
Model-Based Stochastic Simulation of P2P VoIP Using
Graph Transformation System

Ajab Khan1, Reiko Heckel1, Paolo Torrini1, and István Ráth2

1 Department of Computer Science, University of Leicester
{ak271,reiko,pt95}@mcs.le.ac.uk

2 Department of Measurement and Information Systems
Budapest University of Technology and Economics

rath@mit.bme.hu

Abstract. P2P systems are characterised by large-scale distribution and high de-
gree of architectural dynamics caused by their lack of central coordination. In
such an environment, it is notoriously hard to guarantee a good quality of ser-
vice. Simulation can help to validate network designs and protocols, but most
existing simulation approaches cannot cope with unbounded dynamic change of
network topology.

We propose an approach to modelling and simulation of P2P systems based
on graph transformations, a visual rule based formalism that has recently been
supported by facilities for stochastic modelling and simulation. Focussing on P2P
VoIP applications such as Skype, we model alternative solutions to the problem
of selection of and connection to super nodes (i.e., the peers acting as servers in
the network) and evaluate these through simulation.

1 Introduction

Todays P2P networks [3] present several unique features that differentiate them from
traditional distributed systems. Network of hundreds of thousands or even millions of
peers are common. They experience a steady flow of peers joining or departing from
the network, as well as constant dynamic reconfiguration of network connections.

Large scale, geographically diverse location and peer dynamism present several com-
plex challenges to the network designer. In P2P networks, neither a central authority
nor a fixed overlay topology can be used to control the various components. Instead,
a dynamically changing overlay topology is used and where control is completely de-
centralized. Due to the lack of global control and unreliability of the infrastructure,
P2P systems are prone to dependability problems. The overlay topology is maintained
by cooperation links among nodes. The links are created and deleted based on the re-
quirements of a particular application. Peers are in full control of their local resources
and can therefore choose to change or impose new policies regarding their use in the
network [1]. A peer may even behave selfishly by not routing traffic for others [2].

In the early stage of the P2P network, most of the applications implemented over the
Internet were characterised by the absence of a specific mechanism for enforcing a par-
ticular overlay topology [4]. This resulted in the adaptation of inefficient communica-
tion schemes such as flooding, or the maintenance of large numbers of connections with

K. Al-Begain, D. Fiems, and W. Knottenbelt (Eds.): ASMTA 2010, LNCS 6148, pp. 204–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Model-Based Stochastic Simulation of P2P VoIP 205

other peers. However, it is worth mentioning that situation and approach to P2P overlay
topology have significantly changed. Several academic research projects on P2P have
realized the importance of selecting, constructing and maintaining appropriate overlay
topologies for implementation of efficient and robust P2P systems [5,6,7,4].

Also P2P Voice over IP (VoIP) networks such as Skype [8,9] have started considering
more structured topologies by distinguishing client peers from super nodes. This results
in a two-level hierarchy: Nodes with powerful CPU, more free memory and greater
bandwidth take on server-like responsibilities and provide services to a set of client
peers. This approach allows decentralized overlay network to run more efficiently by
exploiting heterogeneity and distributing load to machines that can handle the burden.
It has also overcome the flaws of the client server model, because of multiple separate
points of failure, thus increasing the health of the P2P overlay network.

Building and maintaining a super node based overlay topology is not simple. Rapid
architectural chances in both ordinary and super nodes require robust and efficient pro-
tocols, capable of self-reconfiguring the overlay topology in spite of both controlled and
selfish events like joining, leaving or crashing nodes. In case the P2P is used for VoIP
traffic, the network needs to reconfigure fast enough so that Quality of Service (QoS) is
not affected [10].

Several questions arise for the design of network protocols: Which super node should
a new client peer connect to when joining the network? Can we predict if a super node
will be capable of providing VoIP services to all connected nodes? What shall we do
when, selfishly, a super node leaves the network? The performance of such a protocol
can be measured by answering the question: How many clients are generally provided
with good quality connection.

