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Abstract

Applications of modal logics are abundant in computer science, and a large number of
structurally different modal logics have been successfully employed in a diverse spectrum
of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and
encompassing view on the large variety of specific logics used in particular domains. The
coalgebraic approach is generic and compositional: tools and techniques simultaneously
apply to a large class of application areas and can moreover be combined in a modular way.
In particular, this facilitates a pick-and-choose approach to domain specific formalisms,
applicable across the entire scope of application areas, leading to generic software tools
that are easier to design, to implement, and to maintain. This paper substantiates the
authors’ firm belief that the systematic exploitation of this coalgebraic nature will not
only have impact on the field of modal logic itself but also lead to significant progress
in a number of areas within computer science, such as knowledge representation and
concurrency/mobility.
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INTRODUCTION

Logics of all colours, shapes, and sizes have traditionally played a central role in computer science,
and in fact the standard design of the modern computer itself is based on a particular brand of logic,
Boolean propositional logic. In a rough classification along a tradeoff between expressiveness on the one
hand and computational tractability on the other hand, one finds simple logics such as propositional
logic, which despite being NP-complete can nowadays be efficiently handled using modern SAT-solvers,
at the one end, and highly expressive higher order logics which however typically offer only a low degree
of automation at the other end. In between, one has a broad spectrum of logics that aim at finding
application-specific sweet spots between the two conflicting goals of expressiveness and tractability.
One large class of such logics is the vast and growing family of modal logics, which are characterised
by having operators that qualify formulas as holding in a certain way, e.g. ‘necessarily’, ‘in the future’,
‘everywhere’, ‘probably’, ‘as everyone knows’, or ‘normally’.

Applications of modal logics and their more recent descendants, hybrid and description logics which to
some extent allow speaking about individuals, are abundant in computer science and related disciplines,
and a multitude of different formalisms have been studied in a variety of application contexts. Apart
from classical applications in the field of concurrent [20], mobile [30], and probabilistic systems [28],
modal logics play a central role in artificial intelligence, e.g. in the context of reasoning with uncertainty
[18], non-monotonic reasoning [16], and – in particular in their description logic incarnation – in the
field of knowledge representation and ontologies [4]. Modal logics are employed to reason about games
[32] and coalitional power in multi-agent systems [36]. In economics, they have been used to describe
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probabilistic information of economic agents [19], whereas e.g. deontic logic, the logic of obligation
and permission originally studied in philosophy [47], is being used to model contracts in multi-agent
systems. While we do not pretend to work specifically on one of the UKCRC Grand Challenges, it is
interesting to note that every one of the current challenges involves modal logic in some form or other,
variously referring e.g. to knowledge representation, logics of agents, or logics for concurrency.

As an example in knowledge representation, imagine you want to connect two knowledge bases that
describe different aspects of, say, transport patterns. The first knowledge base describes travel patterns
in relation to individual activities. The second knowledge base delineates the volume of traffic on
public and individual transport in temporal terms. Both knowledge bases will naturally use a plethora
of different primitives to represent information. In a seemingly simple piece of knowledge such as
‘Normally, the likelihood of road congestion is smaller on weekends’, one implicitly makes use of default
logics (‘normally’), probabilistic reasoning (‘the likelihood’) and temporal knowledge (‘weekends’)
under a quantitative regime (‘smaller’). If we link this in with both knowledge bases that we seek
to combine, we will moreover encounter spatial reasoning (to cater for distances), epistemic principles
(knowledge of individuals), deontic constructs (obligations that arise e.g. through social norms) adorned
with constructs that formalise the joint behaviour of individual agents. Depending on the specifics of
knowledge that we seek to combine, many more ways of logically expressing the relationship between
the entities under scrutiny may be needed.

Central to the study of logics in general are a number of recurring questions, including completeness
(‘are all valid statements derivable?’), decidability (‘is the logic amenable to automated reasoning?’) and
complexity (‘what resources are required to mechanise the logic?’). Given the diversity of the modal logic
family on the one hand and the uniformity of the problems arising in meta-theory and implementation
on the other hand, it is clearly desirable to have a common framework that captures the syntax and
semantics of the mentioned modal logics and many others, existing or yet to be developed, in a uniform
way and at the same time allows for a common meta-theory and generic mechanised reasoning tools.
The unifying ingredient that makes all this possible is found in the semantics, however varied shapes
the latter assumes in specific cases. It turns out that the common denominator is a view of models as
dynamic or reactive systems in a very general sense, which is formally captured by regarding them as
coalgebras. We illustrate this view by a quick glance at a few examples.

