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Abstract. A framework for boolean-valued judgment aggregation is de-
scribed. The simple (im)possibility results in this paper highlight the role
of the set of truth values and its algebraic structure. In particular, it is
shown that central properties of aggregation rules can be formulated as
homomorphy or order-preservation conditions on the mapping between
the power-set algebra over the set of individuals and the algebra of truth
values. This is further evidence that the problems in aggregation theory
are driven by information loss, which in our framework is given by a
coarsening of the algebra of truth values.

1 Introduction and motivation

One of the most elementary problems in multiagent systems is the problem of
aggregating the distributed information coming from different sources. For col-
lective decision making by autonomous software agents, the canonical version
of this problem (which will be used in the following for the illustration of the
more general aggregation framework) is, of course, the aggregation of the pref-
erences that the individual agents express over a given set of alternatives (see
e.g. [20], Chapter 12). In its almost ubiquitous form, this problem is given by
a set A of alternatives (e.g. candidates) which has to be ranked by a set I of
agents, based on the individual orderings of these alternatives. A preference is
then a binary relation P ⊂ A × A, which is typically assumed to be a linear
order, i.e. an anti-symmetric, transitive and complete binary relation on the set
of alternatives. For all alternatives x, y ∈ A, (x, y) ∈ P then denotes the strict
preference of x over y. Denoting by L(A) the set of all linear orders on A, the
problem of preference aggregation consists in finding a rule that assigns to each
product, or profile, of individual preferences 〈Pi〉i∈I ∈ L(A)I a collective prefer-
ence P ∈ L(A). As preference aggregation is the core problem of social choice
theory, namely the classical Arrovian aggregation problem of the (im)possibility
of constructing a social welfare function which assigns to each profile of individ-
ual preferences a collective preference relation and satisfies a set of normatively
desirable properties, the significance of social choice theory as a fundamental
tool for the study of multiagent systems has always been recognized [18], —
especially so since the incorporation of computational issues in the new field
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of computational social choice [4]. This significance of social choice theory has
greatly been increased by the recent generalization of the classical Arrovian ag-
gregation problem, culminating in the new field of judgment aggregation (for
a survey see [14]). An essential feature of this generalization is the extension
of the problem of aggregation from the aggregation of preferences to the ag-
gregation of arbitrary information represented by individual ”judgments” on a
set of logically interconnected propositions (the agenda) expressed in some for-
mal language (typically propositional logic), the truth values of which are to be
collectively determined.

Especially, in order to also exploit the expressive power of first-order logic,
it seems natural to use the potential of model theory which, broadly speaking,
studies the relation between abstract structures and statements about them
(for an introduction to model theory see [3]) and to analyse the problem of of
aggregating judgments as the problem of aggregating the models that satisfy
these judgments (see [11], following [13]). In a model theoretic perspective, the
aggregation problem as it underlies Arrovian impossibility results can be related
to the well known fact (see [1], p. 174) that a (direct) product of individual
models (e.g. a profile of individual preference relations) may not share the first-
order properties of its factor models (e.g. transitivity). For this reason the direct
product construction is often modified by using another boolean algebra than
2 = {0, 1} and in particular the power-set algebra over the index set as an algebra
of truth values (see e.g. [2]). This approach was first applied to social welfare
functions in [19] as one of the many attempts to overcome Arrow’s dictatorship
result and is here extended to the problem of aggregating judgments in first-order
logic. While the major body of the literature on judgment aggregation studies the
(in)consistency between properties of the aggregation rule and properties of the
agenda (for a survey see [6]), the significance of our simple (im)possibility results
consists in stressing the importance of the set of truth values and its algebraic
structure.4 This significance is closely related to a property of order preservation
of mappings between the power-set algebra over the set of individuals and the
algebra of truth values.

The theory of boolean algebras can be seen as the natural method to analyse
axiom systems in first-order predicate logic. The reason is that axiom systems
under first-order predicate logic induce an algebraic structure on the set of well-
formed formulae: The axiom system combined with the deduction rules of first-
order logic induces a notion of provability, and the quotient of the set of well-
formed formulae with respect to the equivalence relation of provable equivalence
turns out to be a boolean algebra, called the Lindenbaum algebra.

