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Abstract. We present a tool for reasoning in and about propositional sequent
calculi. One aim is to support reasoning in calculi that contain a hundred rules
or more, so that even relatively small pen and paper derivations become tedious
and error prone. As an example, we implement the display calculus D.EAK of
dynamic epistemic logic. Second, we provide embeddings of the calculus in the
theorem prover Isabelle for formalising proofs about D.EAK. As a case study we
show that the solution of the muddy children puzzle is derivable for any number
of muddy children. Third, there is a set of meta-tools, that allows us to adapt the
tool for a wide variety of user defined calculi.

1 Introduction

Applied logic. An important development in logic, and in particular of logic in com-
puter science, has been the move away from logic to logics. The need for automation of
reasoning in AI or verification led to the design of hundreds of bespoke logics with good
algorithmic properties for particular tasks. This development is particularly conspicu-
ous in modal logic, the classic instance of which, Kripke’s modal logic K, is decidable
just because it is a certain fragment of first-order logic [8]. To compensate for the lack
of expressiveness that comes with decidability, one develops modal logics focussed on
different aspects such as time, probability, space, etc. See [9] for an overview of exam-
ples and techniques.

The proof theory of modal logic has had many successes, for example the tableaux
methods of description logics with its applications to knowledge representation and on-
tologies [14,22,1]. Nevertheless, for many of the more sophisticated modal logics good
proof systems are not known. A notable exception is the cut free sequent calculus of
[12] for dynamic epistemic logic (without common knowledge). But given the diversity
of modal logics and the importance of proof systems for reasoning about applications,
it is desirable to have a systematic and uniform approach to the construction of modal
proof systems with good proof theoretic properties.

Display calculi. Following work on so-called display calculi [7,23,18,31,19], we en-
gaged in the systematic study of display calculi of dynamic modal logics in [17,16,15].
? Supported by an EPSRC-funded Vacation Bursary in Summer 2014 and the University of
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The principal advantage of display calculi is that they are built in a modular way and
important proof theoretic properties such as cut-elimination are preserved under com-
bination of logics (if the combined logic is still displayable).

Dynamic Epistemic Logic. As a case study for the feasibility of this approach we
developed a display calculus D.EAK for the dynamic epistemic logic [30] of Baltag-
Moss-Solecki [6] without common knowledge. On the one hand this logic contains
features that are a challenge from a proof theoretic point of view. On the other hand,
dynamic epistemic logic has many applications, both in computer science and in other
areas. One particular interest is the verification of security protocols that involves epis-
temic notions. In this paper, as a case study of intermediate complexity, we give a full
proof of the muddy children puzzle. A nice collection of more epistemic puzzles is
available in [29].

Modularity. One aspect of the modularity of display calculi is that the logic is ax-
iomatised by the structural rules, which can be added or removed in a flexible way. For
example, even though D.EAK is based on classical propositional logic it can as well be
based on intuitionistic or substructural logics by removing some of the structural rules.
Another aspect of modularity is that it is easy to combine different such display calculi.
But modularity also comes at cost. For example, D.EAK has more than a hundred rules.
This poses no conceptual problems as the space of rules is well structured according
to clear proof theoretic principles, but it does pose the practical problem of conducting
the proofs and writing them down without making mistakes. Consequently, already for
proof theoretic studies alone, tool support will be valuable.

Contributions. One aim of the tool is to support researchers working on the proof
theory of display calculi. The typical derivations may by relatively small, but they must
be presented in a user interface in Latex in a style familiar to the working proof theorist.
Moreover, in order to facilitate experimenting with different rules and calculi, meta-
tools are needed that construct a calculus toolbox from a given calculus description
file.

The second aim is to support investigations into the question whether a calculus
is suited to reasoning in some application area. To perform relevant case studies, one
must deal with much bigger derivations and additional features such as abbreviations
and derived rules are necessary. Another challenge is that applications may require ad-
ditional reasoning outside the given calculus, for which we provide an interface with
the theorem prover Isabelle.

More specifically, in the work presented in this paper, we focus on D.EAK and aim
for applications to epistemic protocols. In detail, we provide the following.

– A calculus description language that allows the specification of the terms and rules
as well as of their typesetting in ASCII, Isabelle and LaTeX in a calculus description
file.

– A program creating from a calculus description file the calculus toolbox, which
comprises the following.
• A shallow embedding of the calculus in the theorem prover Isabelle. The shal-

low embedding encodes the terms and the rules of the calculus and allows us
to verify in the theorem prover whether a sequent is derivable in D.EAK.
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• A deep embedding of the calculus in Isabelle. The deep embedding also has a
datatype for derivations and allows us to prove theorems about derivations.