Various solutions have been proposed to these problems, e.g. [11] discussed general
design issues however, their focus is on centralized design of such networks, [7] sug-
gested the deployment of super nodes directly managed by content service providers,
[4] presented a supper node overlay topology algorithm and validated the approach us-
ing the Psim simulator. [2] proposes that an incentive should be given to intermediate
nodes and resource owners, [12] proposes to maintain redundant links between peers,
[13] propose an autonomous system-aware peer-relay protocol called ASAP, [14] pro-
poses solutions based on changes in routing strategies.

However, peer dynamics and complexity of P2P networks make it difficult and
expensive to validate these solutions through testing of real networks or simulation.
Geographical distribution of peers, network dynamics and lack of central control make
testing difficult and costly. The simulation of network reconfiguration is not easy, as ex-
isting simulators do provide very limited support for networks with dynamic topology
[12,15].

We propose to model complex network reconfigurations in P2P VoIP networks by
means of graph transformation systems and use a new approach to the stochastic im-
plantation of such systems to evaluate the performance of network protocols. We con-
sider the P2P network architecture as a graph, in which network nodes are represented
by graph vertices and graph edges represent network connections. Reconfiguration in
such a network can naturally be medalled by graph transformation, in a visual and

206 A. Khan et al.

rule-based formalism [10,12]. Stochastic simulation techniques for validation have been
developed in [10].

In this paper we are going to present a case study based on the popular VoIP appli-
cation Skype and discuss how to face some of the challenges posed by it.

2 Case Study: Skype Network

Skype is a P2P VoIP network developed by KaZa in 2003. It has currently more than
170 million registered users, 10% of which are usually online. Skype allows registered
users to make voice calls and send messages, files or video to other users. It has the
ability to encrypt the calls and store the user information in decentralized form [18].
Skype is a proprietary P2P protocol which competes against open protocols such as SIP
and H.323. Features such as the ability to overcome the problem of the network address
translation (NAT) and firewalls make Skype very attractive. It also allows users to call
switch telephone network (PSTN) numbers at much lower cost. The main difference
between Skype and other VoIP applications is that it operates on the P2P model rather
than the traditional client server model. The Skype directory structures are completely
decentralized which enable the system to scale easily to large numbers of users without
requiring complex infrastructure [4].

The first detailed study of the Skype network architecture was performed in 2004 [18].
After this several new version were released, but the core network features remain the
same. Skype network nodes are distinguished into Skype Clients and Super Nodes. The
network nodes supporting Skype peers are divers in their computational power, storage
capabilities, and most importantly the network connection type and bandwidth. Peers
supplied with sufficient resources can be promoted to the role of Super Node while
continuing to function as Clients. Super nodes form an overly network amongst them-
selves, whereas each client has to register with a Registration Server and select one of
the super nodes as their server. The client will use their chosen super node as a contact
to receive or issue calls or, if hidden behind a firewall, even as router for the actual VoPI
traffic. The Registration Server is the only central server in the network, responsible for
storing user names and passwords, authenticating users on login, and providing them
with the addresses of super nodes to make their connection with the network. All infor-
mation about user’s online status is stored in a distributed way by the super nodes in the
network, which improves scalability and stability even if information can be sometimes
out of date.

The population of super nodes in the network is not determined by demand but based
on the availability of bandwidth and their reachability [8]. A network may have more
super nodes than strictly necessary if these resources are plentiful. Due to the propri-
etary nature of Skype, little information is available about codecs but the analysis in [18]
claims that Skype uses 5kbps to 16kps bandwidth whereas [19] states that bandwidth
consumed is 25kbps whenever a VoIP call is in progress. The clients also send keep-
alive messages to the super node and receive back replies in order to check whether
the super node still exists. In case the super node has left the network, the client has
to reconfigure and try another super node for establishing a connection. The super
node, based on the available free bandwidth, may allow or refuse new connections.

