
Introduction to Category Theory

Alexander Kurz

April 13, 2017

Contents

0 Introduction 1

1 Objects and Arrows 2

2 Functors and Natural Transformations 8

3 Limits and Adjoints 11

4 Algebra, Coalgebras, Monads, ... 14
4.1 Algebras for a functor . 15
4.2 Coalgebras for a functor . 17
4.3 Algebras for a monad . 18

5 Two remarks 19
5.1 Monoids . 19
5.2 Small vs large, generation and Kan extensions 21

0 Introduction

Each section is a lecture.

I tried to keep the lectures on a conceptual level. There are almost no proofs. These are
delegated to the exercises. If you are new to category theory and you want more than
a first overview, do some of the exercises. Best is to have a favourite category at hand
to instantiate the definitions and concepts. There are many exercises and one does not
necessarily have to do all of them as they usually follow a theme and are sometimes quite
similar. Some may be difficult or require extra knowledge, so it may be good to have a
tutor at hand.

1 Objects and Arrows

Synopsis. Theme: Set theory based on the notion of composition as the primitive
notion. Definitions: Category, dual category, initial, terminal/final, isomorphism, epi,
mono, product, coproduct, equaliser, coequaliser, power. Concepts: Set theory without
elements, universal constructions, up to canonical isomorphism, instantiating the same
definitions in different categories, duality, extending universal constructions from objects to
arrows.. Theorems: Universal constructions are determined up to canonical isomorphism.

Introduction. Set theory is very useful as a language for mathematics. For example,
it allows to make precise the idea of equivalence classes and is therefore the basis of many
construction in mathematics and computer science. To give examples of mathematical
objects which are equivalence classes, we can start with integers, rationals, and reals. But
also in programming, for example in compiler optimisation, we need to know when two
programs are equivalent. This leads to an important idea in the semantics of programming
languages: The meaning of a program is the equivalence class of all programs that show
the same behaviour in all computational situations.

Despite all of this, there are many situations in mathematics and computer science, where
it is better to formulate problems in category theory rather than in set-theory. For exam-
ple, the computational power of computers comes from the fact that finite programs can
compute infinite data (eg a program computing all decimals of π can be written in a few
lines). Or to say it more mathematically, the computational power of computer comes from
the fact that they implement solutions to recursive equations. Now, as we will see later,
it turns out that such recursive equations, as soon as we lift them from numbers to types,
have solutions not up to equality, but only up to isomorphism, which puts us right into
categorical territory. Of course, we will encounter many other reasons for why category
theory is so important in computer science.

Definition 1. A category A consists of a collection of ‘objects’ and for all objects A,B ∈
A a set A(A,B) of ‘arrows’. We write f : A → B for f ∈ A(A,B). For all A ∈ A there
is an ‘identity’ arrow idA : A → A and for all A,B,C there is a ‘composition’ operation
◦ABC : A(B,C)×A(A,B)→ A(A,C). We write f ◦g = h for ◦ABC(f, g) = h. The axioms
are for all h : A→ B

h ◦ idA = h = idB ◦ h

and for all f : C → D, g : B → C, h : A→ B

(f ◦ g) ◦ h = f ◦ (g ◦ h)

Remark 1. It is possible to define the notion of a category as a “one-sorted” algebra of
arrows only, without referring to objects. Even though that seems to be in the spirit of
category theory (“everything is determined by the arrows”), it runs against the practice of
category theory in which, most of the time, everything is in fact determined by the objects.
We will see many instances of this during the course.

2

Remark 2. A category with only one object is a monoid. That is, a category can be
seen as a many-sorted monoid. Thinking about how important monoids are in computer
science and how important the idea is of having many sorts or types, it is not surprising
that categories pervade computer science.

Example 3. 1. The category Set has sets as objects and functions as arrows.

2. The category Pos has partially ordered sets as objects and monotone functions as
arrows.1

3. The category Rel has sets as objects and relations as arrows.

4. The category Monoid of monoids with monoids as objects and monoid morphisms as
arrows.

5. If you are familiar with topological or metric spaces, then these structures also form
categories. For example, we denote by Top the category of topological spaces and
continuous maps.

6. Every monoid is a category with exactly one object.

7. Every poset (partially ordered set) is a category with at most on arrow between any
two objects.

Remark 4. The first examples are examples where structures organise themselves in a
category. The last examples are examples where a structure appears in the form of a
category.

In the following we are going to see that one can perform set-theoretical definitions and
constructions without talking about elements, taking instead identies and composition as
primitive notions. In particular, we will see category theoretic definitions for

• injective and surjective,

• the empty set and the one-element set,

• disjoint union and cartesian product,

• subsets and quotients,

• powerset,

• natural numbers.

This parallels closely the axiomatisation of Zermelo-Fraenkel set theory.

1A partial order on a set X is a relation ≤ ⊆ X ×X which is reflexive, symmetric and transitive. A
function f is monotne if x ≤ x′ ⇒ f(x) ≤ f(x′).

3

Remark 5. It would be a challenging but interesting exercise to detail where in the
following properties of categories such as Pos, Rel, Top, Monoid deviate from Set. One
would see that some categories, such as Pos are quite similar to Set, whereas others, such
as Rel are radically different. Algebraic and topological categories (such as Monoid and
Top) are somewhere in between, but the details will depend on exactly which category of
algebras or topological spaces one would be looking at.

Definition 2. An arrow m in a category is mono if it is left-cancellative, that is, if for all
f, g we have that m ◦ f = m ◦ g implies f = g.

We also say that m is a monomorphism, or that m is monic.

Exercise 6. An arrow in Set is mono iff it is injective.