Kripke Frames. The traditional textbook semantics of the modal logic K and its extensions is
usually presented in relational form: a Kripke frame is a pair (W,R) where W is a set of worlds
and R ⊆ W × W is an accessibility relation. The interpretation of the accessibility relation varies
according to the application domain – e.g. in concurrency, worlds are seen as states of a system, and R
as representing their potential temporal evolution, in knowledge representation, worlds are regarded as
individuals and R is a relationship between individuals such as parthood, and in epistemic reasoning, R
captures epistemic alternatives. In a Kripke frame, a world w satisfies a modal formula of the form 2φ,
read e.g. ‘necessarily φ’ or ‘in all successor states, φ’, if all worlds w′ accessible from w, e.g. all successor
states of w or all parts of w, satisfy φ. Now Kripke frames are easily seen to be in 1-1 correspondence
with transition maps ρ : W → P(W ) that assign the set of successors {w′ ∈W | wRw′} to each world
w, where P(W ) is the powerset of W . From this point of view, if φ is a modal formula with extension
JφK ⊆W , then a world w satisfies 2φ (w |= 2φ) iff the successor set of w is contained in JφK. In other
words,

w |= 2φ ⇐⇒ ρ(w) ∈ {B ∈ P(W ) | B ⊆ JφK}.

Probabilistic Transition Systems. One step up from Kripke frames, probabilistic transition systems
extend the notion of transition with quantitative uncertainty. In its simplest form [28, 19], probabilistic
modal logic (PML) extends propositional logic with operators Lp (‘at least p’) where p ∈ [0, 1] is a
rational number. PML is interpreted over probabilistic transition systems (W,P ) where W is a set of
worlds and P = (Pw)w∈W is a family of probability distributions on W , indexed by the set of worlds.
Again, according to the application context P is variously interpreted as e.g. governing the evolution
of a black-box dynamic system or the beliefs of an agent. Correspondingly, the intended reading of
Lpφ is ‘φ holds with probability at least p in the next state’, or from the perspective of quantitative
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uncertainty ‘in his present state of belief, the agent assigns probability at least p to φ’. We may
view probabilistic transition systems as transition maps ρ : W → D(W ), where D(W ) denotes the
set of discrete probability distributions on W ; i.e. ρ assigns to each world w a successor distribution
ρ(w) ∈ D(W ). The main difference with Kripke frames lies in the fact that collections of successors
are now structured : moving from frames to probabilistic models entails a shift from successor sets to
distributions. The classical interpretation of probabilistic formulas, i.e.

w |= Lpφ ⇐⇒ Pw(JφK) ≥ p

can now be re-phrased in terms of successor distributions:

w |= Lpφ ⇐⇒ ρ(w) ∈ {µ ∈ D(W ) | µ(JφK) ≥ p},

i.e. a state w satisfies Lpφ if its successor distribution assigns probability at least p to the event JφK ⊆W .
Again, the quintessential nature of a probabilistic modal operator manifests itself as providing a passage
from properties of states to properties of successor distributions.

Conditional Logic. The language of conditional logic [7] extends propositional logic with a binary
connective that we write ⇒, using infix notation. The operator ⇒ represents a non-monotonic
conditional, whose intended readings include e.g. default implication ‘if φ then normally ψ’ and the
conditional version ‘ψ holds under the condition φ’. The ensuing logics are often used in knowledge
representation to deal with the non-monotonic nature of information. Note that the operator ⇒ is in
general distinct from material implication →. For example, the validity of φ⇒ ψ does not imply that
of φ ∧ φ′ ⇒ ψ. Thus, conditional logic is a modalised version of default logic, where defaults may be
nested. Conditional logic is usually interpreted in so-called (standard) conditional frames (or selection
function frames), that is, pairs (W, f) where W is a set of worlds and f : W × P(W ) → P(W ) is
a selection function that assigns a proposition f(w,A) ⊆ W to each world w and condition A ⊆ W .
Alternatively, we may view conditional frames as transition maps ρ : W → (P(W ) → P(W )) that
map each world w ∈ W to a function ρ(w) : P(W ) → P(W ) from conditions to propositions, both
formalised as subsets of W . That is, successor structures of worlds are now (selection) functions of type
P(W )→ P(W ).

In a conditional frame (W, f), the standard semantics of the conditional operator takes the form

w |= φ⇒ ψ ⇐⇒ f(w, JφK) ⊆ JψK.