Model-Based Stochastic Simulation of P2P VoIP 207

Both client and super node can leave the network either by shutting down the com-
puter (crashing) or by using the proper exit procedure available in the application’s user
interface.

3 A Graph Based Model for Skype

We use graph transformations to model the structural evolution of the Skype network.
As one of the most basic models for entities and relations, graphs are a representations
of structural models. Formally, a graph consists of a set of vertices V and a set of edges
E such that each edge e ∈ E has source and target vertex s(e) and t(e) in V , respectively.
More advanced notions allow for nodes and edges to be attributed with textual, Boolean
or numeric data [16]. Graphs occur at two levels: type level and instance level. A type-
level graph is comparable to a class or ER diagram containing the types of nodes and
edges, declarations of attributes, etc. Instance graphs represent the states of the system,
typed over the type graph. With graphs as states, transformation rules provide state
changing operations [12,10].

The type graph TG in Fig 1 represents a model of the architecture of Skype as de-
scribed earlier. It defines the types for registration server (RS), super node (SN), Skype
client (SC), and their common supertype. The node type LK is used to model links be-
tween SN and SC while OV represents overlay connections between existing SNs. The
edges for registration and RS-overlay are used to show the connection of the SC and
SN with RS.

In the model, whenever a new SC joins the network, first it has to get registered with
the RS and in the next step it has to select one of the SN as local host. The local host
will be used for querying the network and to transfer the actual payload of the voice
packet. In the model SCs with bandwidth more than the 1.5Mbps are promoted to the
new role of the SN. The model does not restrict the number of the SN in the network.

Fig. 1. Type graph

208 A. Khan et al.

Based on this architecture we model two different approaches to connect an SC with
an SN. In the first approach, we randomly select any SN and if it has the capacity to
accept a new connection, (depending on the available bandwidth), a link is established
using LK between the SC and SN. In the second approach, we establish a link between
SC and SN based on the latency in communication between the SC and SN. We mea-
sure the latency by Packet carrying a time stamp. If the round-trip time taken by the
packet is less than 300ms and the bandwidth of the SN permits a new connection, the
link LK is established between the SC and SN.

In order to model VoIP traffic we assume a codec using 60kbps of the bandwidth of
the SN, such that all the VoIP traffic is routed through the SN. We randomly increase
and decrease the bandwidth of the SN in order to model the running VoIP traffic. If an
SN departs from the network either by crashing or controlled exit, the model is capable
to reconfigure the SC and link it back to a new SN based on one of the two approaches
discussed above.

The objective of modelling these two protocols of connection is to evaluate and com-
pare their performance in terms of the number of SCs enjoying a connection with suffi-
cient bandwidth. The model will also provide information regarding the overall number
of SNs and SCs in the network.

4 P2P Network Connection as Graph Transformation

A graph transformation rule p : L −→ R consists of a pair of TG-typed instance graphs
L,R such that the intersection L∩R is well defined. The left-hand side L represents the
pre-conditions of the rule whereas the right-hand side R describes the post-conditions.
Their intersection represents the elements that are required, but not destroyed, by the
transformation [12]. Graph transformation rules also use negative application condi-
tions (NACs). A NAC assures that the rule will only be applied if the pattern specified
NAC does not match the graph [12,10].

We are now going to introduce a set of transformation rules based on a simple net-
work connection scenario. Here, due to limitation of space we are not introducing the
rules for promotion of SC to SN, crashing, and controlled exits. However, in the simu-
lation all these rules are provided in order to give results on the complete model.

Rule in Fig 2 create, Skype nodes. This rule creates new Skype nodes and assigns
randomly a bandwidth between 56kbps and 2Mbps. Nodes with bandwidth equal or
higher than than 1.5 Mbps are promoted to the role of SN.