4 Among the relatively few many-valued extensions of judgment aggregation [17], [7],
and [10] deserve to be noted. Closest in spirit to our (im)possibility results is, how-
ever, [8] which establishes a characterization of the possibility/impossibility bound-
ary in the framework of t-norms.
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2 Formal framework and results

Fix an arbitrary set A, and let L be a language consisting of constant symbols
for all elements a of A as well as (at most countably many) predicate symbols
Pn, n ∈ N. We shall denote the arity of Pn by δ(n) (for all n ∈ N).

In the case of preference aggregation, A is interpreted as the set of alternatives
and the (unique) binary predicate symbol P denotes strict preference.

Let S be the set of atomic formulae in L, and let T be the boolean closure of
S, i.e. the closure of S under the logical connectives ¬, ∧, ∨.

Obviously, in the case of preference aggregation, S = {P (x, y) : x, y ∈ A}.
The relational structure A = 〈A, 〈Rn : n ∈ N〉〉 is called a realisation of L

with domain A or an L-structure with domain A if and only if the arities of
the relations Rn correspond to the arities of the predicate symbols Pn and the
relations are evaluated in A, that is if Rn ⊆ Aδ(n) for each n.

An L-structure A is a model of the theory T if A |= ϕ for all ϕ ∈ T , i.e. if
all sentences of the theory hold true in A (with the usual Tarski definition of
truth).

In the case of preference aggregation with linear preferences, T is the set of
L-sentences which axiomatize the class of linear orders, i.e.

∀x¬P (x, x) (irreflexivity),

∀x∀y∀z[(P (x, y) ∧ P (y, z))→ P (x, z)] (transitivity),

∀x∀y(P (x, y) ∨ P (y, x) ∨ x = y) (completeness).

A boolean-valued model for L is a mapping which assigns to each L-
formula λ a truth value ‖λ‖ in some arbitrary complete boolean algebra B =
〈B,t,u,∗ , 0B , 1B〉 in such a way that boolean connectives and logical connec-
tives commute:
‖¬λ‖ = ‖λ‖∗; ‖φ ∨ ϕ‖ = ‖φ‖ t ‖ϕ‖; ‖φ ∧ ϕ‖ = ‖φ‖ u ‖ϕ‖ (see [12]).

Boolean-valued models stand in a natural relation to products of models, like
they play a role in aggregation theory. Indeed, in a model theoretic framework,
a profile of individual judgments is nothing else than the direct product of the
individual (factor) models, and this makes the power-set algebra over the in-
dex set of individuals a natural choice for a modification of the direct product
construction and an alternative boolean valuation (see [1], p. 174f.)

Let Ω be the collection of models of T with domain A.

Let I be a (finite or infinite) set. Elements of I will be called individuals,
elements of ΩI will be called profiles and will be denoted by A := 〈A〉i∈I .

Thus, in the case of preference aggregation, ΩI represents the set of all logi-
cally possible profiles of preferences.

For simplicity, let us assume for our preference aggregation example that
I = {1, 2, 3}, A = {a, b, c}, and that the preferences of the individuals are given
by the classical configuration of the Condorcet paradox, respectively

A1 |= P (a, b) ∧ P (b, c) ∧ P (a, c)

A2 |= P (b, c) ∧ P (c, a) ∧ P (b, a)

A3 |= P (c, a) ∧ P (a, b) ∧ P (c, b).
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Remark 1. Observe that any such profile A ∈ ΩI as a mapping I → Ω in-
duces a map from the set of L-formulae to the power-set algebra P (I) =〈
2I ,∪,∩, {,∅, I

〉
5, which maps every L-formula λ to the coalition of all indi-

viduals whose models satisfy λ, i.e. {i ∈ I : Ai |= λ}.

Thus, e.g. in our simple preference aggregation example {i ∈ I : Ai |=
P (a, c)} = {1} and {i ∈ I : Ai |= P (a, b)} = {1, 3}.

