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Slim PCF

Types
¢ == mnat | 06—0

Terms

I' - n:nat [' = succ : nat — nat I' - pred : nat — nat

[' - cond : nat — nat — nat — nat '-Yy:(0—0)—86

(x:0) el Cx:0F M:0 '-M:0—-6¢ I'- N:6
'-x:60 ' X M:0— 0 ' - MN :¢




Reduction rules

Big-step semantics M || V, where - M and V = n, \z’. M.

M n M{yn n#0
ViV succM | n+1 predM || n —1

M{Jy0O Noln MIm m#0 N in
condM NyNy | n condM NyNy | n

My e M M'[N/z| |V MY;M)|V
MN |V YoM |} V

Let O = 0, — --- — 0, — nat. Two closed terms +— M 0 and
— N : 0 are equivalent (written = M = N : 6) if and only if, for all

= Q1191,"'7|_ Qkiek,

MQi - Qrldn < NQi--Qrlin.




Interpretation (types)

[0] will be complete partial orders (cpo’s).

[[nat]] NJ_
16, — 0] = [6:] = [6-]

—> stands for the cpo of continuous functions.

N,




Interpretation (terms)

Terms are interpreted by continuous functions.

! [T Fnlp) = n \
1 d= 1
[+ succ](p)(d) = {
d+1 d+# 1L
e predl()@) = { Ly 55
(1 d= 1
[T+ cond](p)(d)(e)(f) = { e d=0
| d#0
' = Yol(p)(f) = Ifp(f)




Properties

Ve

e Computational Soundness

If M || V then [M] = [V]

e Computational Adequacy

Iif [M] = nthen M | n.

Full Abstraction fails: it iIs not the case that

I—Ml’EMQ:Q < [[I—Mlﬁ]]:[[I—MQH]]




Failure of Full Abstraction

More precisely,
o If [F M] =[F N]then M = N.

e But the converse fails, we can have [M] # [N] and M =2 N.

" Full abstraction at various types:

e holds for types of order 0 and 1,
e holds for (nat — nat) — nat,

e fails for (nat — nat — nat) — nat.

In the following we use a divergent term: Qy = Yy(A\z?.2).




Failure of full abstraction at order 2

M = )\fratomat=nat cond (£ Q1) (cond (f 1) (cond (f00)21)Q)Q
N = )\fnat—>nat—>nat.Q

-

o [ M](por)# [ N](por), where

(1 2>00ry>0

porzy =< 0 xz=0andy =20
| L otherwise

e There is no PCF term () such that

1yl Q121 Q00 0.

Hence M = N.




Definable elements

Full abstraction fails at (nat — nat — nat) — nat. It fails because
of an undefinable element in the model.

We are going to refine our domain of interpretation to a setting in which,
at certain types, each element can be approximated by definable ones.

e At present this is not the case already at order 1.

e We will fix that at order 1 and 2.

In addition to continuity we are going to insist on an invariance principle,
to be introduced in the next few slides.




Logical Relations

/

Definition 1. An n-ary logical relation is a family R = { Ry }oc 1ypes
of n-ary relations such that Ry C [[#] x --- x [6] for any § and

N
n

R91—>92(f17 T 7fn)

<~

for all (dy,--- ,d,) € [6:]™,
If R91 (dh T 7dn) then R92 (fl(d1)7 o 7fn(dn))

-

\

{ Ry} is uniquely determined by Ry,.¢ C [nat] x --- x [nat].
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Fundamental Theorem

Invariance will turn out useful for tracking undefinable elements.

Theorem 2 (Plotkin). Let { Ry} be a logical relation such that Rg_([ -
c:0.], -+ ,[F c¢:0.]) for all PCF-constants c. Then

Ro([F M :6],--- ,[F M:60]).

Suppose we want to show that for some d € 0] thereisno = M : 6
such that [ - = M] = d. We can try the following recipe.

1. Find a logical relation R (this amounts to exhibiting R,at).
2. Check that Ry ([ c[,---,[F ¢]).
3. Check that Ry(d, - - - , d) fails.

By Theorem 2, d is not definable.
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Proving Rg_o—e([Yo], - - -, [Ya])

It suffices to show that Rpa¢(Linat], -, Lnat])!

e The above turns out to imply R’( Ly, - - , Lygy) for any 6
(induction on 6).