Fig. 2. Create Skype nodes

Rule in Fig 3: create, remove VoIP traffic in overlay network. Rule (a) creates new
traffic worth 60kbps at the SN. This is an average value for ITU-T codecs, each of which
has its own data rate [21]. This means that whenever rule (a) is executed, it reduce the

Model-Based Stochastic Simulation of P2P VoIP 209

bandwidth of the SN by 60kbps. Since the SN to which this rule is applied will be
selected at random, it will create the effect of random traffic in the overlay network.
Rule (b) increases the bandwidth by adding the 60kbps, corresponding to a decrease in
VoIP traffic load on the SN.

(a) Create traffic of 60kbps

(b) Remove traffic of 60kbps

Fig. 3. VoIP traffic in the SN overlay network

Fig. 4. Probe rule to find happy SC

Rule in Fig 4: find “happy” Rule is used as a probe to find those SC clients currently
connected to an SN with bandwidth more than 1Mbps. This is necessary as this will
make sure that the local host is in a position to accept new VoIP calls.

Rules in Fig 5: connect SC with SN, reconfigure with new SN. Rule (a) connects
SC to the randomly chosen SN provided that the latter is not currently in the process
of leaving the network. To check this we use a Boolean attribute exit. If this attribute is
true then the SN will not accept new connections. The rule also checks the bandwidth
of the SN and allows connection only if it has a more than 256kbps. The rule cannot be
applied to already connected SC due to the negative application condition shown by a
crossed out node LK.

Rule (b) reconnects an SC to a new SN if the SC was disconnected due to either
selfish exit of the SN or as a result of local load management. This rule use two NACs,
the first to make sure that the LK node has lost its connection to the SN and the second
to ensures that the new, randomly chosen SN does not have any connection with the LK.
This rule also checks that the bandwidth of the selected SN is more than the minimum
256kbps and it is not in the process of controlled exit. If all these condition are satisfied
then the SC can be connected to the new SN.

210 A. Khan et al.

(a) Connect SC to SN

(b) Recofigure to connect to new SN

Fig. 5. SC connection to SN based on random approch

Rules in Fig 6: create, send, return time stamped packet, connect with SN and re-
configure with new SN. Rule (a) creates a packet p1 and sets the time stamp (chronos)
attribute of p1 and SC to the system time. The packet p1 is transmitted to a randomly
selected SN.

Rule (b) returns the packet with contents AcK if the current bandwidth of the SN is
more than the minimum required and it is currently not in the process of controlled exit.

Rule (c) connects the SC to the SN if the packet received has content AcK and the
difference between the time stamps at the packet and the current time is no more than
300ms as per the ITU-T VoIP requirements. This packet is used to find the round trip
delay between the SC and SN. As standard connection cost, the bandwidth of the SN
and SC is reduced by 5kbps. This helps the SC to select an SN based on the latency
along with other parameter such as bandwidth and exit.

Rule (d) rejects the selected SN if the latency is higher than the acceptable 300ms.
Rule (e) returns the packet with content DnY if either the bandwidth is less than

required or the SN is in controlled exit. Rule (f) deletes the corresponding packet. In
this case the procedure starts again from rule (a).

Rule (g) reconnects an SC to a new SN if the SC was disconnected due to departure
of SN (Selfish exit or laod managment). This rule use four NACs, the first to make sure
that the LK node has lost its connection to the SN and the second to ensures that the
new, randomly chosen SN does not have any connection with the LK, third make sure
that no request is sent, the last ensures that SC is not waiting for request reply from SN.
This rule also checks that the bandwidth of the selected SN is more than the minimum
256kbps and it is not in the process of controlled exit. If all these condition are satisfied
then the SC can send a request packet to the new SN.

