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GAME SEMANTICS

auxiliary.ml Thu Jan 13 18:08:33 2011 1

open String
open List
open Map

exception Internal_error of int
exception Undeclared_identifier
exception Type_mismatch 
exception Duplicate_identifier
exception Identifier_missing_in_table
exception Type_var_exception
exception Strange_casting
exception Not_a_subdistribution
exception Zero_denominator
exception Not_a_triple
exception Empty_caselist
exception Insufficient_typing_information
exception Zero_int_type
exception Empty_type_list
exception Zero_var_type
exception Wrong_var_type
exception Wrong_array_type
exception Empty_array
exception Let_exception
exception Empty_typelist
exception Apply_var_exception
exception Eta_exception

exception Error of string

(* Hash map with strings as keys *)

module StringMap = Map.Make (String)

let const_table : (int StringMap.t) ref = ref StringMap.empty

let add_constant = StringMap.add

let rec lookup_constant key table = StringMap.find key table

let rec exists_constant key table = StringMap.mem key table

(* Symbol Table

symt = ((string, type list)  list) ref

maintained invariant: 
if (s,l) occurs in the stored list l is not empty.
*)

let rec add_identifier id id_type env =
  match env with 
    [ ] -> [ ( id,[id_type]) ]
  | (top_id, ty) :: env_tl  -> 
      if top_id = id then (top_id, id_type :: ty) :: env_tl
      else (top_id, ty) :: add_identifier id id_type env_tl    

let rec rem_identifier id env =
  match env with
    [ ] -> raise Undeclared_identifier
  | ( top_id, ty) :: env_tl  -> 
      if top_id = id then (if ty=[] then raise Empty_typelist else (top_id, tl ty) :: e
nv_tl) 
      else (top_id, ty) :: rem_identifier id env_tl

let rec get_identifier id env =
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FULL ABSTRACTION

M andN are contextually equivalent (M ∼= N )
if they can be used interchangeably in any context
(without affecting the computational outcome).

∀C[−]. C[M ] ⇓ ⇐⇒ C[N ] ⇓

!M" = !N" ⇐⇒ M ∼= N

Since the 1990s steady stream of full abstraction results based on games.

Refences
O P

Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6
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GAMES FOR TYPES

•Who plays? 

O P
Opponent Proponent

C[−] M
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JUSTIFIED SEQUENCES

•How do they play?

O begins. Subsequent moves must be justified by 
earlier moves made by the opposite player .

O P
Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6
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GAMES PLAYED IN ARENAS

O P
Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6

An arena A is specified by a structure 〈MA,λA,"A 〉.

– MA is a set of moves.
– λA : MA → {O,P}× {Q,A} is a labelling function.
– "A is an enabling relation between {†}+MA andMA.

• If † " m then λA(m) = O and n "A m implies n = †.
• Ifm " m′ then λA(m) &= λA(m′).

A strategy σ in arena A is a prefix-closed set of plays over A
such that

s ∈ σ and s o ∈ PA implies so ∈ σ.

A justified sequence over arena A is a sequence of moves fromMA together
with an associated sequence of pointers satisfying the following conditions.

– The first move is enabled by † and has no outgoing pointer.
– Any other move m must have a pointer to an earlier move n such that
n !A m.

†

o1
!!

""

p2 p3
!!

""

o4 o6

p5

A play is a justified sequence that additionally satisfies ...
We shall write PA for the set of plays over arena A.
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PLAYS
A justified sequence over arena A is a sequence of moves fromMA together
with an associated sequence of pointers satisfying the following conditions.

– The first move is enabled by ! and has no outgoing pointer.
– Any other move m must have a pointer to an earlier move n such that
n !A m.

!

o1
!!

""

p2 p3
!!

""

o4 o6

p5

A

N.B. Papers on game semantics use variations on 
the concept of a justified sequence to suit the 

programming paradigm being modelled. 

A justified sequence over arena A is a sequence of moves fromMA together
with an associated sequence of pointers satisfying the following conditions.

– The first move is enabled by ! and has no outgoing pointer.
– Any other move m must have a pointer to an earlier move n such that
n !A m.