© Rnat(J—[[nat]]a T J—[[nat]])

o Rg,—0,(L1o1505], -, Lo, —0,7) follows from
RQQ(J—[[92]]7 R J_[[92]])

e Now suppose Ry_o(f1, -, fm). Because Rg(Lygp, -+, Ljop),
we obtain Ry(f1Le, -, fmLe) and, more generally,

Ro(fiLe, -+, fi,La)
Then R(|,(fiLa), - LLi(frLo)). ie.
Ro([Ye] f1,---, [Yo] fm)-
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Parallel-or is undefinable

Lemma 3. There is no definable function f € [nat — nat — nat]
such that

Il
—_ =

F1oL
Fol1
f 0 0

|
=

Let us define Ryat(2,y,2)tobe (x=y=2)V(z=1)V(y=1).
Note that Ryat(1, L,0) and Rya¢(L, 1,0). However, Rya:(1,1,0)
does not hold. Because

(f1L, fL1, £00) = (1,1,0)

we do not have R(f, f, f). If we can show that all interpretations of
PCF constants are invariant under 12, we will be entitled to conclude that
f is indeed undefinable.
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All PCF constants are invariant under R

Ruat(v,y,2) = (r=y=2)V(x=1)V(y=1)

® Rnat(J—a J_, J_) \/
e Ryat(n,n,n) v

e Ruat_nat([sSucc], [succ], [succ])

If Rpat(,y, 2) then Ry ([succ] z, [succ] y, [succ]| 2).

ox:y:z
ox=_1
oy=_1

In each case Rya¢([[succ] z, [succ] y, [succ] z), because
[succ] L = 1.

v
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All PCF constants are invariant under R

Ryat(2,y,2) = (r=y=z)V(z=L1)V(y=1)

¢ Ruat_nat(|pred], [pred], [pred]) (same as succ) v

e Rnat—>nat—>nat—>nat([[cond]]a [[C()nd]]a [[COHd]])

If Rnat (ZC, Y, Z)1 Rnat (ZCLa YL, ZL) and Rnat (ZCRa YR, ZR) then
Ryat([cond]zzpx g, [cond|yyryr, [cond]zzrzR).

o x = 1y = z. reduces to Rnat(J—[[nat]]a J_[[nat]], J—[[nat]]),
Rnat (:CLa YL, ZL) or Rnat (xRa YR, ZR)

o x = 1:[cond|xxpxr =L

o y= L1:[cond|yyryr = L
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Sequentiality relations

Definition 4. Let R be a logical relation. R is called a sequentiality
relation whenever R([ ¢[|,--- ,[F ¢]|) for all PCF constants.

Let m € N. Suppose

Let
Sx'p C [nat] x --- x [nat]

'
m

be defined by

Sip(@1, - o) &= (€A x=1)V(Vi,j €B. x; =x).

16



Sequentiality relations

Theorem 5. An m-ary logical relation R is a sequentiality relation if
and only if R4t IS an intersection of relations of the form SXL,B.

Now let us try to prove the Fundamental Theorem.

Let {Ry} be a logical relation such that Ry ([F ¢ : 6.],--- ,[F F ‘
c : 0.]) for all PCF-constants c. Then

Ro([F M :6],--- ,[F M:60]).

We shall reason by structural induction on closed terms using the
alternative (but equivalent) typing rules for closed terms (next slide).
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Alternative typing rules for closed terms

)\xfl---xk x; 0 — - — 0, — 0,

x1 .01, ,x,:0, Fc:0,
Ax?l---xz"’.czﬁl%---—>9k—>90

6; 6
)\xfl---aj il - M =0 =0 == O, =0

0,41 0
)\xﬁl---x]ﬂjf:c xzk.M:91—>"'t9j+1—>(9j—>---—>9k—>9

il gk M 50— 00
it g NG =0, =0

Azt g% MN 0 — - — 0 — 0

We have M : 6 (according to the above rules) if and only if = M : 6.
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Proof of Theorem 2

it R, ([F c],--,[F c])then Ro([F M],---,[F M]).

1. Aoy 2. v
2. \xq - xp.c (@ssumption) Vv

3. )\5131 Y A I A M

Follows immediately from IH for Az - - zx41 - - - .M.
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Proof of Theorem 2 (ii)

4. \vq -2 MN

Let us write (), Q) ¢, Q) for Az -

Ax1 - - - xp. N respectively.

. M N, A\xq1---x.M and

Assuming Ry, (x%,--- ,x' )fori=1,--- , k we should show

R ([Q)ay - 21

By IH for () s and (),

RH%G’([[QJT]]SC% o xlfa
Ro([Qala1 - - - 21

QI - - - xk).