What can we say about monos in the other examples of categories?

Duality is an important concept in mathematics. In many circumstances, category theory
provides exactly what is needed to formalise it.

Definition 3. The dual Cop of the category C has the same objects as C and Cop(A,B) =
C(B,A). Given f : A → B in C we write f op to denote f : B → A in Cop. Identities and
composition in Cop are defined as in C.

Note that duality reverses composition: if h = f ◦ g then hop = gop ◦ f op (one could argue
that it would be more precise to write h = g ◦opf .

Definition 4. An arrow in C is epi iff it is mono in Cop.

Equivalently, an arrow e is epi if for all f, g we have that f ◦ e = g ◦ e implies f = g.

Exercise 7. An arrow in Set is epi iff it is surjective.

While it is true that being epi captures the set-theoretic property of being surjective in
many categories, this is not always the case. For example the inclusion of natural numbers
into integers is epi in the category of monoids.

Definition 5. An object A in C is initial if for all C ∈ C there is exactly one arrow
A→ C.

Exercise 8. An object in Set is initial iff it is the empty set.

Definition 6. An object Z in C is final (or terminal) if it is initial in Cop.

Equivalently, Z is final if for all C ∈ C there is exactly one arrow C → Z.

Exercise 9. An object in Set is final iff it has exactly one element.

Definition 7. An arrow f : X → Y is an isomorphism, or iso, if there is g : Y → X
such that f ◦ g = idY and g ◦ f = idX .

4

One should check that if f is an iso then its inverse g is uniquely determined.

Exercise 10. 1. In Set evry arrow that is epi and mono is iso.

2. Find an example of a category which has an arrow that is both mono and epi but not
iso.

3. Let X, Y be two final objects. Then they are isomorphic. Moreover, the isomorphism
is uniquely determined.

So far we only have described categorically the empty set and the one-element set. To
build bigger sets we can use

Definition 8. Let A,B be two objects in a category A. The coproduct of A and B is
an object A+B in A together with two arrows inl : A→ A+B and inr : B → A+B such
that for all arrows f : A→ C, g : A→ C there is a unique arrow h : A+B → C such that
h ◦ inl = f and h ◦ inr = g.

Exercise 11. 1. All coproducts of A and B are isomorphic up to ‘canonical’ isomor-
phism. 2

2. The coproduct in Set is (isomorphic to) the disjoint union.

3. Let A∗ be the monoid of words over an alphabet A. Show that A∗ + B∗ = (A+ B)∗.
Conclude that the coproduct in the category of monoids is not disjoint.

Definition 9. (A×B → A,A×B → B) is a product in A if it is a coproduct in Aop.

Exercise 12. Fix a category A.

1. Let A,B be two objects in a category A. The product of A and B is an object A×B
in A together with two arrows πA : A × B → A and πB : A × B → B such that for
all arrows f : C → A, g : C → B there is a unique arrow h : C → A × B such that
πA ◦ h = f and πB ◦ h = g.

2. (A×B)× C) ∼= A× (B × C).

3. In you favourite axiomatisation of set theory, do you have (A×B)×C) = A×(B×C)?

4. Given f : A→ A′ and g : B → B′, define f × g : A×B → A′ ×B′.

The last item gives a typical example showing how to extend universal constructions from
objects to arrows. This gives a first example showing that often, if you know a construction
on objects, then you know how to extend it to arrows.

One way to look at what we have done so far is that we gave definitions for 0, 1,+,× for sets
instead of numbers. So it will not come as a suprise that next on the list is exponentiation.

2‘Canonical’ here means that even though there may be many isomorphisms, there is only one that
commutes with inl and inr.

5

Definition 10. Let A be a category with products. The exponentiation of A to the power
of B is an object AB in A together with an ‘evaluation’ arrow eval : B × AB → A such
that for all f : B × C → A there is a unique h : C → AB such that eval ◦ (idB × h) = f .
A category with products and exponentiation is called cartesian closed.

Exercise 13. Show that exponentiation induces a bijection between arrows B × C → A
and C → AB. This is also known as currying.

Exercise 14. AB×C ∼= (AB)C. What about other laws such as AB+C ∼= AB × AC? For
more on this see eg Fiore, Cosmo, and Balat. Remarks on Isomorphisms in Typed Lambda
Calculi with Empty and Sum Types http://www.dicosmo.org/Papers/lics02.pdf

We have built quite an arsenal of universal constructions: initial, terminal, coproduct,
product, exponentiation. Moreover, all these universal constructions follow the same pat-
tern: [...] such that for all arrows [...] there is a unique arrow [...] such that the equation
[...] holds. Thus, even if this variety of constructions will seem puzzling to the novice, the
pattern will become familiar after a while. Moreover, the the pattern is not just pleasing,
it has some important consequences. We have seen in particular examples, but that is true
for all of them, that

• Objects defined by universal constructions are unique up to canonical isomorphism.

• Universal constructions extend from objects to arrows.3

Next on our list are quotients and subsets.

Definition 11. Let f, g : A→ B be two arrows in a category A. The equaliser of f, g is
an object E together with an arrow e : E → A such that f ◦e = g◦e and for all e′ : E ′ → A
with f ◦ e′ = g ◦ e′ there is a unique h such that e ◦h = e′. (E, e) is a coequaliser of (f, g)
if (E, eop) is an equaliser of (f op, gop) in Aop.

Exercise 15. 1. In Set we can take the equaliser to be E = {a ∈ A | fa = ga} and e
to be the inclusion E → A.

2. Let f, g : B → A be two arrows in a category A. The coequaliser of f, g is an object
E together with an arrow e : A → E such that e ◦ f = c ◦ g and for all e′ : A → E ′

with e′ ◦ f = e′ ◦ g there is a unique h such that h ◦ e = e′.

