
Part 2: Description of Proposed Research

2.1 Introduction and Summary

Transition systems pervade much of computer science. This projects aims at a general theory of specification
languages for transition systems. More specifically, transition systems will be generalised to coalgebras as in
Rutten [42]. Specification languages together with their proof systems, in the following called (logical or modal)
calculi, will be presented by the associated classes of algebras (eg propositional logic by Boolean algebras or
intuitionistic logic by Heyting algebras). Stone duality (Johnstone [22]) will be used to give a coalgebraic semantics
for the logics represented by algebras.

systems coalgebras

logical calculus algebras

Stone duality

Stone duality has been used in the ground breaking work of Jónnson and Tarski [23] and Goldblatt [18] in modal
logic and Abramsky [2] in computer science. As these works witness, Stone duality is a fundamental tool and it
should underly how we think of logics for transition systems.

The proposal The coalgebraic approach to systems allows us to formalise the notion of a type of systems as a
functorF . The generality of coalgebras resides in the possibility to build intoF many different features like input,
output, choice, nondeterminism, probability distributions, etc. The aim of this proposal is to develop the theory of
logics for coalgebras not separately for each of these features but parametrically inF . This involves the following
issues.

1. Associate to any typeF (possibly satisfying some mild conditions to be determined) a corresponding modal logic
such that the logic is sound and complete and the semantics fully abstract.

2. Use the parametricity in the typeF to describe modularity principles allowing to build complex proof systems
from simpler ones. Show how this modularity is useful for the specification and verification of systems.

3. Develop a coalgebraic model theory of modal logic that is parametric inF .

4. Applying the general theory (which will be developed for the items above), it will typically be the case that
one wants to relate a set-based semantics to a logic that has a topology-based Stone dual. Thus, the relationship of
topologically-based structures and set-based structures will have to be investigated.

Impact The theory of coalgebras set up in [42] is parametric in the type functorF . One of the significant
contributions of this project will be to extend this to logics for coalgebras. Indeed, in contrast to other approaches
discussed in the next section, we will develop the theory of logics for coalgebras uniformly for all functorsF ,
possibly satisfying some mild conditions to be determined. This will be relevant for applications, as it allows to build
up specification languages and proof systems in a modular way.

The project will also be an important contribution to the emerging field of coalgebras and modal logic. In particular,
Stone duality will provide a common framework for different previous approaches. Moreover, Stone duality is the
natural meeting point for neighbouring disciplines such as semantics of programming languages, domain theory,
concurrency, universal algebra, category theory, algebraic logic, and, of course, modal logic (a recent overview, from
the point of view of modal logic, of some of these connections is given in Venema [46]). Together with Dr Cı́rstea
and Dr Pattinson, I will also organise a first international workshop on this topic in 2005.

Adventure In a wider context, the project concerns the fundamental relationships underlying models of
computation as known from concurrency and domain theory on the one hand and modal logics on the other hand.
The development of the theory of coalgebras in recent years opens up the possibility of integrating existing insights
and to explore new directions. In particular, methods from the model theory of modal logics will be imported into
computer science and generalised using coalgebras. The obtained results will impact on program logics as known
in domain theory and concurrency and also be exported back to modal logic. The project will thus provide a deeper
understanding of systems and their logics as well as of the connections between concurrency, domain theory, modal
logic and coalgebras.
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2.2 Background

Coalgebras Motivated by Milner’s CCS, Aczel [4] introduced the idea of coalgebras for a functorF (on the category
of sets) as a generalisation of transition systems. He also made three crucial observations: (1) coalgebras come
with a canonical notion of observational orbehavioural equivalence(induced by the functorF); (2) this notion
of behavioural equivalence generalises the notion ofbisimilarity from computer science and modal logic; (3) any
‘domain equation’X ∼= FX has a canonical solution (in sets), namely thefinal coalgebra, which is fully abstract wrt
behavioural equivalence.