- [Qfllzr, - - mm),
) [[Qa]]x}n S CC,,]:,L)

Observe that [[Q]]az g = ([[Qf]]x 25)([Qa]xs - - - %), so

Ry ([Q)ay - - - 27, [[Q]]x

) foIIows

20



Sequentiality relations

We have seen that denotations of PCF terms are invariant under all
logical relations under which the constants are invariant.

Definition 6. f € [#] is a logically sequential function whenever
Ry(f,--- , f) for all sequentiality relations R.

What we have learnt can now be summarised as follows: all denotations
of PCF terms are logically sequential.

Are all logically sequential functions definable? No, but it will turn out
that at order 1 and 2 they can be approximated by definable elements
(as lubs of chains of definable elements).
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Coverability

-

Lemma 7. Letd be atypeorderlor2,ie. 0 =60, — --- — 0, —
nat, where 0y, --- ,0, are of order at most 1. Let f € [0] be a
logically sequential function. Suppose

(21, ap) € [61] - x [6]

forie = 1,--- ,m. Then there exists a PCF term = M : 6 such that

n n

[ M)zt 2l = fazi--- 2!

[F M]z?---z™ = fzm...gm

n n

forall 1l <1 < m.

.

~

In short, M coincides with f on m selected points.

22 '



Proof of Lemma 7

Define Rnat(ela T ,€m) as EIM:H\V/lgiSm[[ - M]]ZC% e ZC% = €;.
The lemma amounts to showing Ryag(fo1 -2, -+, fa - a™).

e First one proves that R is a sequentiality relation (deferred).

e Because f is logically sequential, we have Ry(f, - , f).

If we knew that

Rel(ﬂf%»"' 733717%%... 7R@n(g,;l 73321)

n
we could derive Rya¢(faxi---ak, -+, fal - z™).

e So, let us prove that Ry, (xj,- -+ ,z7").




Proof of Lemma 7 (ii)

Rnat(el, < ,em) — HM;QvlgiSm[[F M]]Izl < ZC% = €;

We want to show R% (x5, - -+, z"").

Note that 6, is of order at most 1, so we have two cases only.
° (9]' = nat

e §; = nat — --- — nat — nat

N

k

Suppose 0, = nat. It suffices to find M : 6 such that

We can simply take M to be the jth projection Az - - - ..
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Proof of Lemma 7 (iii)

Rnat(ela T 7€m) — EIM:H\V/lgiSm[[l_ M]]x?[ e qu, = €

Suppose 0, = nat — --- — nat — nat. Assuming

N

k

Rnat(yia"' 7y7£1)7 7Rnat(ylf7"' 7y71’€n,)

we need t0 Show Rt (T34t -+~ Yt -, 27 Y = Uny)-

By definition this amounts to finding M such that
Mxl"'xn:xjyi1”°yi°

By assumption we already have terms M, (h =1, --- , k) such that

i i _ .k
Mpzi- -z, =1, .

We can take M to be A\zy - - - x,.x;(Mixy - x) - - - (Myxy - - x0y).
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Some comments

It is really instructive to understand why the argument above cannot be
repeated at order 3!

e §; = (nat — nat) — nat

We want to show Ry, (7, -+ ,27"). Thus, assuming

Rnat—>nat (yla T 7ym) we should show Rnat (513}?/1, coe 7x;?1ym),
i.e. that there exists M such that

How do we extract M for y;’s from R™at7mat () oo )2

Let us not forget that we have not yet proved that the relation R from the
proof is a sequentiality relation.

26



R is a sequentiality relation

Rnat(fil, < e ,Bm) — ElM:Avlgigm[[l_ M]]ZIZ’?[ <. CC;L — €;

We should prove that R([F ¢],--- ,[[F ¢]) for each constant.

o R (| ... 1)
M= Mry- - 2,.Q49at
® Rnat(uj.” 7u)
M= xy - -x,.u

o Rrat—mat(TL gyccl,---,[F succ])

Assume R™(yq,--- ,y,n), i.e. there exists M such that
[F M -2 = y;. Then

[+ (Azy - xp.suce(Mzy - --x,))]a} - - -2t = [F succ]y;.

So R™([+ succ]yy, - -, [F succ]ym).

27 '



R is a sequentiality relation (ii)

Rnat(fil, < e ,Bm) — ElM:Avlgigm[[l_ M]]ZIZ’?[ <. CC;L — €;

o Rrat—mat(N- pred], - -, [+ pred]) (analogous)

° Rnat—>nat—>nat—>nat([[ - cond]], e [[l_ cond]])

Assume R™*(gy, -+, gm), R®? (11, 1),

R™@(ry, -+ 1y,), i.e. there exist M, M;, M, s.t.
[F Mzt 2t =g [F M]zt---at =1 [F M]at--2 =r.
Take M to be
ATy -+ p.cond(Myxy - - - xy) (Mixy - - z) (Mg - - ).
Then

[[I_ M]]QZ’?L - Qf; — [[l_ cond]]gz-lin-,
i.e. R™([F cond]giliry,---,[F cond]g,l,ry,).