We now call a boolean-valued map f which assigns to each profile A ∈ ΩI and
each formula λ a truth value ‖λ‖Af in some arbitrary complete boolean algebra
B = 〈B,t,u,∗ , 0B , 1B〉 a boolean-valued aggregation rule (BVAR) if and

only if ‖¬λ‖Af =
(
‖λ‖Af

)∗
; ‖φ ∨ ϕ‖Af = ‖φ‖Af t ‖ϕ‖

A
f ; ‖φ ∧ ϕ‖Af = ‖φ‖Af u ‖ϕ‖

A
f

(see [12]).
If we now take for our preference aggregation example the power-set algebra

P (I) as an algebra of truth valuations,6 we obtain a boolean-valued map F
which assigns to each atomic formula the set of individuals in the models of
which it holds true. Thus, e.g. ‖P (a, b)‖AF = ‖¬P (b, a)‖AF = {1, 3}, whereas

‖P (a, b) ∧ P (b, c)‖AF = ‖P (a, c)‖AF = {1} and ‖P (a, b) ∨ P (b, c)‖AF = {1, 2, 3}.
The following properties are reformulations of standard conditions for judg-

ment aggregation rules in the framework of BVARs.
In particular, the non-dictatorship condition can be expressed in the following

way:

Definition 1. A BVAR f is non-dictatorial if there exists no individual i ∈ I
such that for every L-formula λ and every profile A ∈ ΩI
Ai |= λ⇒ ‖λ‖Af = 1B (where 1B the top element of the set of truth values).

Obviously, non-dictatorship is only relevant if the set I consists of at least
two individuals, which will be assumed throughout.

Intuitively, non-dictatorship in the framework of BVARs guarantees that
there exists no individual who can ensure for her judgments the highest truth

5 Wherein {D = I \D for all D ⊆ I.
6 For another simple example which does not involve the power-set boolean algebra,

consider a set of three agents I = {1, 2, 3} facing a set of four different alternatives
A = {a, b, c, d}. Suppose each of them linearly ranks the alternatives according to
their own subjective preferences.

Let L be the first-order language consisting of four constants a, b, c, d and one
relation symbol P , and let T be the theory of linear orders. Let Ω be the set of
models of T with domain A. A profile is then simply a triple of linear orders on the
set {a, b, c, d}, i.e. an element of ΩI .

A particularly simple aggregation function is a map f : ΩI × L → 2 which maps
to each pair 〈A, λ〉 of a profile A ∈ ΩI and an L-formula λ the truth value which a
majority of the agents assigns. In other words, for all A ∈ ΩI and all L-formulae λ,

f(A, λ) =

{
1, #{i ∈ I : Ai |= λ} ≥ 2,
0, otherwise

Verifying that this is a paretian, systematic and non-dictatorial boolean-valued ag-
gregation function with values in {0, 1} is left as an exercise to the reader.
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degree. On the other hand, the intuitively appealing Pareto principle requires
that unanimous agreement be respected by a judgment aggregation rule:

Definition 2. A BVAR f is paretian if for every L-formula λ and every profile
A ∈ ΩI
{i ∈ I : Ai |= λ} = I ⇒ ‖λ‖Af = 1B.

Central to aggregation problems are independence conditions of various
strength:

Definition 3. A BVAR f is independent if for every L-formula λ and every
pair of profiles A,A′ ∈ ΩI

{i ∈ I : Ai |= λ} = {i ∈ I : A′i |= λ} ⇒ ‖λ‖Af = ‖λ‖A
′

f .

Definition 4. A BVAR f is neutral if for every L-formulae λ, λ′ and every
profile A ∈ ΩI
{i ∈ I : Ai |= λ} = {i ∈ I : Ai |= λ′} ⇒ ‖λ‖Af = ‖λ′‖Af .

Definition 5. A BVAR f is systematic if it is independent and neutral, i.e.
if for every pair of L-formulae λ, λ′ and every pair of profiles A,A′ ∈ ΩI

{i ∈ I : Ai |= λ} = {i ∈ I : A′i |= λ′} ⇒ ‖λ‖Af = ‖λ′‖A
′

f .

The property of systematicity might appear strong at first sight but it is
well-known in the literature on judgment aggregation that it is implied by the
independence property and a condition of logical richness known as total blocked-
ness, i.e. if every formula is related to every other one by a sequence of conditional
entailments.