This idea of a type of dynamic systems being represented by a functorF and an individual system being anF-
coalgebra, led Rutten [42] to the theory of universal coalgebra which, parameterised byF , applies in a uniform way
to a large class of different types of systems. In particular, final semantics and the associated proof principle of
coinduction (which are dual to initial algebra semantics and induction) find their natural place here. These ideas have
fuelled a large amount of research as witnessed by the proceedings of the annual workshops on Coalgebraic Methods
in Computer Science (CMCS 98-04).

Modal Logic Modal calculi were originally developed to axiomatise modalities such as ‘necessarily’ or ‘possibly’.
These modal calculi can be given both an algebraic and a relational semantics; the first is based on the so-called
Boolean algebras with operators (BAOs) which were introduced by Jónsson and Tarski in the 1950s, a few years
before Kripke and others developed the second. The duality theory of algebraic and relational semantics was then
developed by Goldblatt and others. The ensuing interaction between calculi, algebraic semantics and relational
semantics (or coalgebraic semantics as it can be called today) on the one hand and the advent of applications
(arising from the insight that the modality ‘necessarily’ has similar formal properties as, eg, ‘always’, ‘it is known
that’, ‘provable’) in areas like artificial intelligence and economics, concurrency and mobility, and foundations of
mathematics on the other hand led to a huge growth of modal logic (see the recent textbooks [9, 12, 26]) and spawned
the birth of new disciplines as, eg, multi-agent logic, temporal logic, provability logic.

Coalgebras and Modal Logic As coalgebras provide a general and uniform model for different types of systems,
the question arises what appropriatespecification languages for coalgebrasare. The idea to look for modal logics
is natural because modal logics have a long tradition as logics for transition systems and they typically respect the
above mentioned coalgebraic notion of behavioural equivalence (bisimilarity).

Logics for specifying coalgebras. Research into coalgebras and modal logic started with Moss [32]. The logic
of [32] works essentially for any functorF (on the category of sets), but it does not provide the linguistic means to
decompose the structure ofF which is needed to allow for a flexible specification language. To address this issue,
[30, 39] (independently) proposed to restrict attention to specific classes of functors and presented a suitable, but ad
hoc, modal logic. This work was generalised by Jacobs [21]. Pattinson showed that these languages with their ad hoc
modalities arise from modal operators given by certain natural transformations, called predicate liftings, associated
with the functorF . He gives conditions under whichlogics given by predicate liftingsare sound and complete [36]
and expressive [37].

Coalgebraic modal model theory. From a semantical point of view, modal logic can be considered as dual to
equational logic, see [29] (this paper is also an early example of a transfer of results from coalgebras back to modal
logic). The results following from this approach work for all functors but the logics need to be strong enough to
express all possible behaviours. This needs, in general, infinite conjunctions in the logics. To study finitary logics,
Jacobs [21] covers some ground towards a duality for coalgebras/generalised BAOs and Goldblatt [19] develops a
notion of ultrapower for coalgebras. Both approaches are restricted again to specific classes of functors.

Applications and Tools The idea of systems as coalgebras and the paradigm of final semantics—together with
its associated principles of coinduction—has been applied in such different areas as, for example, automata theory
[41], combinatorics [43], control theory [25], process calculi [44, 8, 15, 24], probabilistic transition systems [48, 14],
and component-based software development [6, 7]. Modelling classes in object-oriented programming as coalgebras
[38, 20] led to new verification tools (LOOP-Tool [45], CCSL [40], COCASL [34]) which also incorporate reasoning
with modal logics based on the research on Coalgebras and Modal Logic described above.

Stone Duality For our purposes Stone duality (Johnstone [22]) can be understood as a general principle providing
state-based semantics for calculi represented by algebras. The classical example provided by Stone in 1936 is the
duality of Boolean algebras and Stone spaces. Stone spaces are those topological spaces that arise when a Boolean
algebraA is represented as an algebra of subsets via an embeddingA→P(SA) whereSAis the set of states used to
representA andP denotes powerset.
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2.3 Proposed Research - Programme and Methodology

The spirit of Rutten’s [42] is to develop universal coalgebra uniformly for all functorsF . I want to extend this idea to
logics for coalgebras. As indicated in the above paragraph on ‘Coalgebras and Modal Logic’, neither the problem of
defining modal logics parametrically inF , nor the problem of a model theory for finitary modal logics for coalgebras
have been solved. One of the aims of the proposed research is to show that these difficulties can be overcome using
Stone duality.