Again, the semantics of the conditional operator can be understood as specifying a property of successor
structures, i.e. selection functions: we have

w |= φ⇒ ψ ⇐⇒ ρ(w) ∈ {f : P(W )→ P(W ) | f(JφK) ⊆ JψK)}

where JφK and JψK are again the truth-sets of φ and ψ, respectively. We note that, as in the other
examples above, the semantics of the conditional operator is embodied by an operation, in this case
binary, that maps predicates on the set of worlds to predicates on the set of structured successors, in this
case selection functions. Other examples include e.g. spatial transition systems where binary modalities
are used to decompose concurrent processes.

The pattern that becomes apparent in the above examples is that we may typically see the semantic
transition structures over which modal logics are interpreted as maps of the type W → T (W ), where
T is some operator on sets, technically a functor, and to be thought of as a form of parametrised
datatype, which determines the branching type of the transitions; and moreover the interpretation of
modal operators is embodied in terms of predicate liftings that transform predicates on the set W of
worlds into predicates on the set T (W ) of successor structures. As a map W → T (W ) is just what is
technically termed a coalgebra for T , this is the starting point of coalgebraic modal logic : we can study
modal logics at the right level of generality by parametrising their semantics in the choice of a functor
T and a suitable set of predicate liftings.

Given that, as already illustrated by the above examples, the level of generality of the coalgebraic
approach is quite high indeed, one may wonder whether it is actually the right level of generality as
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claimed, i.e. whether one can indeed develop a powerful generic theory rather than just gather lots of
examples under a common umbrella. It is one of the aims of this work to substantiate the claim that
this is really the case by highlighting some of the achievements of coalgebraic modal logic to date.
Indeed the scope of the established meta-theory of coalgebraic modal logic reaches surprisingly far.
Besides basic meta-logical properties such as generic criteria for soundness and completeness [33], it
includes e.g. some now classical results of modal logic such as duality and ultrafilter extensions [25],
but also computational aspects such as generic finite and shallow model constructions with ensuing
decidability and complexity results [39, 40] and decidability of generic fixed-point logics [26], as well
as proof-theoretic results such as cut elimination and interpolation [34]. The coalgebraic framework is
not only parametric, but also modular w.r.t. combinations of logics [9, 41]. Moreover, the parametricity
extends also to the underlying form of propositional logics and thus includes e.g. logics over nominal
frameworks [5].

Having thus emphasised the suitability of the coalgebraic approach as a universal framework for modal
logic, we set out to develop our vision of a unified description logic with universally applicable automatic
reasoning support. In this ideal future, workers in knowledge representation, verification of concurrent
systems, and many other areas will put together the domain-specific modal logic suited for their problem
domain in a pick-and-choose approach, and immediately obtain efficient and scalable reasoning tools
by instantiating the generic coalgebra-based reasoning environment.

1. A COOK’S TOUR OF COALGEBRAIC LOGICS

The above examples support the claim that modal logics can be interpreted over general coalgebraic
models. The idea that underlies the whole body of research into coalgebraic logics is parametricity:
the methods and tools of coalgebraic modal logic apply to coalgebras of any type. In other words,
the abstract theory speaks about T -coalgebras (C, γ : C → TC) without ever assuming a concrete
definition of T . Applications to concrete logics then simply fall out by instantiating the type functor T
accordingly. In this way, one obtains e.g. algorithms for reasoning with coalgebraic logics that uniformly
cover all the previously given examples. A surprisingly large body of results can be obtained at this
high level of generality, indicating that coalgebras relate to modal logic at precisely the right level of
generality. We illustrate this by the following overview of the main results, tools and techniques in the
field of coalgebraic logics.

1.1. Compositionality of Coalgebraic Logics

As illustrated above, the coalgebraic paradigm is a very flexible means of describing dynamic behaviour.
E.g. we have seen that probabilistic transition systems can be described as coalgebras of type C → D(C)
where D(C) is the set of (finitely supported) probability distributions over C. Similarly, game frames [36]
can be phrased coalgebraically: a game frame amounts to a coalgebra of type C → G(C) for

G(C) = {(S1, . . . , Sn, f) | Si 6= ∅, i = 1, . . . , n; f : S1 × · · · × Sn → C}

where informally the Si are sets of strategies of the individual agents 1, . . . , n and f is an outcome
function that produces a new position on the game board given the choice of individual strategies.
Games with uncertainty can now be modelled by a simple combination: rather than a new position as
in the game with certainty, the outcome of a choice of strategies is now an uncertain new position,
i.e. a probability distribution over positions on the game board. That is to say, a model for games
with uncertainty is a coalgebra of type C → D(G(C)) – a position on the game board and choice of
strategies yields a distribution over successor states. In a similar way, simple Segala systems (called
probabilistic transition systems in [24]) can be modelled as coalgebras of type