The framework of BVARs allows to use the partial order structure 〈P (I),⊆〉
of the power-set algebra P (I) over the set of individuals (the “coalition alge-
bra”), respectively of the algebra of truth values 〈B,v〉 for the formulation of
conditions on aggregation rules.7 In particular, the monotonicity property can
be formulated in a natural way as such an order preservation property:

Definition 6. A BVAR f is monotonic if for every L-formula λ and every
pair of profiles A,A′ ∈ ΩI

{i ∈ I : Ai |= λ} ( {i ∈ I : A′i |= λ} ⇒ ‖λ‖Af v ‖λ‖
A′

f .

Monotonicity is known to be an important property of aggregation rules
because it guarantees non-manipulability, i.e. the impossibility for any individual
to increase the collectively assigned truth value of a formula by signalling its
negation.

7 Herein, v is the canonical partial order on the boolean algebra; it can be defined
algebraically, for all x, y ∈ B, by

x v y ⇔ x u y∗ = 0B

(or equivalently x v y ⇔ x u y = x).
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The conjunction of monotonicity and independence (known in the judgment
aggregation literature as monotone independence, see [16]) can now be formu-
lated as an order preservation property of the aggregation rule with respect to
the partial orders of the coalition algebra and the algebra of truth values.

Proposition 1. A BVAR f satisfies monotone independence (i.e. is mono-
tonic and independent) if and only if for every pair of profiles A,A′ ∈ ΩI and
every formula λ ∈ T

{i ∈ I : Ai |= λ} ⊆ {i ∈ I : A′i |= λ} ⇒ ‖λ‖Af v ‖λ‖
A′

f . (1)

A natural BVAR F can now be defined by assigning to every L-formula λ
and every profile A ∈ ΩI precisely the subset of individuals in whose models it
holds true, i.e. ‖λ‖AF = {i ∈ I : Ai |= λ}. Thus, the algebra of truth values is
simply identified with the coalition algebra.

This construction immediately leads to the following possibility result:

Theorem 1. The BVAR F is a neutral, paretian and non-dictatorial judgment
aggregation rule which satisfies monotone independence.

For a proof, see the Appendix; the easy verification for the case of our simple
preference aggregation example being left to the reader.

The main interest of this simple boolean-valued construction consists in high-
lighting the implications for the aggregation problem of the structure of the set
of truth values and the significance of the condition of order preservation with re-
spect to the power-set algebra over the set of individuals and the algebra of truth
values (for a deeper exploration of the relation between judgment aggregation
rules and boolean algebra homomorphisms see [9]).

This significance is closely related to a property of homomorphisms of boolean
algebras. 8 Note that systematicity (i.e. the conjunction of independence and
neutrality) permits a decomposition of every BVAR as h ◦ F . One can show
that this h is a homomorphism and thus order-preserving, whence neutrality
and independence already entail monotonicity.

By the agenda richness condition we mean that there are λ, µ ∈ S such
that T is consistent with each of λ ∧ µ, ¬λ ∧ µ and λ ∧ ¬µ.

In preference aggregation, this condition is satisfied if there are at least three
alternatives x, y, z ∈ A such that λ = P (x, y) and µ = P (y, z).

Theorem 2. Let the agenda richness condition be satisfied. A neutral and in-
dependent BVAR induces a homomorphism hf of the coalition algebra P (I) =
〈2I ,∪,∩, {,∅, I〉 to its co-domain, the boolean algebra of truth values B =
〈B,t,u,∗ , 0B , 1B〉
8 A homomorphism of a boolean algebra B into a boolean algebra B′ is a map h : B →
B′ which preserves the algebraic operations, i.e. such that for all x, y ∈ B, h(xuy) =
h(x)uh(y), h(xty) = h(x)th(y), h(x∗) = h(x)∗. A homomorphism is always order-
preserving with respect to the canonical partial orders of the corresponding boolean
algebras.
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As we shall see presently, using the notion of the Lindenbaum algebra, The-
orem 2 can be reformulated as an algebraic factorization result. Let ` be the
provability relation of classical first-order logic, let T ⊆ L be consistent (possi-
bly empty), and let ≡ denote provable equivalence given T (i.e., φ ≡ ψ if and
only if both T ∪ {φ} ` ψ and T ∪ {ψ} ` φ). The set of equivalence classes of
L-formulae under ≡ is known as the Lindenbaum algebra and will be denoted
L/≡. It is obvious that for every BVAR f , the map