Stone Duality We think of Stone duality [22, 3] as relating a category of algebrasA representing a propositional
logic to a category of topological spacesX representing the state-based models of the logic. The duality is provided
by two contravariant functorsP andS,

X
P ++

A .
S

jj (1)

P maps a spaceX to the logic of propositions onX andS maps an algebra to its ‘canonical model’. Building on
this idea, Abramsky [2, 1] has shown how to relate the type constructors of domain theory acting on the semantic (ie
topological) side to analogous constructions on the logical (ie algebraic) side, thus providing a logical description of
domain theory.

The Proposal - Methodology and AimsIn Abramsky’s work, a basic Stone duality was extended by ‘synchronising’
dual constructions on both sides of Diagram (1). This suggests to consider dual functorsF onX andL onA
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whereF andL aredual if there is an isomorphismδ : LP→ PF (in the following, we writeL∂ , F∂ for the functors
dual toF , L, respectively).1 In the situation of Diagram (2), dual functorsF andL induce a duality betweenF-
coalgebras andL-algebras. In other words, we havea principle of constructing new Stone-type dualities from simpler
ones. This idea will be applied to the following four issues (see next page for more details).

1. Associating a modal logic to F.Given a typeF of systems, the initialF∂ -algebra describes an ‘abstract’ logic
for F-coalgebras which is, by duality, sound, complete and expressive in the sense that non-bisimilar states can be
distinguished by some formula. What is still lacking on the way to a modalcalculusfor F are the operators to build
formulae inductively and the axioms that define derivability, ie an explicit construction of the proof system.

2. Modular proof systems.It is common to build complex functors from simple ones using type constructors such
as functor composition and (co)product. Describing the duals of these will allow us to build complex proof systems
from simpler ones preserving the properties of soundness, completeness, and expressiveness.

3. The model theory of coalgebras and modal logics.Assume a typeF of (set-based) systems and a (finitary) logic
for F-coalgebras described by a functorL on a category of algebrasA . Then another relational semantics for the
logic is given by theL∂ -coalgebras based on topological spaces. This leads to a modification of Diagram (2)
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where two different semantics, one overSet and one over topological spaces inX , interact. Typically, the calculus
corresponding toL will be sound and complete for both semantics, but only theL∂ -semantics will be fully abstract
(in other words, only forL∂ -coalgebras the logic will distinguish all bisimilar states). The proposal here is to study
theF-semantics forL by studying the relation betweenL∂ andF .

4. Relating set-based and topology-based structures.The relationship between set-based and topology-based
structures (as egF-coalgebras andL∂ -coalgebras in Diagram (3)) is at the heart of the relationship between models
of computation and their logics. For example, domain equations for bisimulation may be solved in the categories of
sets [4], SFP-domains [1], and Stone spaces [28]. In each case, the obtained notion of bisimulation is different and
the question arises what their relationship is. The aim of this item is to develop a general theory, as already suggested
by Abramsky in [1], where these kind of questions can be addressed and answered.

1Thedual functorof F : X →X is Fop : X op→X op. SinceF∂ is Fop up to equivalenceX op'A , we also call it ‘dual ofF ’.
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Preliminary Results (a) The classical duality of modal logic, ie the duality between descriptive general frames and
Boolean algebras with operators [18], is a special instance of the duality ofF-coalgebras andL-algebras, see [28].
(b) A logic L given by predicate liftings forF-coalgebras (Pattinson [36]) can be understood as a functorL on
boolean algebras (describing modal operators and axioms) and a natural transformationδ : LPSet→PSetF (describing
the semantics, see Diagram (3)). The results of (Pattinson [36, 37]) can be proved using Stone duality, see [27].
(c) Building on the duality of T0-spaces [10], we described the convex compact powerdomain (and its dual) for
T0-spaces and showed how to uniformly obtain a number of dualities by restricting to subcategories of T0-spaces
such as posets, spectral spaces, SFP-domains, sets, Stone spaces, compact ultrametric spaces, see [11].
(d) Algebraic logic[16] associates to each logic a class of algebras and classifies logics wrt algebraic properties.
Logics that admit a Stone-type duality are known as self-extensional logics. In Diagram (2) then,X need not be a
category of topological spaces anymore. But it is still possible to describe a powerdomain and its dual, see [31].