Based on the above transformation rules We consider a simple scenario (as pictured
in Fig 7)in order to show the applicability of the rules. In the initial graph, the super
nodes sn1 and sn2 are registered with the registration server. As the first rule is applied, a

Model-Based Stochastic Simulation of P2P VoIP 211

(a) Create and Send time stamped ping packet

(b) Return reply packet with AcK

(c) Connect SC with the SN

(d) Reject SN based on latency

(e) Return reply packet with DnY

(f) Delete reply packet try new SN

(g) Reconfigure to connect new SN

Fig. 6. SC connection to SN based on latency

212 A. Khan et al.

new Skype client sc joins the network by registering with the server RS. In the following
step, the client sc has to select one of the existing super nodes. In this example we show
the random approach. As the rule Fig 5(a) is applied, the client sc gets linked with
sn1. With an execution of the uncontrolled departure rule, sn1 leaves the network and
the client sc remains disconnected. As the reconfiguration rule Fig 5(b) is applied, the
client sc gets reconnected, this time with super node sn2. Finally, the last transformation
shows that when the traffic simulation rule Fig 3(a) is applied the bandwidth of the super
node is reduced.

Fig. 7. Application scenario

5 Stochastic Simulation of Graph Transformation System

The traditional approach in network simulation is to model the network in terms of
nodes and links, where each link is individually associated with bandwidth and delay
properties. When this approach is used to simulate large P2P networks, the number of
events to be processed can easily lead to problems, particularly in relationship with
topological reconfiguration due to peer dynamism.

Stochastic graph transformation [12] can make it easier to model architectural recon-
figuration and non-functional properties such as performance and reliability. A stochas-
tic graph transformation system (SGTS) is a graph transformation system (GTS) where
each rule is associated with a positive real number representing the rate of the exponen-
tially distributed delay of its application. Graph transformation can not only model these
networks but it also support a number of validation and verification techniques. Model
checking based on CSL and stochastic simulation based on translation of to Markov
chains were introduced in [17] for SGTS. Model checking is useful to formally verify
the abstract properties of processes, but this can be hard in case of complex examples.
On the other hand, Monte-Carlo stochastic simulation is typically based on the execu-
tion of particular processes, which are selected probabilistically by means of a random
number generator (RNG).

Let us consider that a SG = 〈G,F 〉 is a generalised stochastic graph transformation
system whenever G is a GTS and F : EG → (R→ [0, 1]) is a function which associates

Model-Based Stochastic Simulation of P2P VoIP 213

with every event inG a general cumulative probability distribution function. We assume
that F(e)(0) = 0 (null delay condition) [10]. Moreover, the probability distribution is
dependent on the event (rulename and match) rather than just the rule. The concept
of the SGTS is explained [17] in detail. Our interest in stochastic graph transformation
systems is closely associated with their simulation, where the stochastic aspect is useful
in order to resolve the non-deterministic character of ordinary GTSs.

We simulate our model using GraSS (for Graph-based Stochastic Simulation), a new
tool introduced in [20]. The tool has been developed in Java-Eclipse, as plugin of a
graph transformation engine called VIATRA. VIATRA [22] relies on a RETE-style
implementation of incremental pattern-matching, in which precomputed matching in-
formation is stored and updated as transformation proceeds. The architecture of the
tool is shown in Fig 8. Essentially, the stochastic engine receives the set of enabled rule
matches (i.e. the active events) from the transformation engine, turns them into timed
events, by assigning to each of them an expected time value, randomly determined on
the basis of the probability distribution which is associated with the event type, and
sends the events that has been scheduled first back to the transformation engine for
execution.

In GraSS a GTS is represented as a VIATRA model, consisting of the model space
with the current graph and the transformation rules. Moreover, GraSS takes as input an
XML file with the definitions of the distributions associated with transformation rules
and events, as well as the list of the rules with empty post-conditions that are to be used
as probes. Additional parameters needed for a simulation run are provided to GraSS as
part of the VIATRA model (see [20]).

