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Definition 1. An n-ary logical relation is a family R = {Rθ}θ∈Types
of n-ary relations such that Rθ ⊆ JθK × · · · × JθK

︸ ︷︷ ︸

n

for any θ and

Rθ1→θ2(f1, · · · , fn)

⇐⇒

for all (d1, · · · , dn) ∈ Jθ1K
n,

if Rθ1(d1, · · · , dn) then Rθ2(f1(d1), · · · , fn(dn)).

Theorem 2. Let {Rθ} be a logical relation. For any closed λ-term
⊢ M : θ, Rθ(J⊢ M : θK, · · · , J⊢ M : θK).



Types and Constants

3

Let us start with a collection B of base types. Let o range over B.

Types
θ ::= o | θ → θ

Let us also assume a set of typed constants C

Constants
c : θc



Applicative Structures
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A general setting for interpreting λ-terms.

Definition 3. A (typed) applicative structure A is a triple

〈 {Aθ}, {Appθ1,θ2
},Const 〉

such that

• Aθ is a set,

• Appθ1,θ2
is a function Appθ1,θ2

: Aθ1→θ2 → Aθ1 → Aθ2 ,

• Const : C →
⋃

θ∈Types Aθ satisfies Const(c) ∈ Aθc if c : θc.



Examples

5

• A = 〈 {Aθ}, {Appθ1,θ2
},Const 〉, where each Aθ is a set and

Aθ1→θ2 = the set of functions from Aθ1 to Aθ2 ,
Appθ1,θ2

fx = f(x).

• A = 〈 {Aθ}, {Appθ1,θ2
},Const 〉, where each Aθ is a cpo and

Aθ1→θ2 = the cpo of continuous functions from Aθ1 to Aθ2,
Appθ1,θ2

fx = f(x).

• T = 〈 {Tθ}, {Appθ1,θ2
},Const 〉, where Tθ is the set of

simply-typed λ-terms M such that Γ ⊢ M : θ for some finite
Γ ⊆ V , where V is a set of typed variables, and

Appθ1,θ2
MN = MN,

Const(c) = c.



Logical Relation
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Definition 4. Let

A = 〈 {Aθ}, {App
A

θ1,θ2
}, {ConstA} 〉,

B = 〈 {Bθ}, {App
B

θ1,θ2
}, {ConstB} 〉

be applicative structures. A (binary) logical relation over A and B is
a family R = {Rθ} such that

• Rθ ⊆ Aθ × Bθ,

• Rθ1→θ2(f, g) iff, for all (x, y) ∈ Aθ1 × Bθ1 , if Rθ1(x, y) then
Rθ2(App

A

θ1,θ2
fx,AppA

θ1,θ2
gy),

• Rθc(ConstA(c),ConstB(c)) for every constant c : θc.



Environments
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Definition 5. Let V be the set of variables.

• An environment is a function ρ : V →
⋃

θ Aθ.

• If Γ is a context (finite type assignment), we say that ρ satisfies Γ
(written ρ |= Γ) if ρ(x) ∈ Aθ whenever (x : θ) ∈ Γ.

• ρ[x 7→ d] stands for the environment mapping x to d, and y to
ρ(y) for y different from x.

Definition 6. Let A,B be applicative structures, Γ a context and
ρA, ρB be environments satisfying Γ. Let R be a logical relation over
A and B. ρA, ρB are related if Rθ(ρA(x), ρB(x)) for all (x : θ) ∈ Γ.



Interpretation
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Definition 7. A partial mapping J· · ·KA from terms and environments
(JΓ ⊢ M : θK(ρ)) is an acceptable meaning function if

JΓ ⊢ M : θK(ρ) ∈ Aθ whenever ρ |= Γ

and the following conditions are satisfied.

JΓ ⊢ x : θKA(ρ) = ρ(x)
JΓ ⊢ c : θcKA(ρ) = Const(c)

JΓ ⊢ MN : θ2KA(ρ) = (Appθ1,θ2
(JΓ ⊢ MKA))(JΓ ⊢ NKA)



Examples
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• Interpretations using sets/functions and cpo’s/continuous
functions.

• Recall the applicative structure T based on λ-terms. Tθ is the set
of simply-typed λ-terms M such that Γ ⊢ M : θ for some finite
Γ ⊆ V .

Appθ1,θ2
MN = MN

Const(c) = c

Consider
JΓ ⊢ MKA(ρ) = M [ρ(x)/x].

Note that
(MN)[Q/x] ≡ M [Q/x]N [Q/x].



Fundamental Theorem
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Theorem 8 (Mitchell). Let A,B be applicative structures, let
J· · ·KA, J· · ·KB be acceptable meaning functions, let R be a logical
relation over A and B. Suppose ρA, ρB are related environments sat-
isfying Γ. Then

Rθ(JΓ ⊢ MKA(ρA), JΓ ⊢ MKB(ρB))

for every Γ ⊢ M : θ.

Proof by structural induction. Not yet! More constraints are needed.



Admissible Relations

11

Definition 9. Let A,B be applicative structures, let J· · ·KA, J· · ·KB be
acceptable meaning functions, let R be a logical relation over A and
B. Suppose ρA, ρB are related environments satisfying Γ. R is called
admissible if, for all Γ, x : τ ⊢ M : θ and Γ, x : τ ⊢ N : θ.