C → (P(DC))A

where (−)A represents function space: to every state c ∈ C and every label a ∈ A, one associates
the non-deterministic choice of a probability distribution over successor states that accounts for a
probabilistic interaction with the environment. Similar combinations abound in many areas of computing:
in the area of knowledge representation, one may for instance consider combinations of non-monotonic
conditionals and quantitative uncertainty, and logics for mobile systems are most conveniently addressed
using logical primitives for communication and the generation of new channels at run time.
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The power of the coalgebraic approach comes into play by associating a logical description to every
component that can be composed to obtain a description of combined systems in the spirit of Abramsky’s
Domain Theory in Logical Form [2]. In more detail, we have for every type functor T on sets:

• a one-step syntax, consisting of a set of modal operators with arities that are used to describe
possible next-state behaviours;

• a one-step semantics for each such modal operator, in the shape of a choice of predicate liftings
as explained in the introduction; and

• a set of one-step rules axiomatising the one-step observable behaviours of states of T -coalgebras.

The great advantage of the above approach is its compositionality, which allows deriving composite
modal logics in parallel with the structure of composite type functors such as P(D(−))A above:
it suffices to identify a number of ‘basic’ logical features, such as non-determinism, strategies, or
probability, and a number of ways of combining such features (these two ingredients can even be seen as
instances of the same concept [41]), and equip these constructions with the above-mentioned semantic
and proof-theoretic structure. One thus obtains multi-sorted modal logics that mix the involved modal
operators under a typing discipline which reflects the structure of the underlying systems, such as the
probabilistic modal logic for Segala systems advocated in [24] that distinguishes probabilistic and non-
deterministic formulas. This compositional structure allows properties such as soundness, completeness,
expressiveness (w.r.t. characterising bisimilarity [9] or parametrised notions of similarity [8]), and
decidability, as well as upper complexity bounds (Sect. 1.4), to be derived in a modular fashion by
showing that the basic building blocks satisfy certain conditions at the one-step level such as one-step
completeness or one-step expressiveness [9, 41]. Instantiated e.g. with the probabilistic modal logic of
Segala systems [24], the coalgebraic approach provides in particular

• a modularised proof of the expressiveness of this logic w.r.t. the standard notion of bisimulation,
• a modular way of deriving a sound and complete proof system, and
• a modular satisfiability algorithm that witnesses a PSPACE upper bound.

While the first item is just an alternative proof of a known result in probabilistic process algebra, the
latter two have, to our knowledge, first been stated and proved in a coalgebraic setting [9, 41]. So far,
only a limited amount of interaction between the different components can be accounted for [35] but
more general results are anticipated.

1.2. Logics for Nominal Calculi

In the previous section, we have argued that the coalgebraic approach is parametric and compositional
in the notion of behaviour, which is conveniently abstracted into a type functor. But what constitutes
the semantical base whose properties we are to observe? It turns out that there is a plethora of different
semantical structures which form the underlying basis over which we analyze behaviour.

This is reflected in the different ways of building logics and models. For example, on the logical side, the
variation starts already at the level of the underlying propositional logic (classical, intuitionistic, positive,
substructural, etc.). Semantically, we may start with basic entities that we call states and then add
structure, beyond the coalgebraic transition structure, in many different ways, e.g. algebraic operations
(reflecting the way process calculi allow us to construct new states from given ones), topological
structure (capturing that not all but only ‘open’ sets of states are observable) and, most importantly,
recursion. Like in the ‘plain’ coalgebraic setting, we wish to find a systematic and modular way of linking
logics to structured models.

The semantics of the logics we want to use as the basic building blocks are best described via Stone
duality [23] and its relatives. The idea is to describe a logic (syntax and proof system) as a category of
algebras (such as Boolean algebras, Heyting algebras, distributive lattices) and the models as topological
spaces (the topology corresponds to the fact that e.g. finitary Boolean logic is not strong enough to
reason about arbitrary infinite unions and intersections). Duality then amounts to a (dual) equivalence
between a category of algebras and a category of topological spaces (such as Boolean algebras and
Stone spaces). The two layers, duality and modular combination, can be brought together in a fruitful
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way to account for the computational structure over which observations are made. A famous example,
and indeed ancestor of this approach, is Abramsky’s programme of Domain Theory in Logical Form,
which extends Stone dualities to the solution of recursive domain equations [2, 3].