Objectives and Detailed Research ProgrammeThe first item below will settle questions left open in previous work,
whereas 1 to 4 correspond to the aims listed above. 5 describes further natural directions.

0. Continuing(b) above, for a functorF and a logicL given by predicate liftings, study the functorL induced by
L . In particular: – Prove thatL is sound and complete ifand only if δ is injective. Similarly, ifF is a functor on
Stone spaces, prove thatL is sound, complete, and expressive only ifL is dual toF .2 – Let F be a functor on sets
that preserves finite sets. Such a functor extends (from finite sets) to a functorF ′ on Stone spaces. Prove thatL is
sound and complete if and only ifF ′ is L∂ .

1. Associating a modal logic to F.To obtain a modal calculus forF , is to describeF∂ by generators and relations
[47]. Although it is well-known how to do this in some examples, it is not clear to what extend this can be done in
general. When can a category ofF∂ -algebras be described by a signature and equations.3 Moreover, to be parametric
in F , we want to obtain the equations (and the signature) forF∂ -algebras from equations forA and equations for
F∂ . We can assume that eachF∂ A, A∈ A , can be described by generators and relations, but, for our purpose, this
description need to be uniform inA. Give a precise definition of ‘uniform inA’ and characterise the functorsF∂ that
have such a description.

2. Modular proof systems.To describe the duals of the common type constructors by generators and relations is an
application of standard techniques. That soundness, completeness, expressiveness are preserved is a consequence of
duality. The main point here is to study different application areas.

3. The model theory of coalgebras and modal logics.In the model theory of modal logic [9, 12, 26] a particular
instance of Diagram (3) is studied in detail, namely whereF is powerset,A is boolean algebras,L is the functor
associated with the standard basic modal logic, andL∂ is the Vietoris space on Stone spaces. In the first instance,
we keep Boolean algebras but generalise the tools developed in modal logic to arbitraryF-coalgebras. For example,
one can transform everyF-coalgebra into aL∂ -coalgebra in a way that generalises the ultrafilter extension of a
Kripke frame.4 This opens the possibility to prove classic theorems (eg Goldblatt-Thomason) for coalgebras. Similar
considerations will lead to coalgebraic analogues of model theoretic concepts such as saturation and bisimulation-
somewhere-else.

4. Relating set-based and topology-based structures.In order to relate coalgebras over different categories, one has
to develop a notion of a functor being ‘the same’ ondifferentcategories. One approach, based on ideas of(c) above,
is to specify a functor on a super-category (such as T0-spaces) which contains the other semantic categoriesX .
Another approach is based on the observation that many of the relevant categoriesX arise as different completions
of the same small category;5 this allows to consider functors ‘the same’ if they agree on the small category and
are continuously extended to the large categoriesX . Analogous investigations on the algebraic side will also be
fruitful (transforming Diagram (3) into a square by splitting also the right-hand side). Again, special cases have
been investigated in modal logic (and universal algebra/lattice theory) under the name of perfect extension [23] or
canonical extension [46]. This will yield another opportunity for a transfer of methods and results.

5. Continuing(d) above, I want to characterise those logics that can be given (or can be expanded to logics that can
be given) a set-theoretic semantics using Stone duality. Another direction starts from the observation that the research
sketched above concerns basic modal logics in the sense of propositional logics extended by (one-step, next-time)-
modalities plus axioms to describe the functorF . Once these logics are understood, we will also want to extend these
logics by fixed point operators as in theµ-calculus.