!
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!!
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o4 o6
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A play is a justified sequence that additionally satisfies ...
We shall write PA for the set of plays over arena A.
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SOME EXAMPLES

• Sequential computation: alternation

• Absence of control effects: well-bracketing

• First-order store only: visibility

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M ] ⇓may ⇐⇒ C[N ] ⇓may

– Must-equivalence

∀C[−]. C[M ] ⇓must ⇐⇒ C[N ] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M ] ⇓p ⇐⇒ C[N ] ⇓p

Two probabilistic programs are equivalent if and only
if the corresponding probabilistic strategies assign the
same probabilities to all complete plays.

· · · q q1 a1 · · · qn an a · · ·

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M ] ⇓may ⇐⇒ C[N ] ⇓may

– Must-equivalence

∀C[−]. C[M ] ⇓must ⇐⇒ C[N ] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M ] ⇓p ⇐⇒ C[N ] ⇓p

Two probabilistic programs are equivalent if and only
if the corresponding probabilistic strategies assign the
same probabilities to all complete plays.

· · · q q1 a1 · · · qn an a · · ·

o1 p1 · · · o2 p2 · · · o3 p3 · · · o4

In his next move P cannot use · · · for justification.
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REASONING WITH GAMES

• Plays have operational flavour.

• The course of play is often described through metaphores.

• This account has not been formalized yet.

•Operational game semantics: marriage of games and traces
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1 Dagstuhl

An arena A = 〈MA, λA,"A 〉 is a triple such that
– MA is the set of moves

– λA : MA → {OQ, PA, OA, PA}
– "A such that 〈MA,"A 〉 is a directed acyclic graph whose nodes are parti-
tioned by

λA : MA → {OQ, PQ, OA, PA}

in such a way that

If m "A m′ and m′ is an answer then m must be a question.

q0 q1 t1 q1 f1 f0

q " t1 t0 f1 f0 f1 f0 · · ·

" λxbool.if x then x elsex : bool → bool

q0

!!!!!!!!

""
" ##
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% t0 f0 P

t1 f1 O
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"
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''
P

t1
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((

( f1

))
))

)
O

t0 f0 P

Questions q, t1, f1
Answers ", t0, f0
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1 Dagstuhl
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if they can be used interchangeably in any context
(without affecting the computational outcome).

∀C[−]. C[M ] ⇓ ⇐⇒ C[N ] ⇓
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STRATEGIES

• Types are interpreted by games.
• Terms are interpreted by strategies.

An arena A is specified by a structure 〈MA,λA,"A 〉 .

– MA is a set of moves.
– λA : MA → {O,P} is a labelling function.
– "A is an enabling relation between {†}+MA andMA.

• If † " m then λA(m) = O and n "A m implies n = †.
• Ifm " m′ then λA(m) %= λA(m′).

A strategy σ in arena A is a prefix-closed set of plays over A
such that

s ∈ σ and s o ∈ PA implies so ∈ σ.

Games and strategies are treated as 
first-class mathematical objects.
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GAME CONSTRUCTORS

A1

A2

A1 ×A2

A1 ⇒ A2

†

A1

A2

A1 ×A2

A1 ⇒ A2

†

A1
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†

A1

A2
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A1 ⇒ A2

†

L

R

A1 +A2

A1

A2
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†

L

R
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†

L
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†
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A1 ×A2

A1 ⇒ A2

†

L
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A1 ⇒ A2

†

L
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A1 +A2

A1
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A1 ⇒ A2

†
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IDENTITY STRATEGY

A ⇒ A

...
O mL

P mR

...
O m′

R

P m′

L

...

· · · mL mR · · · m′

R m′

L · · ·

A ⇒ A

...
O mL

P mR

...
O m′

R

P m′

L

...

· · · mL mR · · · m′

R m′

L · · ·
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COMPOSITION

Given σ : A1 ⇒ A2 and τ : A2 ⇒ A3

one can define σ; τ : A1 ⇒ A3.

– Moves in A2 have a double identity.
– We can exploit the duality to play σ and τ against
each other in A2.

– Following the exchange between σ and τ we can hide
the interaction in A2 to obtain a play in A1 ⇒ A3.

σ; τ = (σ ||
A2

τ) \A2

A1

σ
†

⇒ A2

τ
⇒ A3

o
p
o

o/p
p
o

p/o
o/p

p
o

p/o
o/p
p/o

p

15Sunday, 25 September 2011



COMPOSITION

Given σ : A1 ⇒ A2 and τ : A2 ⇒ A3

one can define σ; τ : A1 ⇒ A3.