• A user interface (UI) that supports
* interactive creation of proof trees,
* simple automatic proof search (currently only up to depth 5),
* export of proof trees to LaTeX and Isabelle,
* the use of derived rules, abbreviations, and tactics.

– A full formalisation of the proof system for dynamic epistemic logic of [17], which
is the first display calculus of the logic of Baltag-Moss-Solecki [6] (without com-
mon knowledge).

– A fully formal proof (implemented in Isabelle) of the muddy children puzzle.
– A set of meta-tools that enables a user to change the calculus.

Case study: Muddy children The first version of the tool presented at ALCOP 2015
supported the interactive construction of the proof trees in [17] and their output to LATEX.
These proofs are not longer than a few dozen steps and of interest to establish the
mathematical result of completeness of the D.EAK.

The muddy children puzzle was chosen because it is a well-known example of an
epistemic protocol and required us to extend the tool from one supporting short proofs
of theoretical value to larger proofs in an application domain.

On the UI side, we added features including abbreviations, macros (derived rules),
and two useful tactics. On the Isabelle side, we added a shallow embedding of D.EAK
in which we do the inductive proof that the well-known solution of the muddy children
puzzle holds for arbitrary number of children. Whereas most of the proof is done in
D.EAK using the UI and then automatically translating to Isabelle, the induction itself
is based on the higher order logic of Isabelle/HOL.

Related work. The papers [10,11] on proving cut elimination of display calculi in
Isabelle have been a source of inspiration. Indeed, proving in Isabelle the variations
[17,16,15] of Belnap’s cut-elimination theorem remains one of our aims and we con-
sider what we present in this paper as a necessary first step: Due to the notational over-
head resulting from encoding the mathematical description of D.EAK into its Isabelle
formalisation, we found constructing even the simplest derivations in Isabelle too bur-
densome without tool support.

The papers [24,26,25] implement epistemic logic in the proof assistant Coq. It would
be very interesting to conduct the work of this paper based on Coq to enable an in depth
comparison.

Comparison of Isabelle to other proof assistants. Isabelle has the following advan-
tages for us.

1. Isabelle supports the proof language Isar supporting a style of writing proofs that
is close to mathematical practice.

2. Isabelle provides the so-called sledgehammer method, which uses specialised au-
tomatic theorem provers that are able to discharge much of the tedious, low level
reasoning.
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3. Isabelle can export theories into programming languages such as Scala. This allows
us to build the user interface directly on the deep embedding of the calculus in
Isabelle, thus reusing verified code.

As far as we know Isabelle is the only proof assistant featuring all of the above. This
will be important to us in Section 4, where we use (1) and (2) in order to write the
mathematical parts of the proof of the solution of the muddy children puzzle in a math-
ematical style close to [27] and we use (3) and the user interface to build the derivations
in D.EAK.

Outline. Section 2 reviews what one needs to know about D.EAK. Section 3 presents
the main components of the DEAK calculus toolbox. Section 4 discusses the implemen-
tation of the muddy children puzzle. Section 5 explains the efforts we have made to keep
the tool parametric in the calculus. Section 6 discusses directions of future research we
plan to pursue.

Acknowledgements. At several crucial points, we profited from expert advice on Is-
abelle by Tom Ridge, Thomas Tuerk and Christian Urban. We thank Roy Crole and
Hans van Ditmarsch for valuable comments on an earlier draft.

2 The display calculus D.EAK

This section gives some background on D.EAK; for a complete description we refer to
[17] (where it is called D’.EAK).

Formulas. D.EAK is a proof system for (intuitionistic or classical) dynamic epistemic
logic the formulas of which are defined by induction as follows:

φ ::= AtProp | ⊥ | > | φ∧φ | φ∨φ | φ→ φ | [a]φ | [α]φ | 〈a〉φ | 〈α〉φ | 1α (1)

where a ranges over agents, with [a]φ standing for “agent a knows φ”, and α ranges
over actions with [α]φ standing for “φ holds after α”. 1α represents the precondition of
the action α in the sense of [6]. Negation is expressed by φ→⊥.

Operational rules. Display calculi are sequent calculi in which the rules follow a par-
ticular format that guarantees good proof theoretic properties such as cut elimination.
One of the major benefits is modularity: different calculi can be combined and rules can
be added while the good properties are preserved.