∀a,b if Rτ (a, b) then
Rθ( JΓ, x ⊢ MKA (ρA[x 7→ a]),

JΓ, x ⊢ NKB (ρB[x 7→ b]) )

implies

∀a,b if Rτ (a, b) then
Rθ( AppA (JΓ ⊢ λx.MKA (ρA)) a,

AppB (JΓ ⊢ λx.NKB (ρB)) b ).



Logical predicates
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Definition 10. Let A = 〈 {Aθ}, {App
A

θ1,θ2
}, {ConstA} 〉 be an ap-

plicative structure. A logical predicate over A is a family R = {Rθ}
such that

• Rθ ⊆ Aθ,

• Rθ1→θ2(f) iff, for all x ∈ Aθ1 , if Rθ1(x) then Rθ2(App
A

θ1,θ2
fx),

• Rθc(ConstA(c)) for every constant c : θc.

Theorem 11 (Mitchell). Let A be an applicative structure, let J· · ·KA
be an acceptable meaning function, let R be a logical predicate over
A. Suppose ρA satisfies Γ. Then Rθ(JΓ ⊢ MKA(ρA)) for every
Γ ⊢ M : θ.



Strong Normalisability
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Let us write SN(M) for “M is strongly normalising”.

Theorem 12 (Tait). Every typable λ-term is strongly normalising.

Let us prove the result through the Fundamental Theorem.

1. Define a logical predicate P = {Pθ} on T .

2. Show that Pθ(M) implies SN(M).

3. Show that P is admissible.

By 1. and 3. we can apply the Fundamental Theorem to deduce that
Pθ(M) for any M ∈ Tθ. By 2. SN(M) holds for any M .



Finding P
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Po(M) ⇐⇒ SN(M)
Pθ1→θ2(M) ⇐⇒ Pθ2(MN) for all N ∈ Tθ1 such that Pθ1(N)

Strong normalisability is a consequence (point 2.)

Lemma 13.

(i) If xM1 · · ·Mk ∈ Tθ and SN(M1), · · · , SN(Mk) then
Pθ(xM1 · · ·Mk).

(ii) If Pθ(M) then SN(M).



Proving 2.
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(i) If xM1 · · ·Mk ∈ Tθ and SN(Mi) then Pθ(xM1 · · ·Mk).

(ii) If Pθ(M) then SN(M).

Case θ ≡ o.

(i) Because SN(Mi) for 1 ≤ i ≤ k, we also have
SN(xM1 · · ·Mk). Hence, Po(xM1 · · ·Mk) by definition of Po.

(ii) Follows from the definition of Po.



Proving 2. (ii)
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(i) If xM1 · · ·Mk ∈ Tθ and SN(Mi) then Pθ(xM1 · · ·Mk).

(ii) If Pθ(M) then SN(M).

Case θ ≡ θ1 → θ2.

(i) Take N ∈ Tθ1 such that Pθ1(N). By (ii) for θ1 we have SN(N)
and, by (i) for θ2, we get Pθ2(xM1 · · ·MkN). So
Pθ1→θ2(xM1 · · ·Mk), as required.

(ii) Suppose Pθ1→θ2(M). By (i) for x : θ1, Pθ1(x), so Pθ2(Mx). By
(ii) for θ2, SN(Mx). If SN(Mx) then SN(M).



Admissibility
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Lemma 14. Suppose M [N/x]N1 · · ·Nk ∈ To. If SN(N) and
SN(M [N/x]N1 · · ·Nk) then SN((λx.M)NN1 · · ·Nk).

Since SN(M [N/x]N1 · · ·Nk), we have
SN(M), SN(N1), · · · , SN(Nk). Suppose (λx.M)NN1 · · ·Nk is
not strongly normalising. Then the λ must be reduced at some point.

(λx.M)NN1 · · ·Nk →
∗

βη (λx.M
′)N ′N ′

1
· · ·N ′

k →βη Q

• β-reduction: Q ≡ M ′[N ′/x]N ′
1
· · ·N ′

k. Then we also have
M [N/x]N1 · · ·Nk →

∗
βη M

′[N ′/x]N ′
1
· · ·N ′

k, which contradicts
SN(M [N/x]N1 · · ·Nk).

• η-reduction: M ′ ≡ M ′′x (x does not occur in M ′′) and
Q ≡ M ′N ′N ′

1
· · ·N ′

k. Then Q can also be reached via a
β-reduction, so this case reduces to the one above.



Adequacy for PCF and the cpo interpretation
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For ⊢ M : nat, if JMK = n then M ⇓ n.

Rθ ⊆ JθK × PCFθ

Rnat(d,M) ⇐⇒ if d = n then M ⇓ n
Rθ1→θ2(d,M) ⇐⇒ ∀d1,M1

(Rθ1(d1,M1) ⇒ Rθ2(dd1,MM1))

The Fundamental Theorem yields Rθ(JMKA, JMKB) for closed terms.
This amounts to Rθ(JMK,M), which is exactly the Adequacy result.

Admissibility needs to proved, but it is not too difficult.
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More details can be found in [1, 2].
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