– Moves in A2 have a double identity.
– We can exploit the duality to play σ and τ against
each other in A2.

– Following the exchange between σ and τ we can hide
the interaction in A2 to obtain a play in A1 ⇒ A3.

σ; τ = (σ ||
A2

τ) \A2

A1

σ
⇒ A2

τ
⇒ A3

o
p
o

o/p
p
o

p/o
o/p

p
o

p/o
o/p
p/o

p

16Sunday, 25 September 2011



COMPOSITIONAL 
INTERPRETATION

• The game-semantic denotations are obtained 
compositionally by induction on term structure.

• Free identifiers are interpreted by identity strategies.

• All other cases are handled through composition with 
suitably-crafted strategies.
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POINTERS (CBN)

f : (int → int) → int

f(λxint.f(λyint.x)) f(λxint.f(λyint.y))

m0 m1 m2 m3 m4 m5 m0 m1 m2 m3 m4 m5

f : int → int → int

let val g = f(0) in
let valh = f(1) in g(2)

let val g = f(0) in
let valh = f(1) inh(2)

q0 01 "1 11 "1 22 q0 01 "1 11 "1 22

2
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POINTERS (CBV)

f : (int → int) → int
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FULL ABSTRACTION

M andN are contextually equivalent
if and only if they induce the same sets
of complete plays (all questions must
be answered).
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EXAMPLE (O’HEARN)
Idealized Algol: lambda calculus with commands (com),
integers (int) and variables for storing them (var).

O’Hearn (no snapback example)

p : com → com " p(Ω) : com

p : com → com " newx in x :=0;
p(x :=1);
if x = 0 then skip else Ω : com

This example cannot be validated using state-transformer semantics: the transformer
corresponding to p(x :=1) can yield a state with x = 0.

Premature focus on states...

Idealized Algol: an applied lambda calculus over com, int and var
with call-by-name evaluation and fixed-point combinators.

O’Hearn (no snapback example)

p : com → com " p(Ω) : com

p : com → com " newx in x :=0;
p(x :=1);
if x = 0 then skip else Ω : com

This example cannot be validated using state-transformer semantics: the transformer
corresponding to p(x :=1) can yield a state with x = 0.

Premature focus on states...

The equivalence of the two terms cannot be validated 
using state-transformer semantics.
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GAME-SEMANTIC ARGUMENT

In games it can be validated as follows.
com is interpreted by

run

done

Arena:

run0

!!
!!

"""
"""

"""

run2

##
##
#

run1 done0

run3 done2 done1

done3

p : com4 → com2 " p : com1 → com0

run0 run2 (run3 run1 done1 done3)
∗
done2 done0

p : com4 → com2 " p(Ω) : com0

run run2 done2 done

In games it can be validated as follows.
com is interpreted by run

done

Arena:

run0

!!
!!

"""
"""

"""
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##
##
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run3 done2 done1

done3
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com is interpreted by run

done

Arena:
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"""
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"""

run2
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run1 done0
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done3
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run0 run2 (run3 run1 done1 done3)
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p : com4 → com2 " p(Ω) : com0

run0 run2 done2 done0
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run0
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""
""
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####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0
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• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

new is interpreted by composition with a strategy
ensuring that read ’s and write(i)’s match.

p(x :=1)

var is interpreted by read write(i)

i ok
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new is interpreted by composition with a strategy
ensuring that read ’s and write(i)’s match.

Same complete plays imply equivalence.
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RECIPE

• Analyze the underlying process of composition.

• Understand what “really happens”.

• Express strategy-building in a concrete way as an 
operation on formal languages.

• Remember to encode pointers, if necessary.

• Prove language equivalence using the chosen 
representation.
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TYPE ORDER

ord(θ) =

{

0 θ ≡ com, int,var
max(ord(θ1) + 1, ord(θ2)) θ ≡ θ1 → θ2

• IAk consists of terms of the form

x1 : θ1, · · · , xn : θn # M : θ

with ord(θi) < k and ord(θ) ≤ k.

• Looping and recursion are not available in IAk.

• We writeYk to stress the availability of the fixed-point combinator
Yθ : (θ → θ) → θ for θ of order k.

ord(θ) =

{

0 θ ≡ com, int,var
max(ord(θ1) + 1, ord(θ2)) θ ≡ θ1 → θ2

• IAk consists of terms of the form

x1 : θ1, · · · , xn : θn # M : θ

with ord(θi) < k and ord(θ) ≤ k.