Hf : L/≡ ×ΩI → B, 〈[λ]≡,A〉 7→ ‖λ‖Af

is well-defined. It is also clear that for every A ∈ ΩI , Hf (·,A) is a homomor-
phism. Given any profile A ∈ ΩI , we then have the following commutative
diagram or factorization:

L/≡
HF (·,A)−→ P (I)

Hf (·,A) ↓ ↙hf

B

Hence, every boolean-valued aggregation rule can be, for an arbitrary fixed pro-
file, decomposed into a (a) a structure-preserving map from the set of L-formulae
(modulo provable equivalence) to the coalition algebra and (b) another structure-
preserving map from the coalition algebra to the actual algebra of truth values.
This latter step can be seen as a coarsening of the set of the algebra of truth
values at the social level compared to the richness of “social valuations” of the
formulae by the coalition algebra. The extreme case is the classical situation
where the truth values at the social level are just binary.

Now there is a connection between the homomorphy among boolean algebras
and the source of dictatorship in this classical case of binary social truth values,
viz. the existence of an ultrafilter on the set of individuals.

Recall that a non-empty subset F ( B of a boolean algebra B is a (proper)
filter if and only if for all x, y ∈ F and any z w x, both x u y ∈ F and z ∈ F
(meet closure and successor closure). A filter U ( B is an ultrafilter if and only
if it is maximal in the sense that there exists no filter F with U ( F ( B.9 In the
case of the power-set boolean algebra 2I , a proper filter is a proper non-empty
subset of 2I which is closed under the intersection operation ∩ and the superset
relation ⊇; a proper filter U in 2I is an ultrafilter if and only for every set C ∈ 2I

either C or its complement {C = I \C is an element of U . It is well known that
every ultrafilter on a finite set is the collection of all supersets of a singleton —
the dictator —, and 2-valued homomorphisms have an ultrafilter as its shell (see
e.g. [3]):

Lemma 1. Let g : B′ → B be a homomorphism between boolean algebras. Then
the shell of g, i.e. the set {x ∈ B′ : g(x) = 1B} is a filter. If B is the two-valued
algebra 2 = {0, 1} of truth values, then the shell g−1{1B} of g is an ultrafilter.

9 The maximality condition is equivalent to the so-called ultrafilter property : A filter
U is an ultrafilter if and only if for all x ∈ B, either x ∈ U or x∗ ∈ U .
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With the help of such a purely algebraic result, we obtain in the BVAR
framework a typical Arrow-style dictatorship result, as a simple corollary of the
previous theorem:

Corollary 1. Let f be a neutral BVAR which satisfies monotone independence
and has co-domain 2 = {0, 1}. If the set I of individuals is finite, then f is a
dictatorship.

It is thus the rigidity of the truth-value algebra at the social level which
forces dictatorship results. This finding confirms the intuition behind the recent
unification of probabilistic opinion pooling and judgment aggregation through
the overarching concept of propositional attitudes [5]. In the former case, there is
a continuum of possible propositional attitudes at the social level, allowing for a
beautiful possibility result in terms of linear opinion pools [15], and in the latter
case, only binary propositional attitudes are admissible, leading to dictatorial
impossibility results [17].

3 Conclusion

We have thus described a framework for boolean-valued judgment aggregation.
While the major body of the literature on judgment aggregation draws attention
to inconsistencies between properties of the agenda and properties of the aggre-
gation rule, the simple (im)possibility results in this paper highlight the role
of the set of truth values and its algebraic structure. In particular, it is shown
that central properties of aggregation rules can be formulated as homomorphy
or order-preservation conditions on the mapping between the power-set algebra
over the set of individuals and the algebra of truth values. This is further evi-
dence that the problems in aggregation theory are driven by information loss,
which in our framework is given by a coarsening of the algebra of truth values.