The rules of the calculus are formulated in such a way that, in order to apply a
rule to a formula, the formula needs to be ‘in display’. For example, the following or-
introduction on the left (where contexts are denoted by W,X ,Y,Z and formulas by A,B)

W,A ` X Z,B ` Y
(∨′L) W,Z,A∨B ` X ,Y

(2)

is not permitted in a display calculus, since the formula A∨B must be introduced in
isolation as, for example, in our rule

A ` X B ` Y(∨L) A∨B ` X ;Y
(3)
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Display rules. In order to derived a rule such as (∨′L) from the rule (∨L), it becomes
necessary to isolate formulas by moving contexts to the other side. This is achieved,
by pairing the structural connectives such as “,” (written ‘;’ in D.EAK) with so-called
adjoint (aka residuated) operators such as “>” and adding bidirectional display rules

X ;Y ` Z
(; ,>)

Y ` X > Z

Z ` X ;Y
(>, ;)

X > Z ` Y

which, in this instance, allow us to isolate Y on the left or right of the turnstile.

The name display calculus derives from the requirement that in a display calculus the
so-called display property needs to hold: Each substructure can be isolated on the left-
hand side, or, exclusively, on the right-hand side. This is the reason why we can confine
ourselves, without loss of generality, to the special form of operational rules discussed
above.

Structures. A systematic way of setting this up for the set of formulas (1) is to intro-
duce structural connectives corresponding to the operational connectives as follows.

Structural < > ; I {α} {α

}

Φα {a} {a

}

Operational ∧ ← ∧ → ∧ ∨ > ⊥ 〈α〉 [α] 〈α
〉

[α
]

1α 〈a〉 [a ] 〈a

〉

[a

]

This leads to a two tiered calculus which has formulas and structures, with structures
generalising contexts and being built from structural connectives.

We briefly comment on the particular choice of structural connectives above. Keep-
ing with the aim of modularity, D.EAK was designed in such a way that one can drop
the exchange rule for ‘;’ and treat non-commutative conjunction and disjunction. This
means that we need two adjoints of ‘;’ denoted by > and <. 5 Following the sym-
metries inherent in this substructural analysis of logic suggests to add the operational
connectives ∧ ,←,

∧

, but they are not needed in the following. Similarly, the modal
operators [α] and [a] have structural counterparts {α} and {a} which in turn have ad-
joints {α

} and {a

} . The formulas (1) do not have operational connectives corresponding

to the structural connectives {α

} and {a

} , but they can be added and are indeed useful
(in terms of Kripke semantics, the adjoint of a box modality � for a relation R is the
diamond modality for the converse relation R−1 often denoted by �).

Structural rules. The rules of D.EAK can be divided into operational rules and display
rules, as discussed above, and structural rules, to which we turn now. The operational
rules such as (∨L) specify how to introduce a logical operation. Display rules such as
(;>) are used to isolate formulas or structures to which we want to apply a specific
rule. The logical axiomatisation sits in the structural rules. Apart from the structural
rules like weakening, exchange, and contraction for ‘;’ we have also other structural

5 For example, taking into account the correspondence between operational and structural con-
nectives, the rule (; ,>) above says precisely that the operation that maps C to A→C is right-
adjoint to the operation that maps B to A∧B. Similarly, (>, :) expresses that A

∧

_ is left
adjoint to A∨_.



6 Balco, Frittella, Greco, Kurz, Palmigiano

rules such as the display rules discussed above and rules that express properties such as
‘actions are partial functions’ axiomatised by the rule

X ` Y
{α}X ` {α}Y (4)

and such as ‘if a knows Y , then Y is true’ axiomatised by

X ` {a}Y
X ` Y

(5)

Modularity of D.EAK and related calculi. We have seen that D.EAK has a large
number of connectives. But they arise according to clear principles: operational con-
nectives have structural counterparts which in turn have adjoints. Similarly, the fact that
D.EAK has over a hundred rules poses no problems from a conceptual point as the
rules fall into clearly delineated classes each serving their own purpose. It is exactly
this feature which enables the modularity of the display logic approach to the proof
theory of sequent calculi. But, from a practical point of view of creating proof trees or
of composing a number of different calculi, this large number of connectives and rules
makes working with these calculi difficult. Moreover, the encoding of terms and proof
trees needed for automatic processing will not be readable to humans who would expect
to manipulate latexed prooftrees in an easy interactive way. How we propose to solve
these problems will be discussed in the next section.