• Looping and recursion are not available in IAk.

• We writeYk to stress the availability of the fixed-point combinator
Yθ : (θ → θ) → θ for θ of order k.
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DECIDABILITY
We assume finite ground types!Results obtained using FA, DPDA, VPA.

pure +while +Y0 +Y1

IA1 + + + −
IA2 + + + −
IA3 + + + −
IA4 − − − −

pure +while +Y0 +Y1

IA1 CONP PSPACE DPDA-EQ DPDA-EQ
IA2 PSPACE PSPACE DPDA-EQ undecidable
IA3 EXPTIME EXPTIME DPDA-EQ undecidable
IA4 undecidable undecidable undecidable undecidable

The results were obtained using FA, DPDA and VPA.
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COMPLEXITY
Equivalence of terms in beta-normal form.

Non-elementary in general.

Results obtained using FA, DPDA, VPA.

pure +while +Y0 +Y1

IA1 + + + −
IA2 + + + −
IA3 + + + −
IA4 − − − −

pure +while +Y0 +Y1

IA1 CONP-complete PSPACE-complete ? −
IA2 PSPACE-complete PSPACE-complete ? −
IA3 EXPTIME-complete EXPTIME-complete ? −
IA4 − − − −
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UNDECIDABILITY
• It may seem surprising that program equivalence in a language 

over finite datatypes is undecidable.

• This is all due to the rich structure of interactions afforded by 
higher-order types.

• At fourth order there are patterns of interaction between O 
and P that resemble actions of a queue.

•Moreover, there exists a program that can detect whether O 
follows the queue-pattern.

• Game semantics tames higher-order interaction.
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NONDETERMINISM
May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M ] ⇓may ⇐⇒ C[N ] ⇓may

– Must-equivalence

∀C[−]. C[M ] ⇓must ⇐⇒ C[N ] ⇓must

– May & Must-equivalence

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M ] ⇓may ⇐⇒ C[N ] ⇓may

– Must-equivalence

∀C[−]. C[M ] ⇓must ⇐⇒ C[N ] ⇓must

– May & Must-equivalence
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MAY-EQUIVALENCE

Characterization via complete plays still applies.

Results obtained using FA, DPDA, VPA.

pure +while +Y0 +Y1

IA1 + + + −
IA2 + + + −
IA3 + + + −
IA4 − − − −

pure +while +Y0 +Y1

IA1 CONP-complete PSPACE-complete ? −
IA2 PSPACE-complete PSPACE-complete ? −
IA3 EXPTIME-complete EXPTIME-complete ? −
IA4 − − − −

pure +while +Y0

EA1 PSPACE-complete EXPSPACE-complete −
EA2 EXPSPACE-complete EXPSPACE-complete −
EA3 2-EXPTIME-complete 2-EXPTIME-complete −
EA4 − − −
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MUST-EQUIVALENCE
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Figure 1. Operational semantics of EIA

3.3 Strategies

The usual definition of strategy is in terms of traces: a
strategy for Player is a set of even-length legal plays saying
what moves may be made by the system. As was hinted
at in the introduction, if we take this definition, we end up
with a model of EIA which is fully abstract with respect to
may-equivalence. In order to capture M&M-equivalence,
we add to the definition of strategy an additional compo-
nent, its divergences. We shall only give details of the ex-
tended model; the model based solely on traces can be ob-
tained (more or less) by deleting all mention of divergences
and must-convergence from what follows.
A strategy on an arena is a pair . The first

component , known as the traces of , is a non-empty
set of even-length legal plays of satisfying

We write for the domain of , i.e. the set
and for the contingency

closure of , i.e. . Given , let
.

The second component is known as the divergences
of ; it’s a set of odd-length legal plays of satisfying

(d1)
.

(d2) .

(d3) infinite .

Axiom (d1) says that, if a strategy is confronted with a
situation to which it has no response, i.e. , then
this must be reflected by an appropriate divergence.
(d3) is the finite-branching condition: if, at some point,

there is the possibility of infinite branching then there must
be the possibility of divergence.