28



Summary

So, at order 1 and 2 each finite part of a logically sequential element can
be “covered” by a definable element.

One can prove a bit more: each logically sequential element at order 1
and 2 is the lub of a chain of definable elements.

Lemma 8. Let f be a type of order 1 or 2. Let f € [] be a logically
sequential element. Then there exists a chain { f;} in [0] of definable
elements such that f = | |. f;.

29



Full Abstraction at order 2 and 3

Letd = 6, — --- — 6,, — nat be a type of order at most 3 and
= M, N : 6. Recall that the following failed.

- M2 N < [F M]=[+ NJ

|F M] =[F NJ| means
I[F M|(x1)---(z,) =[F NJ](x1) - (x,) for all
r1 € [01], -, x, € [0,]. Now we can repair the above failure!

Theorem 9. For all types 6 of order at most three, - M = N : 0 if
and only if

[F M](z1) - (zn) = [F N](z1) - (20)

for all logically sequential zy € [01],--- ,z, € [6,]-

30



Proof of Theorem 9

M2N iff [F M](z1) - (z,)=[F N](z1)- - (zn)
forLS 1, --- , 2,

(<) Take - Q1 : 01,--- , F Q, :6,. Then:

[ MQy---Qu] = [F M][F Q] ---[F Q]
= [F N][F @] ---[F Q]
= [F NQ:1---Qu]

because [ Q)] is logically sequential for each i. Hence

and M = N.

31



Proof of Theorem 9

M2N iff [F M](z1) - (z,)=[F N](z1)- - (zn)
forLS 1, --- , 2,

(=) Suppose [~ M|z ---x, # [ N]x;-- -z, for some LS
T1,° " ,T,. By Lemma 8 each x; = [ |, xj, where z; are definable.
Because of continuity, there must exist 7 such that

Because azf are definable (let Q‘z be the corresponding term) we have
[F MQi--- Qi) # [F MQy--- Qi.

This implies that MQ{ Q1 m = MQ{ Q7 ) mis
violated, i.e. M 2 N.

32



Full Abstraction summary

Altogether we have found a mathematical characterisation of program
equivalence in a restricted case.

Such results are known as full abstraction theorems.

e At order 0 and 1 it suffices to compare the corresponding
continuous functions.

e At order 2 and 3 the comparison had to be restricted to logically
sequential arguments.

How about order 4? Do our methods apply?

33



Finite types

Imagine that nat is finite, i.e. 0, - - - , /N. The resultant language is then
called finitary PCF.

We can still interpret finitary PCF according to our recipe. Observe that
for any type the functions involved will be finite!

Recall that a logically sequential function needs to be invariant under all
sequentiality relations. The arity of these relations can be arbitrary but, if
we are testing finite functions, say, from [¢; — --- — 0,, — nat], arity
of [01] x --- x [6,] will suffice to explore all possibilities and,
conseqguently, detect any possible violation of invariance.

In the finite case, there are finitely many relations of bounded arity.
Consequently, testing for logical sequentiality becomes effective! For
any type 6, we can determine the logically sequential elements of [|0]
(and there will be finitely many of them).
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Finite types at order 2 and 3

IF M|z, 2, =

Theorem. Letf = 6; — --- — 0,, — nat be a type of order at most
dand - M, N : 6. M = N if and only if

|- N]zy---x,

for all logically sequential z7 € [01]

5 T € [0n].

In finitary PCF the above result gives u

S a way of deciding program

equivalence at orders up to 3. This is because there are finitely many
tuples to explore and we can determine them all.




Finite types at order 4

The approach must fail at order 4 because of the following result.

Theorem 10 (Loader 2001). Program equivalence in finitary PCF is
undecidable (at order 4).

e The result also means that definabllity in finitary PCF is
undecidable (at order 3), even though the sets involved are finite.

e By Lemma 8 definability is decidable at order O, 1, 2 (in finitary
PCF). This is because in the finite setting each chain must
stabilise. Hence, being logically sequential (at orders 0-2)
coincides with being definable.

Loader’s result places a limitation on concrete presentations of fully
abstract models of PCF (not only the logical relations method).
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