3. In Set we can take the coequaliser to be the quotient of A by the equivalence relation
generated by {(fb, gb) | b ∈ B}.

4. Equalisers are mono and coequalisers are epi.

5. The inclusion of natural numbers with 0 and + into the integers is an epi. But is it
a coequaliser?

3In the next section we will learn to say: Universal constructions are functorial.

6

Nevertheless, we need two more constructions to get an interesting set theory. The first
allows us to construct powersets.

Definition 12. An arrow t : 1 → Ω form a terminal object to some object Ω is called a
subobject classifier in the category A, if for all objects A and all monos m : B → A
there is a unique h : A → Ω such that h ◦m = t◦! where ! : B → 1 is the unique arrow
into the terminal object.

Exercise 16. 1. In Set, we can take t : 1 → Ω to be the inclusion {1} → {0, 1}. The
universal property of the subobject classifier then induces a bijection between subsets
B ⊆ A and characteristic functions A→ {0, 1}.

2. In Set, we have that ΩA is the powerset of A for all sets A.

Remark 17. A category with terminal object, products, equalisers, exponentiation and
subobject classifier is knwon as an elementary topos. Elementary toposes can be seen
as generalised universes of sets and as models for higher order intuitionistic logic. In
particular, a two-element subobject classifier is rather the exception: the typical subobject
classifier is not a Boolean algebra but a Heyting algebra.

Finally, we need one more construction, namely an infinite set.

Definition 13. An object N in a category A, together with arrows z : 1 → N and
s : N → N , is a natural numbers object if for all N ′, z′ : 1 → N ′ and s′ : N ′ → N ′

there is a unique f : N → N ′ such that fz = z′ and fs = s′f .

Further Reading To see how the ideas of this section can be used to give a foundation
of set-theory see Lawvere, An elementary theory of the category of sets, Reprints in Theory
and Applications of Categories, No. 12, 2005, pp. 135. http://www.tac.mta.ca/tac/

reprints/articles/11/tr11.pdf

Or, the same material developed into a beginner’s level text book (and Lawvere is always
worth reading): Sets for Mathematics by F. William Lawvere, Robert Rosebrugh.

For a general introduction to category theory as well as for details on how the ideas
presented in this section lead to topos theory see Barr and Wells, Toposes, Triples and
Theories, Reprints in Theory and Applications of Categories, No. 12 (2005) pp. 1-287.
http://www.tac.mta.ca/tac/reprints/articles/12/tr12.pdf

A good introduction to topos theory is also MacLane, Moerdijk, Sheaves in Geometry and
Logic: A First Introduction to Topos Theory. The standard reference to the subject is
Johnstone’s Sketches of an Elephant: A Topos Theory Compendium.

7

http://www.tac.mta.ca/tac/reprints/articles/11/tr11.pdf
http://www.tac.mta.ca/tac/reprints/articles/11/tr11.pdf
http://www.tac.mta.ca/tac/reprints/articles/12/tr12.pdf

2 Functors and Natural Transformations

Synopsis. Definitions: Functor, natural transformations, functor categories, presheaves.
Concepts: Objects as types, functors as type constructors or parametric types, natural
transformations as parametric functions; Yoneda lemma to characterise natural transfor-
mations Theorems: Yoneda lemma.

Introduction. In the previous section, we have seen how to use definitions by uni-
versal properties in order to build set theory based on the notion of function instead of
elementship. 4 In this section, we will enter territory that cannot, or only with consid-
erable notational difficulty, treated in the traditional set theoretic way. In particular, we
encounter natural transformations, the notion for which category theory was invented. It
plays an important role in many areas of mathematics and theoretical computer science.

Notice: From now on examples are exercises. I am aware that these notes are a bit
rough, for the missing details consult the excellent http://www.staff.science.uu.nl/

~ooste110/syllabi/catsmoeder.pdf.

Definition 14. Let A,B be two categories. A functor F : A → B is a function from
the objects of A to the objects of B and, for each pair A,A′ of objects of A a function
FAA′ : A(A,A′)→ B(FA, FA′) that preserves identities and composition.

Example 18. Universal properties give rise to functors. (Assume in the following that
the relevant categories admit the respective universal constructions.) Fix an object A in
the category A.

1. The identity IdA : A → A is a functor.

2. FX = A×X defines a functor A → A.

3. F (X, Y) = X × Y defines a functor A × A → A. (That requires the definition of
A×A first.)

4. FX = XA defines a functor A → A.

5. FX = AX defines a functor Aop → A.

6. ...

7. ... add your own ...

8. ...

Remark 19. 1. Above, it is enough to define functors on objects only.

4Actually, nothing in the axioms of a category captures the idea of a function. Indeed, relations form
a category as well. Nevertheless, the definitions in the last section were found by thinking of arrows as
functions. So which of the axioms of the last section capture something specific about sets and functions?

8

http://www.staff.science.uu.nl/~ooste110/syllabi/catsmoeder.pdf
http://www.staff.science.uu.nl/~ooste110/syllabi/catsmoeder.pdf

2.

An example where the definition of the action on maps does not follow (in an obvious way)
from a universal property.

Example 20. Define P : Set → Set as PX the powerset of X and on maps as direct
image.

We can think of functors as data type constructors: We have seen the type of pairs of the
type of sets. Here is another important example.

Example 21. Define List : Set → Set as ListX the set of lists over X. On functions, List
works ‘pointwise’.

Another useful way to think about a functor F is as an object FX parameterised by X.

But, then, what are the arrows between these parameterised objects?