Representing divergence The existence of a divergence
records the fact that may diverge after playing

the sequence . Of course, once a program has diverged,
it remains divergent so, if , the existence of some
other is of little interest.
This can be represented in several ways. The choice

made in CSP is to include all extensions of a divergence
as divergences by convention; this has the consequence
of forcing the traces of a process to include all possible
behaviours after a divergence has been reached, running
counter to the intuition of a divergent process having no ob-
servable behaviours. A second possibility is to record only
the minimal divergences, denoted by .
Clearly, many choices of representation of divergent be-

haviour are available. Rather than fixing on any particu-
lar representation, we identify those strategies which intu-
itively record the same behaviour by means of an equiva-
lence relation; see Section 3.5 below.

3.4 Composition of strategies

Let be a finite string of moves from arenas , and
with “justification pointers” from all moves except those

initial in . We define to be the subsequence
of where we delete all moves from and all pointers to
; is defined similarly. We define by

removing all moves from and all pointers to with one
exception: if points to which, in turn, points
to then points to in .
Such a string is a legal interaction of , and iff

, and
. The set of all legal interactions of , and is

written .
Given and , we define to

be the set of such that

Characterization via quotienting.
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WINNING REGIONS
Let O and P play a reachability game over the traces
of σ. O will be declared a winner if he reaches a com-
plete play without encountering any divergences. This
induces winning regions for O and P .

Two terms are must-equivalent if any difference be-
tween the induced strategies (trace or divergence) is
compensated by a winning region for P .

ord(θ) =

{

0 θ ≡ com, int,var
max(ord(θ1) + 1, ord(θ2)) θ ≡ θ1 → θ2

• IAk consists of terms of the form

x1 : θ1, · · · , xn : θn # M : θ

with ord(θi) < k and ord(θ) ≤ k.

• Looping and recursion are not available in IAk.

• We writeYk to stress the availability of the fixed-point combinator
Yθ : (θ → θ) → θ for θ of order k.

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 2 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

2010
32  

 
 

Andrzej S. Murawski, Nikos Tzevelekos: Block Structure vs. Scope Extrusion: Between
Innocence and Omniscience. FOSSACS 2010: 33-47

31  
 
 

Andrzej S. Murawski: Full Abstraction Without Synchronization Primitives. Electr.
Notes Theor. Comput. Sci. 265: 423-436 (2010)

2009
30  

 
 

Andrzej S. Murawski, Nikos Tzevelekos: Full Abstraction for Reduced ML. FOSSACS
2009: 32-47

2008
29  

 
 

Andrzej S. Murawski: Reachability Games and Game Semantics: Comparing
Nondeterministic Programs. LICS 2008: 353-363

28  
 
 

Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, Olivier Serre: Collapsible
Pushdown Automata and Recursion Schemes. LICS 2008: 452-461

27  
 
 

Axel Legay, Andrzej S. Murawski, Joël Ouaknine, James Worrell: On Automated
Verification of Probabilistic Programs. TACAS 2008: 173-187

26  
 
 

Dan R. Ghica, Andrzej S. Murawski: Angelic semantics of fine-grained concurrency.
Ann. Pure Appl. Logic 151(2-3): 89-114 (2008)

25  
 
 

Andrzej S. Murawski, Igor Walukiewicz: Third-order Idealized Algol with iteration is
decidable. Theor. Comput. Sci. 390(2-3): 214-229 (2008)

2007
24  

 Andrzej S. Murawski: Bad Variables Under Control. CSL 2007: 558-572

Let O and P play a reachability game over the traces
of σ. O will be declared a winner if he reaches a com-
plete play without encountering any divergences. This
induces winning regions for O and P .

Two terms are must-equivalent if and only if any dif-
ference between the induced strategies (trace or diver-
gence) is compensated by a winning region for P .

ord(θ) =

{

0 θ ≡ com, int,var
max(ord(θ1) + 1, ord(θ2)) θ ≡ θ1 → θ2

• IAk consists of terms of the form

x1 : θ1, · · · , xn : θn # M : θ

with ord(θi) < k and ord(θ) ≤ k.

• Looping and recursion are not available in IAk.