Appendix: Proofs

Proof (Proof of Proposition 1). (if part) a) Monotonicity of f can easily be
seen from the fact that the antecedent of the property in formula (1) is just a
weakening of the antecedent of the monotonicity property. b) Independence of
f follows from the fact that in case {i ∈ I : Ai |= λ} = {i ∈ I : A′i |= λ},
formula (1) requires both ‖λ‖Af v ‖λ‖

A′

f and ‖λ‖A
′

f v ‖λ‖
A
f , and thus by the

antisymmetry of the partial order v on B, ‖λ‖Af = ‖λ‖A
′

f . (only if part) Suppose
f is monotonic and independent. If the antecedent in formula (1) is satisfied,
then either {i ∈ I : Ai |= λ} ( {i ∈ I : A′i |= λ} or {i ∈ I : Ai |= λ} = {i ∈ I :

A′i |= λ}. In the former case, the monotonicity yields ‖λ‖Af v ‖λ‖
A′

f , and in the
latter case, so does the independence of f .

Proof (Proof of Theorem 1). By construction, F is neutral. Also, F satisfies
monotone independence, since the antecedent and the consequent in formula
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(1) become identical if F is inserted for f . That F is both non-dictatorial and

paretian can be verified easily by noting that ‖λ‖AF = 1P (I) (= I) is tantamount
to {i ∈ I : Ai |= λ} = I (for every profile A ∈ ΩI and every formula λ).

Proof (Proof of Theorem 2). By the agenda richness, it is easy to see that

for every D,E ⊆ I there is a profile D such that

D = {i ∈ I : Di |= λ} and E = {i ∈ I : Di |= µ}. (2)

Let hf (D) = ‖λ‖Df . Then, hf (henceforth h for brevity) is well-defined — in
the sense of being independent of the choice of D and λ — because whenever
{i ∈ I : Di |= λ} = D = {i ∈ I : D′i |= λ′}, the independence and neutrality (i.e.,

systematicity) of h ensures that ‖λ‖Df = ‖λ‖D
′

f = ‖λ′‖D
′

f . Now, for every D ⊆ I,

one can find (by our above abservation (2), applied to {D instead of D) a profile

C such that {D = {i ∈ I : Ci |= λ} whence h({D) = ‖λ‖Cf . Now by Tarski’s

definition of truth, {i ∈ I : Di |= ¬λ} = {D = {i ∈ I : Ci |= λ}. Since f is both

neutral and independent (hence systematic), this entails ‖¬λ‖Df = ‖λ‖Cf . By our

definition of a BVAR, this amounts to
(
‖λ‖Df

)∗
= ‖λ‖Cf , whence h(D)∗ = h({D)

for arbitrary D ∈ 2I . In a similar vein, one can establish h(D)uh(E) = h (D ∩ E)
for all D,E ⊆ I. Indeed, let D,E ⊆ I. Then there will (by (2)) be a profile D
such that

D = {i ∈ I : Di |= λ}
E = {i ∈ I : Di |= µ}

and (by the consistency of T ∪ {λ ∧ µ}) another profile C such that

D ∩ E = {i ∈ I : Ci |= λ ∧ µ},

whence

h(D ∩ E) = ‖λ ∧ µ‖Cf , h(D) = ‖λ‖Df , h(E) = ‖µ‖Df .

Now by Tarski’s definition of truth, {i ∈ I : Di |= λ ∧ µ} = D ∩ E = {i ∈ I :

Ci |= λ ∧ µ}. Since f is independent, this entails ‖λ ∧ µ‖Df = ‖λ ∧ µ‖Cf . By

our definition of a BVAR, this amounts to ‖λ‖Df u ‖µ‖
D
f = ‖λ ∧ µ‖Cf , whence

h(D)uh(E) = h(D∩E) for arbitrary D,E ∈ 2I . By De Morgan’s formulae in the
boolean algebras B and 2I as well as iterated application of the preservation of
meets and complements by h one can now deduce that h(D)th(E) = h (D ∪ E)
for arbitrary D,E ∈ 2I .10 So, h preserves joins, too, and thus is a homomor-
phism.

10

h(D) t h(E) = (h(D)∗ u h(E)∗)
∗

=
(
h({D) u h({E)

)∗
=

(
h
(
({D) ∩ ({E)

)
)
)∗

= h
(
{
(
({D) ∩ ({E)

)
)
)

= h (D ∪ E) .
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