We now proceed to illustrate how coalgebraic techniques and a suitable choice of base category can
be combined to derive in a systematic way a logic for the π-calculus [29] which characterises strong
late bisimilarity and accounts for name binding; see [5] for a full treatment. This showcases yet another
orthogonal aspect of genericity in the coalgebraic framework. To capture the semantics of the π-calculus,
we need to interpret processes not in a set-theoretic universe (as before) but over named sets, or more
formally the presheaf category N of functors from finite sets (representing communication channels) to
spectral spaces (representing observable behaviour in the presence of recursion). As with the coalgebraic
approach in general, the type of possible one-step behaviours of processes is captured by a type functor,
but now taking nominal sets as the semantic base. For the π-calculus, the following functor on N was
introduced independently in [15] and [45]:

Pi(X) = P( X + N ×XN + N × (N ×X) + N × δX ) . (1)

As before P is for non-determinism, + is binary choice; N is a constant for the set of names, δ allows
creating a fresh name, and (·)N inputs a (possibly fresh) name. We read Pi as follows. The possible
one-step behaviours of a process are non-deterministic (due to P) and may be one of the following
alternatives: A silent step (the X component), an input of a name (XN ) over a channel (N), the
output of a free name over a channel (due to N × N × X) or the allocation and sending of a fresh
name (the N × δ(X)-part).

In the same way in that modularity was invoked to obtain sound, complete and fully abstract logics for
set-based models, the same machinery also applies uniformly in this different, more complex setting:
One has to describe the logical structure of the semantical base category, in this case N, and a logical
description of the functor Pi . This is not hard: The case of the basic functors P,+,× has been treated
in Abramsky [2, 1] and the axiomatisations can be reused without further modification (providing e.g.
the usual modalities 2 and 3); allocation of new names gives rise to a modal operator [νb] for name
revealing. The results is a new, fully abstract, sound and complete modal logic for the π-calculus. Again,
the power lies in the modularity: the same techniques give rise to out-of-the-box logics both for other
calculi and other forms of equivalences, in particular including ones yet to be developed.

1.3. Automata and Fixpoint Logics

In this section we provide another example of the unifying power of the coalgebraic perspective, now
in a classical area of computer science: automata theory. More specifically, we consider the theory of
finite automata as devices for classifying infinite, or possibly infinite, objects. This branch of theoretical
computer science has found important applications in areas of computer science where one investigates
the ongoing and temporal behavior of nonterminating programs such as operating systems. As an
example we mention the automata-based verification method of model checking [11] and reasoning
with fixpoint logics [17] for example in the context of common knowledge or temporal logics.

This research also has a long and strong theoretical tradition, in which an extensive body of knowledge
has been developed, with a number of landmark results. Many of these link the field to neighboring
areas such as logic and game theory, see [17] for an overview. The outstanding example here is of course
Rabin’s decidability theorem [37] for the monadic second order logic of trees; to mention a more recent
result, Janin & Walukiewicz [22] identified the modal µ-calculus as the bisimulation invariant fragment
of the monadic second order logic of labelled transition systems.

The automata that we refer to come in many kinds and shapes, and can be classified according to a
number of criteria, including

1. the kind of objects the automata operate on: words, trees, transition systems, . . .
2. the degree of interaction encoded in the automaton transition map: is it deterministic,

nondeterministic, or alternating?
3. the acceptance condition of the automaton: using a Büchi, Muller or parity condition?
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Note that the objects that automata operate on very often are coalgebras, so it should come as no
surprise that coalgebraic notions will play a role here. Interestingly, many of the key results in automata
theory involve a comparison of automata that fall in different classes according to the second and third
criterion above, but apply separately to each class of automata as given by the first criterion. This
applies for instance to various closure properties of the class of recognizable languages, and to the
fact that alternating parity automata can be transformed into equivalent nondeterministic ones: these
results hold for word, tree, and graph automata alike. We claim that it will increase our understanding
of automata theory if we see these results as manifestations of a more general, ‘universal’ automata
theory which is essentially coalgebraic in nature.

The key idea underlying the coalgebraic perspective on automata theory is that acceptance (of an
object by an automaton) generalizes bisimilarity (of two objects). This notion can be nicely captured
by an infinite bisimilarity game of two players that we call ∃ (Éloise) and ∀ (Abélard). In order to bring
automata into the picture, we think of one structure, a coalgebra of type A = (A,α : A→ TA), from
now on called the automaton, as classifying the other structure, a coalgebra S = (S, σ : S → TS) of
the same type, from now on called the coalgebra. This conceptual breach of the symmetry between the
two structures allows us to make some modifications to the structure of the automaton.