• We writeYk to stress the availability of the fixed-point combinator
Yθ : (θ → θ) → θ for θ of order k.
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MUST-EQUIVALENCE

Results obtained using FA, DPDA, VPA.

pure +while +Y0 +Y1

IA1 + + + −
IA2 + + + −
IA3 + + + −
IA4 − − − −

pure +while +Y0 +Y1

IA1 CONP-complete PSPACE-complete ? −
IA2 PSPACE-complete PSPACE-complete ? −
IA3 EXPTIME-complete EXPTIME-complete ? −
IA4 − − − −

pure +while +Y0

EA1 PSPACE-complete EXPSPACE-complete −
EA2 EXPSPACE-complete EXPSPACE-complete −
EA3 2-EXPTIME-complete 2-EXPTIME-complete −
EA4 − − −

pure +while +Y0

EA1 PSPACE-complete 2-EXPTIME-complete −
EA2 2-EXPTIME-complete 2-EXPTIME-complete −
EA3 3-EXPTIME-complete 3-EXPTIME-complete −
EA4 − − −
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PROBABILISTIC EQUIVALENCE

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M ] ⇓may ⇐⇒ C[N ] ⇓may

– Must-equivalence

∀C[−]. C[M ] ⇓must ⇐⇒ C[N ] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M ] ⇓p ⇐⇒ C[N ] ⇓p

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M ] ⇓may ⇐⇒ C[N ] ⇓may

– Must-equivalence

∀C[−]. C[M ] ⇓must ⇐⇒ C[N ] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M ] ⇓p ⇐⇒ C[N ] ⇓p
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PROBABILISTIC STRATEGIES

4 · V. Danos and R. Harmer

—m !A×B n iff m !A n or m !B n.

This places A and B “side by side” with no chance of any interaction between them.
The empty arena 1 = 〈∅, ∅, ∅〉 is the unit for this constructor.

Our other constructor is the arrow, A ⇒ B, defined by:

—MA⇒B = MA + MB;

—λA⇒B = [〈λOP
A , λQA

A 〉, λB], where λ
OP
A (m) = O iff λOP

A (m) = P;
—m !A⇒B n iff m !A n or m !B n or m ∈ IB ∧ n ∈ IA.

In other words, the initial moves of A ⇒ B are the initial moves of B, the roles of
Opponent and Player are reversed in A and the (formerly) initial moves of A are
now enabled by the (still) initial moves of B.

2.2 Strategies

A strategy is a kind of “rule book” saying which moves may be made by Player—
and with what probabilities—given the moves which have been played to date.
This idea is formalized by assigning “weights” to even-length legal plays, i.e. where
Player played last, indicating the likelihood of that play occurring from Player’s
point of view.

The definition comes in two steps. First of all, we define a prestrategy σ on an
arena A to be a (set-theoretic) function σ : Leven

A → [0,∞]. Such a prestrategy is a
strategy iff

(p1) σ(ε) = 1;
(p2) if sa ∈ Lodd

A then σ(s) ≥
∑

t∈ie(sa) σ(t).

The traces of σ, which we denote by Tσ, are those plays assigned non-zero weight
by σ, i.e. {s ∈ Leven

A | σ(s) > 0}. The domain of σ, written dom(σ), is those odd-
length plays that are “reachable” by σ, i.e.

⋃
s∈Tσ

ie(s). Finally, given s ∈ dom(σ),
we define the range of σ at s, written rngσ(s), to be those immediate extensions
of s that are in Tσ, i.e. ie(s) ∩ Tσ. The range can be empty in which case s is an
immediate extension of a maximal trace.

Note that (p2) implies that σ is order reversing with respect to the prefix ordering
on Tσ and the usual ordering on [0,∞]. This means that Tσ is even-length prefix-
closed. Furthermore, by (p1), we get σ(s) ≤ 1 for all s ∈ LA.

2.2.1 Basic constraints. A strategy σ is deterministic iff for all s ∈ Tσ, σ(s) =
1. Equivalently, σ takes values in {0, 1}. Note that (p2) asserts only an inequality.
If σ is a strategy for which this is always in fact an equality, we say that it’s a total
strategy.