3 The DEAK calculus toolbox

The aim of the DEAK calculus tool [4] is to support research on the proof theory of
dynamic epistemic logic as well as to conduct case studies exploring possible applica-
tions. It provides a shallow and a deep embedding of D.EAK into Isabelle and a user
interface implemented in Scala.

The shallow embedding has an inductive datatype for the terms of the calculus and
encodes the rules via a predicate describing which terms are derivable. It is used to
prove correct the solution of the muddy children puzzle in Section 4.

The deep embedding also has datatypes for rules and derivations and provides func-
tionality such as rule application (match and replace) as well as automatic proof search
and tactics. The corresponding Isabelle code is exported to Scala and used in the user
interface.

D.EAK proof trees can be constructed interactively in a graphical user interface by
manipulating trees typeset in LaTeX. Proof trees can be exported to LaTeX/pdf and
Isabelle. This was essential for creating the Isabelle proof in Section 4. Examples can
be found in the the folder LaTeX in [5]: The .cs files contain the proofs as done in the
UI and the .tex-files the exported LaTeX code. The tag cleaned_up was added after
a small amount of manual post-processing of the .tex-files.
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3.1 Shallow embedding (SE) in Isabelle

The shallow embedding of the calculus D.EAK is available in the files DEAK_SE.thy
and DEAK_SE_core.thy. The file DEAK_SE_core.thy contains the definitions of the
terms via datatypes Atprop, Formula, Structure, Sequent. For example,

datatype Sequent = Sequent Structure Structure ("_ ` _")

declares that an element of datatype Sequent consists of two structures. The annotation
("_ ` _") allows us to use the familiar infix notation ` in the Isabelle IDE.

The file DEAK_SE.thy encodes the rules of the calculus by defining a predicate
derivable

inductive derivable :: "Locale list => Sequent => bool" ("_ `d _")

by induction over the rules of D.EAK. For example, the rule (∨L) above is encoded as

Or_L: "l `d (B ` Y) =⇒ l `d (A ` X) =⇒ l `d (A ∨ B ` X ; Y)"

which expresses in the higher-order logic of Isabelle/HOL that if B ` Y and A ` X are
derivable, then A∨B ` X ;Y is derivable. Note that A,B,X ,Y are variables of Isabelle.
The rule will be applied using the built-in reasoning mechanism of Isabelle/HOL which
includes pattern matching.

The datatype Locale is used to carry around all the information needed in a proof
that is not directly available, in a bottom up proof search, from the sequent on which
we want to perform a rule.

For example, in order to perform a cut, we need to specify the cut formula. In the
UI, when constructing a prooftree interactively, it will be given by the user. Internally,
cut-formulas are of type Locale and the cut-rule is given by

"(CutFormula f)∈set l =⇒ l`d(X ` f) =⇒ l`d(f `Y) =⇒ l`d(X `Y)"
Similarly, the rules that describe the interaction of the knowledge of agents with

epistemic actions depend on the so-called action structures, which define the actions,
but are not part of the calculus itself. These action structures, therefore, are also encoded
by data of type Locale.

Before coming to the deep embedding next, we would like to emphasise, that in
order to prove in the shallow embedding, that a certain sequent is derivable in D.EAK,
one shows in theorem prover Isabelle/HOL that the sequent is in the extension of the
predicate derivable. The proof itself is not available as data that can be manipulated.
For example, with the shallow embedding, it will not be possible to write an Isabelle
function that transforms a proof into a cut-free proof. (Cut-elimination is a topic we
had to defer to future work, but we do make use of the deep embedding in the user
interface.)

3.2 Deep embedding (DE) in Isabelle

The deep embedding is available in the files DEAK.thy and DEAK_core.thy. The latter
contains the encoding of the terms of D.EAK, which differs only slightly from the one
of the shallow embedding. It also contains functions match and replace, plus some easy
lemmas about their behaviour. The functions match and replace are used in DEAK.thy
to define how rules are applied to sequents.
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DEAK.thy starts out by defining the datatypes Rule and Prooftree. The function
der implements how to reason backwards from a goal:

fun der :: "Locale ⇒ Rule ⇒ Sequent ⇒ (Rule * Sequent list)"

takes a locale, a rule r, and a sequent s and outputs the list of premises needed to prove
the s via r.6 This function is then used to define the predicate isProofTree and other
functions that are used by the UI.

One reason to define the deep embedding in Isabelle (and not e.g. directly in the UI)
is that we want to use it in future work to implement, and prove correct, cut elimination
for D.EAK and related calculi.