Definition 15. Let F,G : A → B. A natural transformation τ : F → G is a parame-
terised collection τA : FA→ GA satisfying Gf ◦ τA = τA′ ◦ Ff for all f : A→ A′.

How do we know that this definition is the ‘right’ definition? We will collect some evidence
in the form of examples and theorems.

Example 22. 1. There is only one natural transformation IdSet → IdSet.

2. Let F,G : Set → Set be given by FX = A × X and GX = B × X. The natural
transformations F → G are in bijection with functions A→ B.

3. Abstracting from the order or multiplicity of the elements of a list gives a natural
transformation List→ P .

Taking these examples further, what are the natural transformations

List→ List

A precise answer involves some combinatorial details, but here is it familiar terms: The
natural transformations List → List are all functions List(A) → List(A) that can be pro-
grammed parametric in A.

Proposition 23. Let A,B be two categories. Then taking functors A → B as objects and
natural transformations as arrow, we obtain a category of functors [A,B].

Remark 24. In our definition of a category, the collection of objects formed a class, such
as the universe of sets itself, and the homsets where sets. Then [A,B] need not be a
category, because there are too many both functors and natural transformations. There
are two common solutions. One is to restrict A to a so-called small category, that is, a
category with a set of objects, not a proper class of objects. The other is to stipulate

9

that every collection of objects is a set in some universe, see the section on Foundations in
MacLane, Categories for the working mathematician.

The details can be safely ignored most of the time, but what is important is the size
distinction we have in the definition of categories: Where as the collection of objects is
allowed to be large, the homsets need to be small. We will be able to explain this later ...

We say that a category is small if the collection of objects is a set. One can think of
the definition of natural transformation as exactly what is needed to make the following
work:

Theorem 25. The category of small categories is cartesian closed, that is, it has products
and exponentiation.

Remark 26. In the last section section, we have seen that set theory can be developed in
terms of category theory. But one can push this even further and the idea of the category
of categories as a foundation of mathematics has been influential.

We started with the idea of sets and functions forming a category, with sets as objects
and functions as arrows. Then we added the idea of functors as arrows between categories
and saw that categories and functors form again a category. We also said that functors
are parameterised objects. What then do we get in the special case where functors are
parameterised sets?

These parameterised sets are known as presheaves and play a central role in all of category
theory. They also have many applications in computer science.

Definition 16. Let C be a small category. The category [Cop, Set] is called the category
of presheaves on C.

Example 27 (Presheaves as transition systems). Let ω be the category of ordinals with an
arrow n→ m iff n ≤ m. The a presheaf P : ωop → Set is the set of trees with P (n→ n+1)
mapping nodes at depth n+ 1 to their parent at depth n. How would you describe natural
transformations?

Example 28 (Presheaves for variable binding). Let Inj be the category of finite sets with
injective maps. Then the terms of the untyped lambda calculus can be seen as a presheaf
Λ : Inj→ Set where Λ(X) is the set of lambda-terms with free variable in X. For a variable
x /∈ X, varibale binding λx. can be described as an operation

λx. : Λ(X ∪ {x}) −→ Λ(X)

In the previous examples, we have seen that as soon as we work with paremeterised
sets (ie presheaves) mundane arrows such as simulations or algebraic operations become
natural transformations. So we need a tool to work with natural transformations.

Theorem 29 (Yoneda Lemma). Let F be a presheaf on C. There is a bijection between
natural transformations C(, C)→ F and FC.

10

Definition 17. . A functor F : A → B is

• full if FAA : A(A,A)→ B(FA, FA) is surjective

• faithful FAA : A(A,A)→ B(FA, FA) is injective

• fully faithful FAA : A(A,A)→ B(FA, FA) is an isomorphism

for all A,A ∈ A.

Corollary 30. The Yoneda embedding C → [Cop, C] is fully faithful.

Exercise 31. Use the Yoneda lemma to characterise the natural transformations between
Set-functors such as A×X → B ×X or XA → XB, etc

3 Limits and Adjoints

Synopsis. Theme: From posets to categoris to 2-categories, or from 2 to Set to Cat.
Definitions: Limits, colimits, adjoints. Concepts: Category theory is generalised lattice
theory. Theorems: Limits in functor categories are computed pointwise; a category with
large limits and colimits is a preorder; ...
Synopsis.

Definition 18. Let C be a poset and A ⊆ C. Then
∧
A, the meet or greatest lower

bound of A, is definec by the property that for all c ∈ C such that c ≤ A we have c ≤
∧
A.

To generalise this from posets to categories we need to make explicit the indexing of the
elements of C, which will be done by a functor D : A → C also called a diagram. As for
posets, we will require the indices to form a set, or, rather, a A to be a small category. A
short and elegant way to say what a cone C ∈ C over D is, is to consider both D and C
as functors, and to say that a cone over a diagram D is an object C ∈ C and a natural
transformation γ : D → C.

Definition 19. Let C be a category, let A be a small categeory and D : A → C. Then
γ : D → limD, the limit of D, is defined by the universal property that for all C ∈ C
and all natural transformations α : C → D there is a unique h : C → limD such that
γ ◦ h = α.

Definition 20. Let C be a poset and A ⊆ C. Then
∨
A, the join or least upper bound

of A, is definec by the property that for all c ∈ C such that A ≤ c we have
∨
A ≤ c.

Definition 21. Let C be a category, and D : A → C a diagram. Then γ : colimD → D
is the colimit of D if for all C ∈ C and all natural transformations α : D → C there is a
unique h : colimD → C such that h ◦ γ = α.

