characterisation theorems are very similar to the classical case of
unordered algebras (Adámek et al. 2011). The only di↵erence to the classical case is the
ubiquitous need for the use of 2-dimensional notions. Hence one can say that ordered
universal algebra in the sense of Stephen Bloom and Jesse Wright is the “poset-version”
of the classical set-based universal algebra.
We believe that our work is only an opening study in the direction of understanding

ordered universal algebra using categorical methods. In fact, much of the results surveyed
in (Adámek et al. 2011) need to be investigated. Let us mention just a few:

(1) The rôle of sifted colimits in the enriched sense in the study of generalised varieties,
see (J. Adámek and J. Rosický 2001) for the classical case. Also, it is not clear how the
non-existence of �-sifted colimits, �-uncountable, in the set-based case (see (Adámek
et al. 2000)) transfers to the enriched setting.
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(2) The connection of (quasi)varieties and regular and exact completions of categories
enriched over posets. See, e.g., the paper (Vitale 1994) for the ordinary case.

(3) The Morita-type theorems concerning Morita equivalence of ordered theories.

Furthermore, is there a categorical universal algebra of algebras with a basis of monotone
and antitone operations? This could lead to applications of categorical algebra to order-
algebraizable logics in the sense of James Raftery (Raftery 2013).
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