2These will need some assumptions onL . The easier converse was shown in [27].
3Even if the category ofF∂ -algebras has free algebras, the forgetful functor to sets need not be monadic.
4This definition of the ultrafilter extension depends on the choice ofL. This can be avoided in important cases (including the classical one)

where we can defineL∂ directly in terms ofF , for example, if F preserves finite sets.
5For example: sets, Stone spaces, compact ultrametric spaces are completions of the category of finite sets; posets, spectral spaces, SFP-

domains are completions of the category of finite posets. For SFP-domains and Stone spaces this has been used in [5].
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2.4 Relevance to Beneficiaries, Dissemination and Exploitation

Relevance to beneficiaries In general terms, the researchers currently working on coalgebras and modal logic
will benefit from the new conceptual foundations arising from an approach based on Stone duality. The coalgebra
community (the annual CMCS workshops have approximately 16 accepted papers and more than twice as many
participants) will profit from new connections with other disciplines. Researchers interested in specification
formalisms for transition systems will be interested in the modular proof systems arising from the approach. Finally,
I believe that the neighbouring disciplines such as domain theory, concurrency theory, algebraic logic, and modal
logic will profit from the investigations on the relationship of set-based and topology-based structures.

More concretely, my research [30] on specifying coalgebras has already been taken up, developed further and built
into the tools developed in Nijmegen (LOOP), Dresden (CCSL) and Bremen (COCASL). Our preliminary study [28]
has been followed by Palmigiano [35] and Moss and Viglizzo [33]. Inside the UK, this proposal also provides a
conceptual foundation for recent work of Cı̂rstea [13, 14] (whose proof and language constructors forF-coalgebras
are essentially explicit descriptions of dual functorsF∂ ) and sheds new light on Ghani et.al. [17] (whose logics
for coalgebras had problems related to the fact that they considered coalgebras over base categories that are locally
finitely presentable (lfp) whereas the topological base categories considered in this proposal are rather co-lfp but not
lfp). I am also cooperating with Baltag (Oxford) and Jung (Birmingham) who do related research on coalgebras
and Stone duality, respectively. The connections with algebraic logic are closely related to recent work of Priestley
(Oxford). Although the proposed approach is quite different from the former EPSRC-project ‘Topological Duality
for Modal, Temporal and Program Logics’ (Rydeheard, Manchester) we are in contact exploring the possibilities for
future cooperations.

Collaborations I am closely collaborating with Bonsangue (Leiden), Venema (Amsterdam) in the Netherlands;
Hennicker and Pattinson (Munich, Germany); Rosický (Brno, Czech Republic); Palmigiano (Barcelona, Spain).
They work in such different areas as software engineering and formal methods (Bonsangue, Hennicker), modal logic
(Venema), category theory (Rosický), algebraic logic (Palmigiano), and all of them profit from the ongoing research
on coalgebras and modal logic.

Dissemination and exploitation I will continue my activities which include the following. Publishing in leading
journals and conferences. Participating in the annual workshops on Coalgebraic Methods in Computer Science.
Giving courses on summer schools and, in particular, the annual spring school on foundations of computer science
organised by the Midlands Graduate School (as I did already twice to introduce an international audience of PhD
students to ‘Coalgebras and Modal Logic’ and ‘Stone Duality’).

2.5 Justification of Resources, Additional PhD Student, Management

Justification of resources, additional PhD studentSince the project draws on ideas from different areas such as
universal algebra, category theory, semantics of programming languages and modal logic an RA for two years will
be required. The department will add a PhD student (GTA, 4 years) who will have time to get acquainted with the
area and then continue the work of the RA for two more years. Travelling money is needed to maintain collaboration
in the UK and internationally (I have estimated 2 conferences, 4 international and 6 UK travels per year for the RA
and for myself). Specialist books from different disciplines will be essential. The technical staff will assist with
equipment and system maintenance.