11

If A, C are categories and D : A → C is a functor, then the dual functor Dop :
Aop → Cop acts the same as D on objects and arrows of A. If C,D : A → C are functors
and τ : C → D is a natural transformation, then the dual natural transformation
τ op : Dop → Cop is the natural transformation given by (τ op)A = (τA)op.

Note that arrows and natural transformation change direction under duality, but functors
do not.

Important: γ : D → C is a colimit in C iff γop : C → Dop is a limit in Cop.

Example 32. See Section 1: terminal, product, equaliser are limits, initial, coproduct,
coequaliser are colimits.

Whereas the definition of coproduct is abstract, in concrete examples one can give
explicit descriptions.

Exercise 33. Let D : I → Set be a diagram. Show that colimD is the disjoint union of
all Di, i ∈ I, modulo the equivalence relation generated by (i, x) ≡ (j,Df(x)) where i ∈ I,
x ∈ Di, f : i→ j is an arrow in I.

A category is discrete if the only arrows it has are identities. A category has products
if it has limits of all diagramsD : A → C whereA is discrete. A category is called complete
if it has limits (ie limits for all diagrams) and cocomplete if it has all colimits.

Theorem 34. A category is complete if it has products and equalisers.

Theorem 35. Limits and colimits in functor categories are computed pointwise.

Theorem 36. The Yoneda embedding C → [Cop, Set] preserves limits.

Definition 22. Let A and B be two preorders and L : A → B and R : B → A be two
monotone functions. Then we say that L is the left-adjoint of R and R is the right-
adjoint of L and write L a R iff

LA ≤ B ⇔ A ≤ RB

for all A ∈ A and all B ∈ B.

Example 37. Let |= be a relation on Models× Formulas. Define M : P(Formulas)→
P(Models) as

M(T) = {m ∈Models | m |= ϕ ∀ϕ ∈ T }
and T : P(Models)→ P(Formulas)

T (M) = {ϕ ∈ Formulas | m |= ϕ ∀m ∈M}

Then MTM = M and TMT = T .

The importance of the next proposition is that it gives you different ways of showing
adjointness.

12

Proposition 38. L : A → B and R : B → A be two monotone functions

1. L a R iff A ≤ RLA and (A ≤ RB ⇒ LA ≤ B) for all A ∈ A,B ∈ B.

2. L a R iff LRB ≤ B and (LA ≤ B ⇒ A ≤ RB) for all A ∈ A,B ∈ B.

3. L a R iff A ≤ RLA and LRB ≤ B for all A ∈ A,B ∈ B.

4. L a R iff LRL = L and RLR = R.

5. L a R iff LA =
∧
{B | A ≤ RB} for all A ∈ A.

6. L a R iff RB =
∨
{A | LA ≤ B} for all B ∈ B.

7. L a R only if L preserves all joins and R preserves all meets.

8. L has a right-adjoint iff A has and L preserves all joins of the form
∨
{A | LA ≤ B}.

9. R has a left-adjoint iff B has and R preserves all meets of the form
∧
{B | A ≤ RB}.

In particular, if A and B are complete, that is, have all joins and meets, then preserving
all joins is equivalent to having a right adjoint and preserving all meets is equivalent to
having a left-adjoint.

Corollary 39. If L is a left-adjoint of R : B → A, then L is uniquely determined up to
iso. If B is a poset, then L is uniquely determined.

Definition 23. Let A and B be two categories and L : A → B and R : B → A be two
functors. Then we say that L is the left-adjoint of R and R is the right-adjoint of L and
write L a R if there is an isomorphism

B(LA,B) ∼= A(A,RB)

natural in A ∈ A and all B ∈ B.

Theorem 40. The data of an adjunction can be given equivalently in any of the following
ways.

1. For all A ∈ A an arrow ηA : A→ RLA, called the unit, such that for all f : A→ RB
there is a unique f] : LA→ B such that Rf] ◦ η = f .

2. For all B ∈ B an arrow εB : LRB → B, called the counit, such that for all g : LA→
B there is a unique g[: A→ RB such that εB ◦ Lg[= g.

3. Two natural transformations η : Id → RL (the unit) and ε : LR → Id such that
εL ◦ Lη = Id and Rε ◦ ηR = Id.

Theorem 41. Adjoints are determined up to unique isomorphism.

13

Theorem 42. Adjoints compose.

Theorem 43. Left adjoints preserve colimits (and, by duality, right adjoints preserve
limits).

Theorem 44. A category that is both complete and cocomplete is a preorder.

Theorem 45. If R preserves limits and is determined by a small subcategory, then R is a
right adjoint.

Theorem 46. Let A → B be fully faithful and have a left-adjoint. Then A is com-
plete/cocomplete if B is.

Example 47. Let A be a category of algebras given by a signature Σ and equations E
such as monoids, or lattices, or Boolean algebras, etc. For the purpose of this example,
consider a signature Σ for which all operations have finite arity (that is, all operations
take a finite number of arguments). One can formalise this by saying that Σ is a function
N→ Set giving for each arity n ∈ N the set of opertion symbols of this arity.

Whatever the signature and equations, there always is a functor U : A → Set mapping
an algebra to its underlying set. And there always is a left-adjoint F : Set → A mapping
a set X to the free algebra FX over X. Explicitely, FX is constructed by taking the set
of all terms with variables from X and operation symbols from Σ and quotienting by the
equations E.

What does the data of an adjunction mean in this example? The unit

ηX : X → UFX

says that every variable is a term. The counit

εA : FUA→ A

not only says that every algebra is the quotient of a free algebra (Exercise: show that εA is
onto). It, moreover, describes the operations on A to which each term gives rise: If t is a
term in variables X, that is t ∈ UFX, the interpretation tA of t in A should be a function
UAX → UA. So given a ‘valuation of variables’ v : X → UA, we can indeed form

UFX
UFv−→ UFUA

Uε−→ UA

evaluating a term t ∈ UFX to an element a ∈ A.