2.2.2 Local probabilities. Given sa ∈ dom(σ) and sab ∈ ie(sa), define the con-
ditional probability of sab given sa by:

σ(sab/sa) =
σ(sab)
σ(s)

Since sa ∈ dom(σ), σ(s) > 0, so it’s well-defined. By (p2), this gives a subprobabil-
ity on rngσ(sa) for each sa ∈ dom(σ). Intuitively speaking, σ(sab/sa) is the “die”
that σ rolls for each sa ∈ dom(σ).
ACM Transactions on Computational Logic, Vol. V, No. N, November 2001.
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PROBABILISTIC LANGUAGE 
EQUIVALENCE

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M ] ⇓may ⇐⇒ C[N ] ⇓may

– Must-equivalence

∀C[−]. C[M ] ⇓must ⇐⇒ C[N ] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M ] ⇓p ⇐⇒ C[N ] ⇓p

Two probabilistic programs are equivalent if and only
if the corresponding probabilistic strategies assign the
same probabilities to all complete plays.

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 2 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

2010
32  

 
 

Andrzej S. Murawski, Nikos Tzevelekos: Block Structure vs. Scope Extrusion: Between
Innocence and Omniscience. FOSSACS 2010: 33-47

31  
 
 

Andrzej S. Murawski: Full Abstraction Without Synchronization Primitives. Electr.
Notes Theor. Comput. Sci. 265: 423-436 (2010)

2009
30  

 
 

Andrzej S. Murawski, Nikos Tzevelekos: Full Abstraction for Reduced ML. FOSSACS
2009: 32-47

2008
29  

 
 

Andrzej S. Murawski: Reachability Games and Game Semantics: Comparing
Nondeterministic Programs. LICS 2008: 353-363

28  
 
 

Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, Olivier Serre: Collapsible
Pushdown Automata and Recursion Schemes. LICS 2008: 452-461

27  
 
 

Axel Legay, Andrzej S. Murawski, Joël Ouaknine, James Worrell: On Automated
Verification of Probabilistic Programs. TACAS 2008: 173-187

26  
 
 

Dan R. Ghica, Andrzej S. Murawski: Angelic semantics of fine-grained concurrency.
Ann. Pure Appl. Logic 151(2-3): 89-114 (2008)

25  
 
 

Andrzej S. Murawski, Igor Walukiewicz: Third-order Idealized Algol with iteration is
decidable. Theor. Comput. Sci. 390(2-3): 214-229 (2008)

2007
24  

 Andrzej S. Murawski: Bad Variables Under Control. CSL 2007: 558-572

APEX tool

38Sunday, 25 September 2011



DINING CRYPTOGRAPHERSDining Cryptographers (Chaum)

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Verifying Anonymity
• Anonymity
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• PRISM vs APEX
• Lack of anonymity

Conclusion

25

C 2 C 3

C 1

Agree!
Disagree!
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H
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H
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coin1 coin3

coin2

Agree!
Disagree!

Agree!
Disagree!
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WAS IT ONE OF THEM?
Was it one of them?

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

26

One of the cryptographers paid ⇐⇒ #“Disagree” is odd

f : {0, 1, 2, 3} → {0, 1}

x:int%4 |-
var%4 whopaid; var%2 first; var%2 left;
var%2 right; var%2 parity; var%4 i;

whopaid :=x; first:= coin; right:= first; i:=1;

while (i) do
{

left:= if (i=3) then first else coin;
if not(( left=right)+(whopaid=i))

then parity:=not(parity);
right := left;
i:=i+1

};
parity : int%2
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CORRECTNESS
Correctness Verification

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

27

0

(0,1)
 0_x, 1

(1,1)

 1_x, 1

 2_x, 1

 3_x, 1
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ANONYMITY (VIEWS)Anonymity Verification

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

28

cn:var%2, ch:var%2 |-

var%4 whopaid;
whopaid := 2;

if (whopaid <= 1) then diverge else
{

var%2 first; var%2 left; var%2 right; var%4 i;

first:=coin; right:= first; i:=1;

while (i) do
{

left:=if (i=3) then first else coin;
if (i=1) then { cn:= right; cn:=left };
if ((left=right)+(whopaid=i)) then ch:=1 else ch:=0;
right := left;
i := i+1

}
}: com
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WHAT CAN HE SEE?What can Cryptographer 1 see?