In this experiment we use only exponential distributions, and therefore we only need
to associate each transformation rule with a rate. We run several simulations of each of
the two approaches, varying the rate of the rule in Fig 2 by a factor of {10, 100, 200,

Fig. 8. GraSS

214 A. Khan et al.

Fig. 9. Probe rules VIATRA code

400, 1000, 5000, 10000}. The rules in Fig. 3(a) are used with fixed rates of 400 and
those in Fig. 3(b) with rates of 200 in both versions of the model. The rates has been
doubled in order to explore the effect of increased traffic in the network. The rules in Fig
5 and Fig 6 have been used with rates of 200 respectively. All the other rules, such as
uncontrolled exit and controlled exit, load management, and downgrade (not presented
in this paper due to space limitation) are kept at a rate of 1.

In order to collect the statistics of the simulation, rules with empty postconditions
are used as probes. Each probe rule returns the number of its matches in the current
graph for each state of the transformation system. The probe rules used in this paper are
pictured in Fig 4, whereas their VIATRA code can be seen in Fig 9. The textual output
of a simulation experiment consists of SSJ TallyStore class reports [23].

GraSS can be used to run batches of independent simulations, obtained by restarting
the initial graph for a given number of times. The maximum depth of the simulation
runs in the batch can be given either in terms of simulation time or of the number of
transformation steps. While running individual simulations, GraSS computes statistics
of the probes, by collecting average, maximum, minimum and standard deviation values
for each of them. Over each batch of runs, GraSS computes average, standard devia-
tion and a confidence interval associated with each variable. GraSS can also be used to
automatically generate a sequence of independent simulation batches, each with differ-
ent distributions associated to sensistive rules. It then provides a final report, over the
batches, with a confidence interval for each probe, on the average value of that probe
in a batch. Numbers of runs for batch, maximum depth and sensitive rule variations
are simulation parameters that, together with the graph transformation system and the
probes, define a simulation experiment.

In this experiment we compared two models, based on different approaches for con-
necting clients with supernodes, along the line we discussed earlier. Each model has
been tested by running batches of simulations, varying the rate of the node creation rule
(Fig 2). Each batch consists of 6 independent runs, each bounded by a time limit of 0.1
second

We programamed GRASS to automatically generate independent batches of simula-
tion for each model, with node creation rates ranging over x ∈ {1, 10, 100, 1000}. We
produce confidence intervals based on t - distributions, with a confidence level of 95%.

Model-Based Stochastic Simulation of P2P VoIP 215

6 Simulation Results

In this experiment we compared two approaches for connecting clients to super nodes.
Each approach is presented by a model that was tested through 4 variations of the rate
x for the node creation rule (Fig 2), ranging over {1, 10, 100, 1000}. For each variation
we performed twelve runs with a time limit of 0.1 seconds of simulated time each.
The results are reflected in the two tables 1 and 2. The 1st column shows the rate of
the creation rule. The 2nd column shows the lower limit. The 3rd column shows the
average number of the SC nodes in the network. The 4th column shows the upper limit
of the confidence interval. The 6th column shows the average total number of SN nodes
in the network. The 8th column shows the percentage of the linked SCs with respect to
total number of SCs in network. The 10th column shows the average number of clients
who are currently happy with their existing SN.

We compare the performance of both approaches with respect to four measurements:
the total number of SC nodes in the network, the number of super nodes in the network,
the percentage of linked SC nodes, and the ratio of happy peers.

We have used t-distribution for computing the 95% confidence interval because the
size of the data is small as we had 6 run for each of the rate. The computed confidence
intervals are reflected in the tables below showing the respective lower and upper limit
for each of the measurement.

The simulation results show for both models a remarking degree of scalability, but
when node creation is more rapid, the latency-based model ends up with a higher pro-
portion of SC nodes which are not linked to super nodes (yet). This results in decreasing
the proportion of happy clients. This effect is very pronounced at a node creation rate of
1000, where the total number of connected SC nodes actually drops when the network
is flooded with ping messages by new SC nodes looking for a good SN to connect to.
Thus, the randomised approach performs better in terms of registering and promoting
clients. This fits the intuition as the latency-based approach involves a more complex
linking process while not harvesting the benefits.