Feasibility, Management Feasibility and adventure have been carefully balanced. Feasibility is demonstrated by the
preliminary results and the fact that items 0, 1, 2 and parts of 3 (see Objectives and Detailed Research Programme)
consist of concrete problems which I expect to be solved. The insights gained will prove useful in tackling the more
adventurous item 4. In particular, the generalisation to coalgebras of methods from the model theory of modal logic
following from 3 will form the basis for investigating the general problem of how set-based and topologically-based
structures interact in 4. Item 5 is intended for possible extensions but could also be approached independently.

A diagrammatic workplan including the PhD student is presented in an appendix. The variety contained in items 0
to 5 of the Detailed Research Programme will allow to adapt the workplan to the background and interests of the RA
and the PhD Student. This will allow us to profit from their individual strengths to the fullest. Regular meetings with
experts in the neighbouring disciplines will form an essential part of the project.
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[14] C. Ĉırstea and D. Pattinson. Modular construction of
modal logics. InCONCUR’04, LNCS 3170, 2004.

[15] G. Ferrari, U. Montanari, and M. Pistore. Minimizing
transition systems for name passing calculi: A co-
algebraic formulation. InFoSSaCS’02, LNCS 2303, 2002.

[16] J. Font, R. Jansana, and D. Pigozzi. A survey of abstract
algebraic logic.Studia Logica, 74, 2003.

[17] N. Ghani, C. L̈uth, F. de Marchi, and J. Power. Dualizing
initial algebras.Math. Structures Comput. Sci., 13, 2003.

[18] R. Goldblatt. Metamathematics of modal logic I.Reports
on Mathematical Logic, 6, 1976.

[19] R. Goldblatt. Observational ultraproducts of polynomial
coalgebras.Ann. Pure Appl. Logic, 123, 2003.

[20] B. Jacobs. Objects and classes, co-algebraically. In
Object-Orientation with Parallelism and Persistence.
Kluwer, 1996.

[21] B. Jacobs. Many-sorted coalgebraic modal logic: a
model-theoretic study.Theor. Inform. Appl., 35, 2001.

[22] P. Johnstone.Stone Spaces. Cambridge University Press,
1982.

[23] B. Jónsson and A. Tarski. Boolean algebras with
operators, part 1.Amer. J. Math., 73, 1951.

[24] M. Kick. Bialgebraic modelling of timed processes. In
ICALP’02, LNCS 2380, 2002.

[25] J. Komenda and J. van Schuppen. Decentralized
supervisory control with coalgebra. InECC’03, 2003.

[26] M. Kracht. Tools and Techniques in Modal Logic.
Elsevier, 1999.

[27] C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics
for coalgebraic logics. InCMCS’04, ENTCS, 2004.

[28] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras.
Theoret. Comput. Sci., 327, 2004.

[29] A. Kurz. A co-variety-theorem for modal logic. In
Advances in Modal Logic 2. CSLI, 2001.

[30] A. Kurz. Specifying coalgebras with modal logic.
Theoret. Comput. Sci., 260:119–138, 2001.

[31] A. Kurz and A. Palmigiano. Coalgebras and modal
expansions of logics. InCMCS’04, ENTCS, 2004.

[32] L. Moss. Coalgebraic logic.Annals of Pure and Applied
Logic, 96, 1999.

[33] L. Moss and I. Viglizzo. Harsanyi type spaces and
final coalgebras constructed from satisfied theories. In
CMCS’04, ENTCS, 2004.

[34] T. Mossakowski, H. Reichel, M. Roggenbach, and
L. Schr̈oder. Algebraic-coalgebraic specification in
CoCASL. InWADT’02, LNCS 2755, 2003.

[35] A. Palmigiano. A coalgebraic semantics for positive
modal logic. InCMCS’03, ENTCS, 2003.

[36] D. Pattinson. Coalgebraic modal logic: Soundness,
completeness and decidability of local consequence.
Theoret. Comput. Sci., 309, 2003.

[37] D. Pattinson. Expressive logics for coalgebras via
terminal sequence induction.Notre Dame Journal of
Formal Logic, 45, 2004.

[38] H. Reichel. An approach to object semantics based on
terminal co-algebras.Math. Structures Comput. Sci., 5,
1995.
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