4 Algebra, Coalgebras, Monads, ...

Synopsis. Theme: Representation results (all set-functors can be presented by equation
on flat terms, all set-monads can be presented by operations and equations) Definitions:
Algebra, coalgebra, monad, algebras for a monad, Kleisli-category, ... Concepts: Free
algebras, induction, initial and final semantics, Kleisli categories as categories of relations,
... Theorems: representation results plus various theorems on monads

14

4.1 Algebras for a functor

In universal algebra, to specify a class of algebras one starts with a signature Σ :
N → Set, or, equivalently, with a polynomial functor FΣ(X) =

∐
n∈N Σ(n) • Xn, where

Σ(n) • Xn denotes the Σ(n)-fold coproduct of the set Xn. To regard a signature Σ as a
functor FΣ : Set→ Set allows us to say that an algebra is simply an arrow

FΣ(X)→ X

in the category Set and that an algebra homomorphism f : X → X ′ is a commuting square

FΣ(X)

FΣ(f)

��

// X

f

��
FΣ(X ′) // X ′

(1)

Example 48. Suppose we specify a signature consisting of two binary operations ∗ and
+ and one nullary operation e. Thus, the corresponding Σ : N → Set is defined by
putting Σ(2) = {∗,+}, Σ(0) = {e} and Σ(n) = ∅ otherwise. The appropriate polynomial
endofunctor FΣ : Set→ Set then collapses to

FΣ(X) = {e} •X0 + {∗,+} •X2

since the signature Σ is empty for n /∈ {0, 2}. A typical element of FΣ(X) therefore can be
conceived as having one of the following three forms:

e, x ∗ y, x+ y

where we denoted by 0 the unique element of the set X0 and (x, y) denotes an arbitrary
element of X2.

Thus, elements of FΣ(X) are precisely the flat terms in variables X for the signature
Σ. A mapping a : FΣ(X) → X that makes X into an algebra for FΣ is then simply
the interpretation of flat terms in X. Thus, the mapping a sends the above three typical
elements to their “meanings” in X.

It is now straightforward to verify that the commutative square (1) encodes precisely
the fact that the mapping f : X → X ′ respects the operations e, ∗ and +.

In category theory, the notion of algebra for a signature is generalised to the notion
of an algebra for a functor. Looking at (1) above, we see that it makes sense to speak of
algebras FX → X and their homomorphisms whenever we have a functor C → C on an
arbitrary category C.

Definition 24. Let T : C → C be a functor. The category Alg(T) has as objects T -

algebras TA → A and arrows (TA
α→ A) −→ (TA′

α′
→ A′) are arrows f : A → A′ in C

such that f ◦ α = α′ ◦ Tf .

15

What is gained by this generalisation?

Answer 1. Maybe not too much, as long as one stays in sets, that is, as long as one takes
C = Set. Let us call a functor Set → Set finitary if it is fully determined by its
action on finite sets. Without going into the category theoretic definition of finitary,
it suffices to say here that an arbitrary functor F : Set→ Set is finitary iff there is a
signature Σ such that F is a quotient of some FΣ,

FΣ
// // F .

It follows that for any finitary F : Set→ Set, an F -algebra FX → X is nothing but
an algebra

FΣX // // FX // X

for the signature Σ (and the equations defining the quotient FΣ
// //F). To summa-

rize, the study of algebras for (finitary) functors Set→ Set does not lead beyond the
study of varieties in universal algebra, that is, algebras defined by operations and
equations. In fact, algebras for a functor are algebras for operations and equations
only involving flat terms. For a detailed account on algebras for a functor see the
monograph by Adamek and Trnkova.

Answer 2. Quite a lot is gained when moving to other categories C than Set. Ever
since the work of Scott and others on domain theory and program semantics, type
constructors T have been viewed as functors and semantic domains as (particular)
algebras TX → X, see e.g. the handbook article by Abramsky and Jung on Domain
Theory. Typically, the category C is a category of partial orders or metric spaces,
possibly with some completeness requirements.

Another interesting choice for C is the category which is dual to Set. One then obtains
the notion of a coalgebra for a functor T : Set→ Set as a function

X → TX.

As opposed to what we have seen in Answer 1 above, the fact that a finitary T is
a quotient FΣ

// //T of a polynomial functor FΣ does not allow us to reduce the
notion of a T -coalgebra to the notion of a coalgebra X → FΣX for a signature Σ.
Going beyond polynomial functors will lead to new and interesting examples, as we
are going to see next.

On the other hand, we still have an induction principle for all T -algebras: Let ι : TI → I
be an initial object in Alg(T) (assuming that such an object exists). Then initiality means
that for all α : TA→ A there is a unique f : I → A such that

TI

Tf
��

ι // I

f
��

TI
α // A

(2)

16

This is induction: To define an arrow on all ‘terms’ from the recursive data-type I to the
data-type A, it is enough to specify one-step (or flat) T -operations α on A.

Exercise 49. Show how the diagram (2) specialises to account for induction on the natural
numbers.

4.2 Coalgebras for a functor

Examples of coalgebras below show that coalgebras for polynomial functors FΣ are of
interest, but also that new phenomena such as bisimulation come into focus when going
beyond polynomial functors.

Example 50. Coalgebras for polynomial functors describe infinite trees. For example, an
element x in a coalgebra ξ : X → X + X can be seen as an infinite stream of left/right
decisions: in state x, taking a transition by applying ξ yields a successor state ξ(x) in
either the left or the right component of TX = X +X.