Table 1. Random Model

Rate Lower Limit Avg.SC Upper limit Lower Limit Avg.SN Upper Limit Lower Limit %Linked Upper Limit Lower Limit Avg.Happy Upper Limit
1 0.218 0.860 1.502 1.000 1.000 1.000 0.610 0.706 0.803 0.165 0.166 0.382
10 4.465 5.097 6.155 1.235 1.646 2.403 0.709 0.789 0.887 0.532 2.746 37.930

100 40.761 48.185 55.609 3.493 5.112 6.731 0.883 0.910 0.938 18.700 28.316 37.930
1000 452.759 474.009 495.259 17.076 19.324 21.571 0.951 0.958 0.965 118.200 164.407 210.600

Table 2. Latency-based Model

Rate Lower Limit Avg.SC Upper limit Lower Limit Avg.SN Upper Limit Lower Limit %Linked Upper Limit Lower Limit Avg.Happy Upper Limit
1 0.687 0.814 0940 0.896 1.065 1.235 0.511 0.716 0.9221 0.096 0.166 0.441
10 2.761 5.506 8.252 0.832 1.479 2.126 0.682 0.746 0.810 0.158 2.150 32.157

100 45.922 51.660 57.398 4.818 6.419 8.019 0.865 0.883 0.901 22.620 27.389 32.157
1000 462.799 484.934 507.069 72.127 101.4608 130.794 0.168 0.459 0.749 43.613 98.797 153.980

7 Conclusion

In this paper we have outlined our simulation approach based on stochastic graph trans-
formation. We have applied it to modelling and simulating some aspects of P2P VoIP

216 A. Khan et al.

network protocols, and we have performed our experiments with the GraSS/VIATRA
tool [20]. We have compared two configuring approaches. The more sophisticated one
does not seem to perform better as compared to the random based one, the reason be-
ing that the model does not include geographic information about where clients and
supernodes are located. In reality, whether a client is linked to a nearby supernode, has
definitely significant effect on the quality of service.

As future work, we are planning to extend the model and include spatial information
in order to provide latency results not only based on network traffic but also on locations
with respect to network topology. We are also planning to extend the model in order to
include notions of jitter, packet loss and echo, along the lines of [10], and to compare a
number of different design solutions to problems such as promotion of clients to super
nodes, routing, load balancing, selfish exit, and cooperative exit from the network, in
order to investigate their tradeoffs and benefits.

References

1. Li, C.J.: Computation in Peer-to-Peer Networks. Department of Computer Scince. University
of Saskatchewan, Canada

2. Gupta, R., Somani, A.K.: Pricing Strategy for Incentivizing Selfish Nodes to Share Resources
in Peer-to-Peer (P2P) Networks. In: Proceedings of the 12th, ICON 2004 (2004)

3. Milojicic, D.S., et al.: Peer-to-Peer Computing. Technical Report HPL-2002-57, HP Labs,
Palo Alto (2002)

4. Montresor, A.: A rubust Protocol for Building Superpeer Overlay Tolologies. Department of
Computer Science, University of Bologna, Italy, UBLCS-2005-8 (2004)

5. Dabek, F., et al.: Building Peer-to-Peer Systems with Chord, a Distributed Lookup Service.
In: Proc. of the 8th Workshop on Hot Topics in Operating Systems (HotOS), Schloss Elmau,
Germany, May 2001. IEEE Computer Society, Los Alamitos (2001)

6. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location and Routing for
Large-ScalePeer-to-Peer Systems. In: Proc. of the 18th Int. Conf. on Distributed Systems
Platforms, Heidelberg, Germany (November 2001)

7. Zhao, B., et al.: Tapestry: A Resilient Global-scale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications (2003) (to appear)