Most importantly, we give ∃ a bigger role in the game by replacing the transition map α : A→ TA with
a nondeterministic variant ∆ : A → P(TA). The game is modified accordingly: Instead of fixing the
coalgebraic reading of a state a ∈ A as the element α(a) ∈ TA, we allow ∃ to dynamically pick such
a reading from the set ∆(a) ⊆ TA, whenever the state a pops up during the match. Space limitations
prevent us from discussing the other two modifications (requiring automata to be finite, and adding an
acceptance condition enabling ∀ to win some infinite matches as well) in any detail.

The key point is that we have turned the bisimilarity game into an acceptance game, and that when
we take the coalgebra S to be a binary tree, then this acceptance game is exactly the standard one that
we know from classical automata theory.

The coalgebraic perspective on automata theory that we just described, applies to set coalgebras of
arbitrary type T [46]. In addition, in order to specify and reason about ongoing coalgebraic behavior,
one may extend the coalgebraic logics mentioned in the earlier parts of this note, with fixpoint operators,
obtaining coalgebraic generalizations of the modal µ-calculus [22]. Perhaps of more significance, under
some mild condition on the functor T (namely, that it preserves so-called weak pullbacks), most of
the important results in the theory of tree and graph automata, can in fact be proved at this level of
generality [27]. As examples we mention the following results:

• reduction of alternating to nondeterministic automata
• various closure properties of recognizable languages
• decidability and finite model property of an associated coalgebraic fixpoint logic.

It should be noted that all the above constructions are naturally of a modular nature [10] and so truly
faithful to the coalgebraic paradigm.

1.4. Generic Algorithms and Reasoners for Modal Logics

Given the extremely broad scope of coalgebraic modal logic, one of the most important aspects of its
emerging meta-theory is that it allows for a generic algorithmic treatment, including both the proof of
tight generic complexity bounds and actual implementations. The corresponding theoretical results take
the shape of well-defined and easily verified criteria that a logic must satisfy in order to have a decidable
satisfiability problem or even to be of low computational complexity. Technically, these criteria reduce
properties of the logic to much simpler properties of the underlying coalgebraic structure as given by
the choice of a functor and associated predicate liftings; generic complexity bounds are then witnessed
by generic algorithms that are parametrised by subroutines dealing with logic-specific aspects of local
satisfiability.

Early results of this type have been limited to so-called rank-1 logics, characterised semantically as
imposing only local restrictions (such as seriality) rather than global restrictions (e.g. transitivity)
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on the underlying models. Advances into the generic study of logics outside rank 1 are being made
currently [35, 43]. The first widely applicable criterion [39] made use of a filtration-based finite model
construction to obtain a generic decidability criterion and ensuing EXPTIME or NEXPTIME upper
bounds, establishing a finite model property for coalgebraic logics along the way. A strongly improved
version of this result [43] applies to various logics outside rank 1, and in particular has led to the
design of a description logic with qualified number restrictions that is able to handle parthood across
several layers of decomposition while keeping decidability, even in NEXPTIME; this contrasts sharply
with existing approaches using transitive parthood, which lead quickly into undecidability [21].

Within the realm of rank-1 logics, the generic exponential time bounds of [39] generally do not match
the actual complexity of individual logics, which is typically PSPACE. It does however turn out that
these bounds can be matched by generic algorithms, and indeed the latter have been used to determine
the exact complexity of individual logics where this was previously unknown. The generic algorithms
available can be broadly grouped into two classes: syntactically-oriented algorithms that connect proof
search with shallow models, and semantically-minded algorithms that attempt to construct shallow
models directly. An algorithm of the former type, based on the central notion of resolution closed
rule sets [40], captures the known tight PSPACE upper bounds for such diverse logics as K (or KD),
coalition logic, graded modal logic, and probabilistic modal logic, and moreover has led (simultaneously
with [12]) to a new PSPACE upper bound for majority logic [31]. This algorithm, in modularised form, is
implemented in the prototypic Coalgebraic Logic Satisfiability Solver CoLoSS [6]. Alternative semantics-
based algorithms [44] cover e.g. complex logics such as Presburger modal logic [12] and the modal logic
of probability [14], and have been used to establish new PSPACE upper bounds e.g. for Elgesem’s logic
of agency [13]. Not only does this already cover an impressive collection of modal logics. What is more
is that – faithful to the coalgebraic paradigm – the reasoning principles for individual logics can be
combined and induce reasoners for composite logics [41]. Ongoing externally funded research projects
are aimed at extending the generic algorithmic framework, in particular to more general logics including
fixpoints. One important goal are optimised implementations of the generic algorithms to pave the way
for efficient and universal reasoners based on the coalgebraic paradigm.