Similarly, a state in a coalgebra X → A+B×X×X represents a possibly infinite tree
with leaves labelled by elements of A and non-leaf nodes labelled by elements of B. Here,
the polynomial functor is TX = A+B ×X ×X.

Example 51. Coalgebras for the powerset functor are transition systems. Here the functor
T assigns the powerset PX to every set X. Thus a coalgebra ξ : X → TX can be seen as
describing the behaviour of a nondeterministic transition system: the “next state” ξ(x) of
a state x is, in fact, the subset ξ(x) ⊆ X of all possible states into which x can evolve.

Example 52. Coalgebras for the distribution functor are probabilistic transition systems.
Denote by DX the set of all functions p : X → [0; 1] that have a finite support (i.e., such
that p(x) = 0 for all but finitely many x ∈ X) and that satisfy

∑
x∈X p(x) = 1. Then a

coalgebra ξ : X → DX describes a transition system with ξ(x) : X → [0; 1] giving the
probability ξ(x)(x′) that x evolves to x′.

In universal coalgebra, a notion coined by Rutten in the eponymous article, therefore,
it is important to develop the theory of T -coalgebras parametric in a functor T , much in
the same way as universal algebra is done parametrically in a signature Σ. Some questions
that arise in that context are:

• For which functors T : Set→ Set is there a final coalgebra?

• Can the behavioural equivalence given by the final coalgebra be characterised in
terms of bisimulations?

• In universal algebra every signature Σ gives rise to an equational logic. Can we
associate a coalgebraic logic to every functor T : Set→ Set?

• How much of this can be done axiomatically, replacing Set by general categories C?

17

Of course, there are many further topics in coalgebra, for example, the use of coalgebra to
solve recursive equations or to describe and derive congruence formats of process algebras
or to extend and apply coalgebraic logic to description logics and knowledge representation.

4.3 Algebras for a monad

We need notation for ‘whiskering’ a natural transformation with a functor. Let τ : F →
G : A → B and let L : A′ → A and R : B → B′. Then we have natural transformations
(τL)A′ = τLA′ and (Rτ)A = R(τA). 5 Of course, we now can also write RτL. This notation
also suggests to write τA instead of τA.

Definition 25. A monad (M, η, µ) on a category C is a functor M : C → C and two
natural transformations η : Id→ M and µ : MM → M such that µ ◦Mη = µ ◦ ηM = Id
and µ ◦ µM = µ ◦Mµ.

Definition 26. An algebra for a monad (M, η, µ) is an algebra α : MA → A for the
functor M satisfying α ◦ ηA = idA and α ◦ µA = α ◦Mα. We denote the category of
algebras for a monad, also known as the category of Eilenberg-Moore algebras, by
MAlg(M, η, µ) or simply by MAlg(M).

The next two examples show that monads are ubiquitous.

Example 53. Given a signature Σ and equations E, the category of algebras for 〈Σ, E〉
is a category of algebras for a monad.

Example 54. Given and adjunction F a U : A → C, then UF is a monad.

In the following we are going to look at two representation theorem, that tell us that
all monads arise in this way.

Theorem 55. Let U : MAlg → C be the forgetful functor. Then U has a left adjoint and
UF = M .

Is this the only adjunction that generates M? Not at all, but it is the terminal one, in
a sense. The initial one is the following.

Definition 27. Given a category C, let M be a map (which is not required to be functorial
at this stage) from objects of C to objects of C (think of M = P and C = Set). Let
ηX : X → MX be a collection of arrows in C and let (−)]Y,Z be a collection of functions

C(Y,MZ)→ C(MY,MZ). Then (M, η, (−)]) is called a Kleisli triple if

η] = id

f] ◦ η = f

(g] ◦ f)] = g] ◦ f]

5Exercise: Show that τL and Rτ are natural transformations, given that τ is natural.

18

Example 56. The assignment X 7→ PX, together with the collection ηX(x) = {x} of
singleton maps and with

g](b) =
⋃
{g(y) | y ∈ b}

is easily seen to form a Kleisli triple.

In fact, the above axiomatisation allows us to extend the assignmentX 7→MX uniquely
to a functor M : C → C such that the collection ηX becomes a natural transformation
from Id to M , and, when one defines µX : MMX → MX by putting µX = (idMX)],
then µ is a natural transformation from MM to M . The above axioms guarantee that
(M, η, µ) is a monad. Conversely, every monad (M, η, µ) yields a Kleisli triple by defining
f] = µZ ◦Mf : MY → MZ for f : Y → MZ. (All details about this are eg discribed
in the monograph by Manes on algebraic theories but also many other places such as in
MacLane.)

Kleisli triples gives rise to categories, the Kleisli categories, which tend to resemble cate-
gories of relations.

Definition 28. Given a Kleisli triple (M, η, (−)]) on a category C, the Kleisli category
Kl(M) has the same objects as C and arrows X ⇀ Y in Kl(M) are arrows X →MY in C.
The identity on X in Kl(M) is given by ηX and the composition g · f in Kl(M) is given
by the composition g] ◦ f in C.

As to be expected for a ‘category of relations’ there is an identity-on-objects functor

(−)? : C → Kl(M)

taking an arrow f : X → Y to a ‘map’ ηY ◦ f : X ⇀ Y . On the other hand, there need to
be no analogue of the converse of a relation nor of the order between relations.

Theorem 57. Let F a U : A → C. Then there are ‘comparison functors’ Kl(UF)
K−→

A L−→ MAlg(UF) commuting with the respective forgetful functors.