3.3 Functionality of the user interface (UI)

For the reasons described at the end of Section 2, the UI is an essential part of the tool.
The UI provides the following functionality:

– LaTeX typesetting of the terms of the calculus, with user specified syntactic sugar.
– Graphical representation of proof trees in LaTeX
– Exporting proof trees to LaTeX/pdf and to Isabelle (both SE and DE).
– Automatic proof search (to a modest depth of 5).
– Interactive proof tree creation and modification, including merging proof trees,

deleting portions of proof trees, and applying rules.
– Tactics for deriving the generalised identity and atom rules.
– User defined abbreviations and macros (derived rules).

The UI is implemented in Scala. There were several reasons for choosing Scala, one
of which is Isabelle’s code export functionality which translates functions written in
Isabelle theory files to be exported into functional languages such as Scala or Haskell,
amongst others. This meant that the underlying formalisation of terms, rules and proof
trees of the deep embedding of the calculus and the functions necessary for building
and verifying proof trees could be built in Isabelle and then exported for the UI into
Scala.

Another advantage of using Scala is the fact that it is based on Java and runs on the
JVM, which makes code execution fast enough, and, more importantly, is cross plat-
form and allows the use of Java libraries. This was especially useful when creating the
graphical interface for manipulating proof trees, as the UI depends on two libraries, JLa-
TeXMath and abego TreeLayout, which allow for easy typesetting and pretty-printing
of the proof trees as well as simple visual creation and modification of proof trees in
the UI.

6 It is at this point where our implementation of the deep embedding is currently tailored towards
substructural logics: For each rule r and each sequent s, there is only one list of premises to
consider. Generalising the deep embedding to sequent calculi with rules such as (2) would
require a modification: If we interpret the structure W,X ,A∨B in (2) not as a structure (ie tree)
but as a list, then matching the rule (2) against a sequent would typically not determine the
sublists matching W and X in a unique way. More information is available at [2].
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4 Case study: The muddy children puzzle

The muddy children puzzle is a classical example of reasoning in dynamic epistemic
logic, since it highlights how epistemic actions such as public announcements modify
the knowledge of agents. We will recall the puzzle in some detail below. The solution
will state that, after k rounds of all agents announcing “I don’t know”, all agents do in
fact know.

The correctness of the solution has been established, for all k ∈ N using induction,
by informal mathematical proof [13] and by mathematical proofs about a formalisation
in a Hilbert calculus [27]. It has also been automatically verified, for small values of k,
using techniques from model checking [21] and automated theorem proving [12,28].

Here, we prove in Isabelle/HOL that for all k the solution is derivable in D.EAK.

4.1 The muddy children puzzle

There are n > 0 children and 0 < k ≤ n of them have mud on their foreheads. Each
child sees (and hence knows) which of the others is dirty. But they cannot see (and
therefore do not know at the beginning) whether they are dirty themselves (thus the
number n is known to them but k is not). The first epistemic action is the father an-
nouncing (publicly and truthfully) that at least one of the children is dirty. From then on
the protocol proceeds in rounds. In each round all children announce (simultaneously,
publicly, truthfully) whether they know that they are dirty or not. How many rounds
need to be played until the dirty children know that they are dirty?

In case n = 1,k = 1 the only child knows that it must be dirty, since the announcement
by the father, as all announcements in this protocol, are assumed to be truthful. We write
this as

[father]�1D1,

where D j is an atomic proposition encoding that child j is dirty, � j p means child j
knows p and [father]p means that p after father’s announcement.

The case n> 1 and k = 1 is similar. Let j be the dirty child. It sees, and therefore knows,
that all the other children are clean. Since, after father’s announcement, child j knows
that there is at least one dirty child, it must be j, and j knows it.

In case n > 1 and k = 2 let J = { j,h} be the set of dirty children. After father’s an-
nouncement both j and h see one dirty child. But they do not know whether they are
dirty themselves. So, according to the protocol, they announce that they do not know
whether they are dirty. From the fact that h announced ¬�hDh, child j can conclude
D j, that is, we have � jD j. To see this, j reasons that if j was clean, then h would be
in the situation of the previous paragraph, that is, we had �hDh, in contradiction to the
truthfulness of the announcement of h. Summarising, we have shown

[father][no]� jD j,

where [no] is the modal operator corresponding to the children announcing that they
don’t know whether they are dirty.
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The cases for k > 2 follow similarly, so that we obtain for all dirty children j

[father][no]k−1� jD j (6)

For example, for n = k = 100, after 99 rounds of announcements “I don’t know whether
I am dirty” by the children, they all do know that they are dirty.