2. VISIONS

We believe that, in the medium term, coalgebraic logics will make a difference in many areas, mainly
because of their huge flexibility and compositional nature. One of the areas is modal logic itself, but the
potential is far greater. We outline some visions in the areas of knowledge representation and reasoning
about concurrent and mobile systems.

2.1. The Future of Modal Logic

Imagine you are exploring a newly designed or discovered modal logic. The questions on the agenda
could be computational (is the logic decidable? how difficult is the decision problem?), of a modelling
character (what is the natural semantic domain for the logic? is it complete? is it expressive?) or possibly
pertaining to its meta-theory (does it have the interpolation property? is it canonical?).

The standard approach to questions of the above type is to set up a semantics for the logic under
scrutiny and to try and adapt known constructions from other settings to the new semantic domain
in order to shed light on the properties of interest – a laborious process that leads to results that are
specific to the logic under consideration.

Or, why not simply consult the rich and expanding literature on coalgebraic semantics and instantiate
off-the-shelf results to obtain the properties in question? And even in case ready-made results do not
fit (yet), investigating your logic in the generic and abstract coalgebraic framework has benefits that
go far beyond the concrete logic at hand and will later help those who ask similar questions about their
own favourite logics.

In summary, we expect that the future of modal logics is coalgebraic. Judging from the rapid growth of
the body of literature in coalgebraic logics, and the already impressive number of logics that fall within
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the coalgebraic paradigm, coalgebras will be the standard semantics of modal logics in years to come.
We believe that the coalgebraic view brings about a number of significant advantages:

Genericity. Both theoretical results and practical tools based on the coalgebraic framework are by
construction applicable to a large class of modal logics.

Compositionality. Different logics can naturally co-exist in the coalgebraic framework which allows for
a natural and seamless integration of reasoning principles.

Adaptability. Application areas are dynamic rather than static, and the generic and compositional
approach of coalgebraic logics allows for an easy integration of new requirements in particular
application domains. Coalgebraic modal logic caters for both semantics-centered approaches,
where one needs to design a logic to describe given semantic phenomena, and syntax-centered
ones [42], where one needs semantic underpinnings for the analysis of given means of expression.

As new and domain specific modal logics emerge steadily, for example in the fields of knowledge
representation and concurrency/mobility as outlined below, the time is ripe for a more unified approach
that will largely eliminate the need for tinkering with the particulars of specifically given logics. What
we see before us in the medium term is a unitised coalgebraic foundation that covers not only the
logics of today, but also all those logics that will be developed tomorrow to harness the ever increasing
complexity of the modern digital society.

2.2. Coalgebraic Logics in AI and Knowledge Representation

Recall the example from the introduction involving transport patterns. We have seen that the expressive
means potentially required in traffic-related formal knowledge bases can be cast as instances of
coalgebraic modal logic. What next? Of course we would like to reason about the information that
is represented by the amalgamation of both knowledge bases. This involves modularity: we need to
combine reasoning principles (to capture the interaction between different logical constructs), we need
to combine knowledge and data, and we need to synthesise algorithms that allow to derive valid
conclusions from the amalgamated knowledge base automatically.

But reasoning may not be enough. We might want to employ mechanisms of knowledge discovery, e.g.
with the aim of supporting transport planning or to provide decision support for network managers.
This leads us into the area of machine learning, and we would like to employ mechanisms for knowledge
discovery in this specific setting.

Of course, reasoning about transport patterns is only one example, and we are faced with similar tasks,
most prominently in the area of medicine (with a comparatively large body of knowledge formalised e.g.
in the GALEN ontology [38]), but also in other areas like civil engineering, law, and life sciences. The
diversity of the form of knowledge to be formalised, which stems from the different application areas,
calls for modular and compositional systems that allow representing and reasoning about combinations
of many different facets of knowledge – and if we were granted a wish, they should moreover allow for
induction of hypotheses.

Can such systems be achieved? We think that coalgebraic techniques will have both a natural and a
central place in the field of knowledge representation in the years to come. The pick-and-choose approach
to modal, hybrid, and description logics allows us to combine logical features and reasoning principles in a
modular fashion. The modularity goes beyond the blueprint stage as coalgebraic techniques also facilitate
the automated construction of reasoning engines based on a combination of logical features. Of course,
more research is needed, and the application of coalgebraic techniques in knowledge representation in
particular calls for progress in two specific areas. The first concern is the development of a generic
theory of learning, or induction of hypotheses, to be able tap into today’s distributed knowledge bases.
Equally important is the creation of distributed reasoning engines that support the modular paradigm
to harness the generally large volume of data computationally.