Theorem 58. For any monad M on set, one can find a class of operations Σ and a class
of equations E, such that MAlg(M) ∼= Alg(Σ, E).

5 Two remarks

We will do some ‘mental gymnastics’ motivated by Pawel’s lectures and discuss the small
vs large issue, introducing Kan extensions.

5.1 Monoids

We started by saying that category theory is a theory of composition. Let us go back
to basics. The basic theory of composition is given by the equational theory of monoids

19

(A, e, ·) where e is the identity and · is associative. The paragdigmatic monoid, the free
monoid over a set A, is the monoid A∗ of finite words with the empty word and concate-
nation as operations. But monoids alone cannot serve as a theory of composition, because
the set A of things we want to compose may have some more structure than just being
mere letters or words. We may want to compose functions, or relations, or processes, or
computer programs, or some kind of systems, etc

So going back to the definition of a monoid as consisting of

1→ A

A× A→ A

we see that its very definition presupposes some structure such as 1 and × and, depending
on the things we want to compose, this structure will take different forms.

So really we should consider monoids in a category. This gives us some more generality,
so for example, we can now say that a topological monoid is a monoid in the category of
topological spaces.

But this is not general enough. It is not always the case that composition

A× A→ A

should be defined on a cartesian or categorical product A×A. In fact, what is required to
make the idea of a monoid work, is only that of a ‘monoidal product’

A⊗ A→ A.

This can be formalised as a functor ⊗ : C × C → C satisfying itself the properties of a
monoid and giving us the notion of a (strict) monoidal category.

Example 59. The category of endo-functors C → C with composition is a monoidal
category.

We motivated monoidal categories by saying that they provide the minimal environment
in which one can talk meaningfully about monoids. So what a monoid in the category of
monoids?

Example 60. A monoid in the category of endofunctors is a monad.

We started with monoids as a theory of composition, introduced categories and
monoidal categories to say what a monoid is and then recovered monads as particular
monoids. Now let us go one step further and recover categories as monads.

Before we can do this, we need to think of monads in a category (or rather 2-category):
(M, η, µ) is given by an arrow M : C → C and 2-cells Id→M and µ : MM →M .

Example 61. Let Span be the category which has sets as objects and spans X ← S → Y
as arrows X → Y . The 2-cells S → S ′ are 1-cells that commute with the legs of the spans.
What is a monad in Span?

As we have learned from Pawel this is more than only ‘mental gymnastics’ but this is
genuinly useful ... all what Pawel showed us is ultimately based on this.

20

5.2 Small vs large, generation and Kan extensions

We have seen the small vs large issues in many places.

• In the definition of a category the homs are small but the collection of objects may
be large (unless we have a small category).

• In universal properties we quantify over a large set of objects. And this is where the
power of universal properties resides.

• Completeness and cocompleteness of categories was defined wrt to small limits and
colimits ... since a category with all large limits and colimits is a preorder.

• A functor that is determined on a small subcategory and preserves limits is a right
adjoint.

• If functor T : Set→ Set is determined on a small subcategory then

– T is a quotient of a signature functor

– initial and free T -algebras exist

– final and cofree T -algebras exists

• For all functors T : Set → Set there is a final T -coalgebra, but its carrier is not a
(small) set, so does not exists in Set, but it is a proper class (large set). Thus the
final coalgebra is then really the final coalgebra not for T but for an extension of T
to an enlargement of Set.

One way of tackling the problem is to think about generators in a category. For example,
the category Set is generated by 1: Every set is the quotient of a coproduct of 1.

Example 62. 1. In the universal definition of a product one does not need to quantify
over all objects in Set, in fact, 1 is enough.

2. Every colimit preserving functor Set→ Set is a left-adjoint.

3. Every left-adjoint Set→ Set is of the form X 7→ A×X form some A ∈ Set.

4. The inclusion {1} → Set is dense, that is, there is a bijection between colimit pre-
serving functor Set→ C and functors {1} → Set.

Definition 29. Given F : A → B and K : A → C the left Kan-extension of F along K
is a functor LanKF : C → B together with a natural transformation γ : F → (LanKF)K
such that for all H : C → B and all α : F → HK there is a unique β : LanKF → H such
that α = β ◦ γ.

This is often remembered as

21

F → HK

LanKF → H

Example 63. 1. What is the left Kan-extension of F : {∗} → Set, F (∗) = A along
{∗} → Set?

2. Let Fin be the category of finite sets. What is the left Kan extension of X 7→ A×X,
X 7→ List(X), ... along Fin→ Set?

3. Let Fin be the category of finite sets. What is the left Kan extension of X 7→ P(X),
... along Fin→ Set?

Definition 30. A functor F : Set → Set is called finitary iff it is the left Kan extension
of its restriction along Fin→ Set.

Example 64. 1. The forgetful functor from algebras to sets is finitary if all operations
take only a finite number of arguments.

2. If T : Set → Set is a finitary functor, then the initial T -algebra can by built as the
colimit

0→ T0→ T (T0)→ . . .→ T n(0)→ . . . colimn∈NT
n(0)

3. If T : Set → Set is a finitary functor, then the final T -coalgebra can by built as the
limit

1← . . . T n(1) . . .← lim
n∈N

T n(1)← . . . Tm(lim
n∈N

T n(1)) . . .← lim
m∈N

Tm(lim
n∈N

T n(1))

22

	Introduction
	Objects and Arrows
	Functors and Natural Transformations
	Limits and Adjoints
	Algebra, Coalgebras, Monads, ...
	Algebras for a functor
	Coalgebras for a functor
	Algebras for a monad

	Two remarks
	Monoids
	Small vs large, generation and Kan extensions