4.2 Muddy children in Isabelle

Our proof in Isabelle follows [27, Prop.24], which gives a mathematical proof that for
all n,k > 0 there is, in a Hilbert system equivalent to D.EAK, a derivation of (6) from
the assumption

dirty(n,J) ∧ E(n)k(vision(n)) (7)

which encodes the rules of the protocol. Specifically, dirty(n,J) encodes for each J ⊆
{1, . . .n} that precisely the children j ∈ J are dirty, vision(n) expresses that each child
knows whether any of the other children are dirty, E(n)(φ) means that ‘every one of
the n children knows φ’ and f k indicates k-fold integration of the function f so that
E(n)k(vision(n)) says that ‘each child knowing whether the others are dirty’ is common
knowledge up to depth k.

This means that we need to prove by induction on n and k that for all n,k there is a
derivation in the calculus D.EAK of the sequent

dirty(n,J),E(n)k(vision(n)) ` [father][no]k−1� jD j . (8)

where the actions father and no also depend on the parameter n.

For the cases k = 1,2 the proofs can be done with a reasonable effort in the UI of the
tool, filling in all the details of the proof of [27].

But as a propositional calculus, D.EAK does not allow us to do induction. Therefore
we use the shallow embedding of D.EAK and do the induction in the logic of Isabelle.
The expressions dirty(n,J) and E(n)k(vision(n)) and [father][no]k−1� jD j then are Is-
abelle functions that map the parameters n,k to formulas (in the shallow embedding) of
D.EAK, see the file muddy-children.thy [5].

The first part of muddy-children.thy contains the definitions of the formulas dis-
cussed above and establishes some of their basic properties. The actual proof is given
as lemma dirtyChildren. We have taken care to follow [27] closely, so that the proof
of its Proposition 24 can be read as a high-level specification of the proof in Isabelle of
lemma dirtyChildren.

The proof in muddy-children.thy differs from its specification in [27] only in a few
minor ways. Instead of assuming the axiom of introspection [a]p→ p, we added the
corresponding structural rules to the calculus. This seems justified as it is a fundamental
property of knowledge we are using and also illustrates a use of modularity. Instead
of introducing separate atomic propositions for dirty and clean, we treat clean as an
abbreviation for not dirty, which relieves us from axiomatising the relationship between
dirty and clean explicitly. But if we want an intuitionistic proof, we need to add to our
assumptions that ‘not not dirty’ implies dirty.
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4.3 Conclusions from the case study

It took approximately 4 person-weeks to implement the proof of [27, Prop.24] in Is-
abelle. Part of this went into providing some ‘infrastructure’ contained in the files
NatToString.thy and DEAKDerivedRules.thy that could be reused for other case
studies. On the other hand, we should say that it took maybe half a year to learn Is-
abelle and we couldn’t have learned it from documentation and tutorials alone. At cru-
cial points we profited from expert advice by Thomas Tuerk, Tom Ridge and Christian
Urban.

For the construction of the proof in Isabelle, we made extensive use of the UI. Large
parts of the Isabelle proof were constructed in the UI and exported to Isabelle.

One use one can make of the formal proof is to investigate which proof principles
are actually needed. For example, examining the proof in muddy-children.thy, it is
easy to establish that the only point where a non-intuitionistic principle is used is to
prove ¬¬D j → D j. Instead we could have added this formula (which only says that
“not clean implies dirty”) to the logical description of the puzzle (7).

It may be worth pointing out that this analysis is based on the substructural analysis
of classical logic on which D.EAK is built. In accordance with the principle of mod-
ularity discussed in the introduction, a proof in D.EAK is intuitionistic if and only if
it does not use the so-called Grishin rules Grishin_L and Grishin_R (as defined in
DEAK.json). Thus a simple text search for ‘Grishin’ in muddy-children.thy suffices.

5 Building your own calculus tool

As discussed in Section 3, the DEAK toolbox consists of a set of Isabelle theory files
that formalize the terms and encode the rules of this calculus, providing a base for rea-
soning about the properties of the calculus in the Isabelle theorem prover. The toolbox
also includes a UI for building proof trees in the calculus.

On top of this, we provide the calculus toolbox, a meta-toolbox, which consists of a
set of scripts and utilities used for maintaining and modifying the DEAK calculus tool
and for building your own calculus tool.