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

29
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1 write(0)_cn, 1/4
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 write(1)_cn, 1/4

11 write(1)_cn, 1/4 2

 write(0)_cn, 1

7
 write(1)_cn, 1

 write(0)_cn, 1

 write(1)_cn, 1 3 write(1)_ch, 1
4

 write(0)_ch, 1/2

9

 write(1)_ch, 1/2

(0,1)
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3 paid

0

1 write(0)_cn, 1/4

6
 write(0)_cn, 1/4
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 write(1)_cn, 1/4

11 write(1)_cn, 1/4 2
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 write(1)_cn, 1

 write(0)_cn, 1

 write(1)_cn, 1 3 write(1)_ch, 1
4

 write(0)_ch, 1/2

9

 write(1)_ch, 1/2

(0,1)
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 write(0)_ch, 1

8 write(0)_ch, 1
 write(1)_ch, 1/2

 write(0)_ch, 1/2
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WHAT CAN HE SEE?Anonymity certification

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

30

x:int%4, cn:var%2, ch:var%2 |- ... : com

0 1 2_x, 1
 3_x, 1

3 write(0)_cn, 1/4

7
 write(0)_cn, 1/4

9

 write(1)_cn, 1/4

10 write(1)_cn, 1/4
2

 write(0)_cn, 1

6
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 write(1)_cn, 1 4
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MORE CRYPTOGRAPHERS
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OTHER TOOLS

• Homer

•MAGE
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CALL-BY-VALUE EVALUATION
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1 CBV

Call-by-value Idealized Algol

RML: an ML-like language with integer references,
including “bad” ones

ref int = (unit → int)× (int → unit)

PRO: Finite alphabet, if finitely many values!
CON: Equivalences relying on ref int may be affected.

– unit → unit → unit is problematic.

q ! q a · · · q a

There are many a’s to point at...

– (unit → unit) → (unit → unit) → unit is undecidable.

regularity
=================================
The environment can partially apply a term of this type arbitrary many times and

refer to these partial applications. In order to represent these references an infinite al-
phabet seems to be needed.

arena
play
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SOME SURPRISES?

1 CBV

Call-by-value Idealized Algol

Reduced ML: as above but with dynamic memory creation.

– unit → unit → unit is problematic.

q ! q a · · · q a

There are many a’s to point at...

– (unit → unit) → (unit → unit) → unit is undecidable.

regularity
=================================
The environment can partially apply a term of this type arbitrary many times and
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SOME RESULTS

Assume finite ground types and absence of recursion.

– Regular

(unit → unit) → unit " unit → unit

– Visibly context-free

((unit → unit) → unit) → unit " (unit → unit) → unit

=================================
The environment can partially apply a term of this type arbitrary many times and

refer to these partial applications. In order to represent these references an infinite al-
phabet seems to be needed.

arena
play

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 1 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

hide facet boxes

Refine by AUTHOR
Andrzej S. Murawski (38)
C.-H. Luke Ong (14)
Dan R. Ghica (7)
Joël Ouaknine (5)
[top 4] [all 17]

Refine by VENUE
LICS (6)
Theor. Comput. Sci. (TCS) (6)
ICALP (4)
TACAS (3)
[top 4] [all 19]

Refine by YEAR
2005 (7)
2011 (6)
2004 (5)
2008 (5)
[top 4] [all 13]

Facets and more with CompleteSearch

author:andrzej_s_murawski:

Andrzej S. Murawski  
List of publications from the DBLP Bibliography Server - FAQ

Ask others: ACM DL/Guide -  - CSB - MetaPress - Google - Bing - Yahoo

2011
38  

 
 

Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, James Worrell:
Language Equivalence for Probabilistic Automata. CAV 2011: 526-540

37  
 
 

Andrzej S. Murawski, Nikos Tzevelekos: Algorithmic Nominal Game Semantics. ESOP
2011: 419-438

36  
 
 

David Hopkins, Andrzej S. Murawski, C.-H. Luke Ong: A Fragment of ML Decidable
by Visibly Pushdown Automata. ICALP (2) 2011: 149-161

35  
 
 

Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, James Worrell, Lijun Zhang: On
Stabilization in Herman's Algorithm. ICALP (2) 2011: 466-477

34  
 
 

Andrzej S. Murawski, Nikos Tzevelekos: Game Semantics for Good General References.
LICS 2011: 75-84

33  
 
 

Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, James Worrell, Lijun Zhang: On
Stabilization in Herman's Algorithm CoRR abs/1104.3100: (2011)

49Sunday, 25 September 2011



SUMMARY

•Many decision procedures have been obtained via game 
semantics in recent years.

• Some have been implemented and observed to beat 
alternative approaches.

• Several tools use game semantics as a main engine.

• Ready for “realistic” applications?
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