In summary, coalgebraic techniques have a lot to offer for knowledge representation, first and foremost a
dramatic increase in expressive power that stems from incorporating and combining different logics and
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reasoning principles that are relevant for representing knowledge. We envisage that this potential will
be realised in the medium term in the form of tangible tool support for (coalgebraic) reasoning about
knowledge: In a few years time, we will be able to specify the relations of distributed knowledge bases
and employ distributed, compositional reasoning to provide e.g. decision support for traffic network
planning, based on the integration of a large body of knowledge over the web.

2.3. Concurrency and Mobility

Imagine you are to design the IT infrastructure of a security-relevant operation, say an airport, that
is currently being planned. Users will want to attach to the infrastructure using a plethora of mobile
devices, from handheld computers to mobile phones. Clearly the overall architecture will have to be
location aware up to the point of distances between individuals, reflect different security clearances
and cater for availability of finite resources. The overall architecture will interact with a probabilistic
environment and be able to incorporate both soft and hard deadlines.

Part of the challenge of this task is to provide quality assurances regarding both functional and non-
functional requirements while the requirements, and consequently also the layout of the system, is still
subject to change. Of course, our first task in this enterprise is to build a model that caters for all the
requirements indicated above, quite possibly in the form of a dedicated calculus. The task of validating
requirements then takes the form of logical reasoning, with the model providing the necessary semantical
underpinning. Clearly, compositionality is the key ingredient without which an endeavour like the above
would not be feasible. One needs to combine both reasoning principles and their underlying semantic
manifestations. We need a modular way to combine location aware and spatial logics with probabilistic
aspects, notions of resource, security, concurrency and mobility, all in a framework that honours time.
The emphasis needs to be placed on flexibility, as new requirements may emerge and the model is
subject to constant change.

The above scenario discusses just one (very concrete) example of tasks that lie ahead of us in the
future. Very similar problems manifest themselves in three of the nine Grand Challenges in Computing
Research: we mention Global and Ubiquitous Computing, Dependable Systems Evolution and Scalable
Ubiquitous Computing Systems. We believe that coalgebraic modelling, and associated coalgebraic
logics, are very well positioned to bring about significant advances in global computing at large. First,
the coalgebraic model is flexible. That is, it can incorporate many different types of behaviour and
interaction, e.g. location awareness, mobility and quantitative uncertainty, to name but a few. Second,
the coalgebraic model is compositional : both on the logical and the semantical level it allows us combine
computational features and reason about their interaction. Finally, the coalgebraic model is uniform, i.e.
all computational aspects of the model share the same meta-theory. This in particular leads to software
tools that are easier to design, to maintain and to implement.

It is precisely the large number and diverse nature of networked devices as well as the possibly
disastrous consequences of failure that call for an integrated and compositional approach to modelling
and verification as provided by the coalgebraic paradigm. As it stands, this presents two research
challenges. To fully maximise the benefit of the coalgebraic approach, more investment both at the
theoretical and practical level is needed. On the theoretical side, a more compartmentalised analysis of
mobility primitives and their interactions needs to be provided, together with a compositionality layer
that specifically addresses the needs of ubiquitous computing. On the practical side, this needs to be
matched with adequate and modular tool support, specifically concerning automated reasoning and
model checking.

In summary, we envisage that the coalgebraic approach will play a leading role in the area of formal
models of ubiquitous computation in the medium and long term. In a world where we rely on increasingly
complex and self-managing networks to an unprecedented level, quality assurance in the sense of
mathematical proof will be indispensable soon in a large number of areas, ranging from intelligent
sensor networks to medical smartcards that store and encode highly confidential information.
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3. CONCLUSIONS

Coalgebraic logic is an immensely rich field with a multitude of applications, of which we could just
describe a tiny fraction. We believe that the coalgebraic approach views computational phenomena
at precisely the right level of abstraction: the modelling language is extremely flexible, while the
associated logics are still decidable in reasonable complexity classes. In conjunction with the built-in
compositionality of the method at large, one obtains an extremely powerful framework for the analysis
of phenomena in Computer Science and Artificial Intelligence. Apart from foundational research that
extends the arsenal of logical machinery, the most important challenge is the further development of
tangible tool support towards optimised efficient reasoners. Our philosophy here is pick-and-choose, and
the genericity of the coalgebraic approach will manifest itself in a modular and compositional reasoning
framework that will be used in areas ranging from the verification of mobile systems to knowledge
representation and artificial intelligence.
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[34] D. Pattinson and L. Schröder. Admissibility of cut in coalgebraic logics. In Coalgebraic Methods
in Computer Science, CMCS 2008, vol. 203 of ENTCS. Elsevier, 2008.
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