The main component of the meta-toolbox is the build script, which takes in a de-
scription file of the terms and the rules of the calculus and expands this concise defini-
tion into multiple Isabelle theories and Scala code. Due to this centralised definition of
the calculus, adding rules or logical connectives becomes much easier, as any changes
made to the calculus affect multiple Isabelle and Scala files. The meta-toolbox thus al-
lows for a more structured and uniform maintenance of the different encodings along
with the UI.

A detailed documentation [3] and tutorial [2] is available.

5.1 Describing a calculus

We highlight some elements of how to describe a calculus such as D.EAK in the format
that can be read by the calculus toolbox.

The calculus is described in a file using the JavaScript Object Notation (JSON),
in our example DEAK.json. This file specifies the types (Formula, Structure, Sequent,
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. . . ), the operational and structural connectives, and the rules. For example, linking up
with the discussion in Section 3, in

"Sequent": {
"type" : ["Structure", "Structure"],
"isabelle" : "_ \\<turnstile> _",
"ascii" : "_ |- _",
"latex" : "_ {\\ {\\textcolor{magenta}\\boldsymbol{\\vdash}\\ } _",
"precedence": [311,311,310]

"type" specifies that a sequent consists of two structures.7 The next three lines specify
how sequents will be typeset in Isabelle, ASCII and LaTeX. To make proofs readable
in the UI, it is important that the user can specify bespoke sugared notation using, for
example, LaTeX commands such as colours and fonts.

Next we explain how rules are encoded. The encoding is divided into two parts. In
the first part, under the heading "calc_structure_rules" the rules are declared. For
example, we find

"Or_L" : {
"ascii" : "Or_L",
"latex" : "\\vee_L"

}

telling us how the names of the rule are typeset in ASCII and LaTeX. The rule (3) itself
is described in the second part under the heading "rules" by

"Or_L" : ["F?A \\/ F?B |- ?X ; ?Y", "F?A |- ?X", "F?B |- ?Y"],

the first sequent of which is the conclusion, the following being the premises of the rule.
The ? has been defined in DEAK.json to indicate the placeholders (aka free variables or
meta-variables) that are instantiated when applying the rule. The F marks placeholders
that can be instantiated by formulas only.

The description of Or_L above suffices to compile it to Isabelle. But some rules of
D.EAK need to be implemented subject to restrictions expressed separately. For exam-
ple the so-called atom rule formalises that in D.EAK actions do not change facts (but
they may change knowledge). Thus, whereas the rule is encoded as

"Atom" : ["?X |- ?Y", ""],

we need to enforce the condition that ?X |- ?Y is of the form Γp ` ∆p, where p is an
atomic proposition and Γ,∆ are strings of action modalities. This is done by noting in
the calculus description file the dependence on a condition called atom as follows.

"Atom" : {
"ascii" : "Atom",
"latex" : "Atom",

7 The presence of the \\ instead of just one \ is unfortunate but \ is a reserved character that
needs to be escaped using \.
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"condition" : "atom"
},

The condition itself is then implemented directly in Isabelle.
For bottom-up proof search, the deep embedding provides a function that, given a

sequent and a rule, computes the list of premises (if the rule is applicable). For the cut
rule, this is implemented by looking for a cut-formula in the corresponding Locale, see
Section 3.1.

"RuleCut" : {
"SingleCut" : {
"ascii" : "Cut",
"latex" : "Cut",
"locale" : "CutFormula f",
"premise" : "(\\<lambda>x. Some [((?\\<^sub>S ’’X’’) ...",
"se_rule" : "l \\<turnstile>d (X \\<turnstile>\\<^sub>S f ..."
}
},

After "premise" we find the Isabelle definition of the DE-version of the rule and after
"se_rule" the SE-version of the rule.

The most complicated rules of D.EAK are those which describe the interaction of
action and knowledge modalities and we are not going to describe them here. They need
all of the additional components condition, locale, premise, se_rule, to deal with
side conditions which depend on actions being agent-labeled relations on actions.

The ability to easily change the calculus description file will be useful in the fu-
ture, but also appeared already in this work. Compared to the version of D.EAK from
[17], we noticed during the work on the muddy children puzzle that we wanted to add
rules Refl_ForwK expressing [a]p→ p (i.e. that the knowledge-relation is reflexive)
and rules Pre_L and Pre_R allowing us to replace in a proof the constant representing
the precondition of an action by the actual formula expressing the precondition.

5.2 The build script, the template files, and the watcher utility

To build the tool from the calculus description file DEAK.json, one runs the Python
script, passing the description file to the script via the --calculus flag. This produces
the Isabelle code for the shallow and deep embedding and the Scala code for the UI. By
default, this tool-code is output to a directory called gen_calc.