8. Guha, S., Daswani, N., Jain, R.: An Experimental Study of the Skype Peer-to-Peer VoIP
System. In: IPTPS 2006: The 5th InternationalWorkshop on Peer-to-Peer Systems (2006),
http://saikat.guha.cc/pub/iptps06-skype.pdf

9. Skype limited. Skype: Guide for Network Administrators (2006)
10. Khan, A., Torrini, P., Heckel, R.: Model-based Simulation of VoIP Netowrk Reconfiguration

using Graph Transformation System. In: EASST, ICGT, vol. 17 (2009)
11. Yang, B., Garcia-Molina, H.: Designing a Super-peer Network. In: Proc. of the 19th Int.

Conf. on DataEngineering (ICDE), Bangalore, India (March 2003)
12. Heckel, R.: Stochastic Analysis of Graph Transformation Systems: A Case Study in P2P

Networks. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 53–69.
Springer, Heidelberg (2005)

13. Ren, S., Guo, L., Zhang, X.: ASAP: an AS-Aware Peer-relay protocol for high quality VoIP.
In: Proc. of the 26th Int. Conf. on Distributed Computing Systems (ICDCS 2006), Lisbon,
Portugal, July 4-7 (2006)

14. Lysne, O., Montanana, J.M., Pinkston, T.M.: Simple Deadlock-Free Dynamic Network Re-
configuration, LNCS. Springer, Heidelberg (2004), SpringerLink 3296/2005:504515

http://saikat.guha.cc/pub/iptps06-skype.pdf

Model-Based Stochastic Simulation of P2P VoIP 217

15. ISI, University of Southern California. The Network Simulator-NS2 (2008), Wikipedia Page
http://www.isi.edu/nsnam/ns/

16. de Lara, J., et al.: Attributed Graph Transformation with Node Type Inheritance. Theor. Com-
put. Sci. In Fundamental Aspects of Software Engineering 376(3), 139–163 (2007)

17. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. Fundamenta
Informaticae 72, 1–22 (2006),
http://www.cs.le.ac.uk/people/rh122/papers/2006/HLM06FI.pdf

18. Baset, S.A., Schulzrine, H.G.: An Analysis of the Skype Peer-to-Peer Internet Telephony
Protocol. In: Proceedings of the 25th IEEE International Conference on Computer Commu-
nications, INFOCOM 2006 (2006),
http://dx.doi.org/10.1109/INFOCOM.2006.312

19. Idrees, F., Khan, U.A.: A Generic Technique for Voice over Internet Protocol (VoIP) Traffic
Detection. IJCSNS International Journal of Computer Science and Network Security 8(2)
(February 2008),
http://paper.ijcsns.org/07_book/200802/20080207.pdf

20. Torrini, P., Heckel, R., Rath, I.: Stochastic Simulation of Graph Transformation Systems. In:
Proceeding of International confrence of Fundamental Approaches to Software Engineering
FACE 2010 (accepted 2010)

21. Ahson, S.A., Ilyas, M.: VoIP Handbook, Application, Technologies, Relibality and Security.
CRC Press, Boca Raton (2009)

22. Bergmann, G., Őkrős, A., Ráth, I., Varró, G.: Incremental pattern matching in the VIATRA
model transformation system. In: GraMoT 2008 (2008)

23. L’Ecuyer, P.L., Meliani, L., Vaucher, J.: SSJ: a framework for stochastic simulation in Java.
In: Proceedings of the 2002 Winter Simulation Conference (2002)

http://www.isi.edu/nsnam/ns/
http://www.cs.le.ac.uk/people/rh122/papers/2006/HLM06FI.pdf
http://dx.doi.org/10.1109/INFOCOM.2006.312
http://paper.ijcsns.org/07_book/200802/20080207.pdf

	Lecture Notes in Computer Science
	Introduction
	Case Study: Skype Network
	A Graph Based Model for Skype
	P2P Network Connection as Graph Transformation
	Stochastic Simulation of Graph Transformation System
	Simulation Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