Template files. The tool-code is generated from both the calculus description file and
template files. Template files contain the code that cannot be directly compiled from the
calculus description file, for example, the code of the UI. But whereas the code of the
UI, in the folder gui, is independent of the particular calculus, the parser Parser.scala
and the print class Print.scala consist of code written by the developer as well as
code automatically generated from the calculus description file. Similarly, whereas parts
of DEAK.thy are compiled from the calculus description file, other parts, such as the
lemmas and their proofs are written by the developer.
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The Isabelle and Scala builder. In order to support the weaving of automatically
generated code into the template files, there are two domain specific languages defined
in the files isabuilder.py and scalabuilder.py. For example, in the template file
Calc_core.thy, from which DEAK.thy is generated, the line

(*calc_structure*)

prompts the build script to call a method defined in isabuilder.py which inserts the
Isabelle definition of the terms of the calculus into DEAK.thy.

The watcher utility. In order to make the maintenance of the template files easier
there is a watcher utility which allows, instead of directly modifying the template files,
to work on the generated code. For example, if we want to change how proof search
works, we would make the changes to the Isabelle file DEAK.thy and not directly to the
template file Calc_core.thy. The watcher utility, when launched, runs in the back-
ground and monitors the specified folder. Any changes made to a file inside this folder
are registered and the utility decompiles this file back into its corresponding template,
each time a modification occurs. The watcher utility decompiles a file by looking for
any sections of the file that have been automatically generated, and replacing these defi-
nitions by the special comments that tell the build script where to put the auto-generated
code. In order for the decompiling to work correctly, the auto-generated code must be
enclosed by special delimiters. Looking back at the example of (*calc_structure*),
when the template file is processed by the build script and expanded with the definitions
from a specific calculus description file, the produced code is enclosed by the following
delimiters:

(*calc_structure-BEGIN*)
auto-generated code ...
(*calc_structure-END*)

Hence, when the watcher utility decompiles a file into a template, it simply replaces any-
thing of the form (*<identifier>-BEGIN*) ... (*<identifier>-END*) by the
string (*<identifier>*).

6 Conclusions

We find that the tool already makes a valuable contribution to our own, so far largely
theoretical research. The main directions of future work consist in extending the tool to
support more ambitious projects on the proof theory as well as on the application side.
These may include the following concrete projects.

– Proving more theorems in and about D.EAK:
• case studies similar to muddy children but with dynamic updates more compli-

cated than public announcement,
• proving cut elimination of D.EAK in Isabelle.

– Treating the multi-type version of D.EAK [16].
– Extending to other calculi. In particular, our methodology naturally applies to frag-

ments of classical logics such as intuitionistic and linear logics which have many
applications in computer science.
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– Providing an interface for the calculus description file, possibly supporting the in-
tegration of different calculi.

– Making the tool more powerful by
• extending available tactics,
• improving the currently very rudimentary automated proof search.

– Prove bigger case studies of more substantial epistemic protocols. How will the
tool need to change to scale it up to bigger applications?

Because in this paper we were interested in studying calculi such as D.EAK the propo-
sitional part about dynamic and epistemic operators and the higher order part of Isabelle
are strictly separated, interfaced by the tool-generated shallow embedding. One should
investigate building the dynamic and epistemic part directly into the higher-order logic
of Isabelle. This would allow us to formalize properties such as “after m rounds of no
each child knows that there are at least m dirty children” directly instead of encoding
them as functions that map parameters such as m to formulas of propositional logic. On
the other hand, one will loose information coming from the detailed understanding of a
propositional, substructural, modular display calculus such as D.EAK.

Possibly the most important topic of further research concerns the fact that display
calculi are not directly suitable for automatic proof search. On the other hand they have
the advantages of modularity we discussed. So the question is whether we can—along
the lines of [20]—go from display calculi constructed according to a clear proof theo-
retic methodology to deep inference calculi well suited for proof search. That automatic
proof search is a direction worth pursuing for dynamic epistemic logics has been shown
in [28]: for the calculus of [12] a depth first search augmented with simple heuristics
was able to automatically find a proof of the muddy children puzzle for up to 4 dirty
children, see [28, §6.4.3].

Another important problem concerns how to integrate common knowledge. This
is a well-known difficult problem. Some proposed solutions use infinitary rules, other
use finitary rules are non-standard and non-modular. We plan to extend D.EAK with
common knowledge while keeping it modular.
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