ALGORITHMIC GAME SEMANTICS

Andrzej S. Murawski

UNIVERSITY OF LEICESTER

GAME SEMANTICS

```
et rec add_identifier id id_typt
    match env with
        [ ] -> [ ( id,[id_type]) ]
        | (top_id, ty) :: env_tl ->
        if top_id = id then (top_ic
        else (top_id, ty) :: add_ic
    et rec rem_identifier id env =
    match env with
        [ ] -> raise Undeclared_ident
        | ( top_id, ty) :: env_tl ->
        if top_id = id the\overline{n}}\mathrm{ (if ty=
nv_tl)
            else (top_id, ty) :: rem_id
```


FULL ABSTRACTION

M and N are contextually equivalent ($M \cong N$) if they can be used interchangeably in any context (without affecting the computational outcome).

$$
\forall \mathbb{C}[-] . \quad \mathbb{C}[M] \Downarrow \quad \Longleftrightarrow \quad \mathbb{C}[N] \Downarrow
$$

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \Longleftrightarrow M \cong N
$$

GAMES FORTYPES

-Who plays?

0
Opponent

$$
\mathbb{C}[-]
$$

P
Proponent

M
JUSTIFIED SEQUENCES

- How do they play?

O begins. Subsequent moves must be justified by earlier moves made by the opposite player .

GAMES PLAYED IN ARENAS

An arena A is specified by a structure $\left\langle M_{A}, \lambda_{A}, \vdash_{A}\right\rangle$.

- M_{A} is a set of moves.
- $\lambda_{A}: M_{A} \rightarrow\{O, P\} \times\{Q, A\}$ is a labelling function.
$-\vdash_{A}$ is an enabling relation between $\{\dagger\}+M_{A}$ and M_{A}.
- If $\dagger \vdash m$ then $\lambda_{A}(m)=O$ and $n \vdash_{A} m$ implies $n=\dagger$.
- If $m \vdash m^{\prime}$ then $\lambda_{A}(m) \neq \lambda_{A}\left(m^{\prime}\right)$.

A justified sequence over arena A is a sequence of moves from M_{A} together with an associated sequence of pointers satisfying the following conditions.

- The first move is enabled by \star and has no outgoing pointer.
- Any other move m must have a pointer to an earlier move n such that $n \vdash_{A} m$.

N.B. Papers on game semantics use variations on the concept of a justified sequence to suit the programming paradigm being modelled.

A play is a justified sequence that additionally satisfies ... We shall write P_{A} for the set of plays over arena A.

SOME EXAMPLES

- Sequential computation: alternation
- Absence of control effects: well-bracketing
$\cdots q^{\curvearrowleft} q_{1} a_{1} \cdots q_{n}{ }^{\curvearrowleft} a_{n} a \cdots$
- First-order store only: visibility

In his next move P cannot use \cdots for justification.

HISTORY

All the conditions were already present in

J. M. E. Hyland, C.-H. Luke Ong: On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163(2): 285-408 (2000)

But it took a few years to match them with other computational paradigms.

Samson Abramsky, Kohei Honda, Guy McCusker: A Fully Abstract Game Semantics for General References. LICS 1998: 334-344

James Laird: Full Abstraction for Functional Languages with Control. LICS 1997: 58-67

Samson Abramsky, Guy McCusker: Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions. Electr. Notes Theor. Comput. Sci. 3: 2-14 (1996)

REASONING WITH GAMES

- Plays have operational flavour.
- The course of play is often described through metaphores.
- This account has not been formalized yet.
- Operational game semantics: marriage of games and traces

\vdash bool \rightarrow bool

BN

cBV

$\begin{array}{ll}\text { Questions } & q_{0}, q_{1} \\ \text { Answers } & \mathrm{t}_{0}, \mathrm{f}_{0}, \mathrm{t}_{1}, \mathrm{f}_{1}\end{array}$
Plays

Questions
$q, \mathrm{t}_{1}, \mathrm{f}_{1}$
Answers
\star, t_{0}, f_{0}

$$
\left.q^{\curvearrowleft} \star^{\prime}\left(b_{1}{ }_{1}{ }^{1}\right)_{0}\right)^{\prime}
$$

STRATEGIES

- Types are interpreted by games.
- Terms are interpreted by strategies.

A strategy σ in arena A is a prefix-closed set of plays over A such that
$s \in \sigma$ and $s o \in P_{A}$ implies $s o \in \sigma$.

Games and strategies are treated as first-class mathematical objects.

GAME CONSTRUCTORS

$$
A_{1} A_{2}
$$

$$
\begin{array}{ll}
R_{1}^{\prime} & R \\
A_{1} & A_{2}
\end{array}
$$

$$
A_{1}+A_{2}
$$

IDENTITY STRATEGY

$$
A \Rightarrow A
$$

$\begin{array}{ccc}O & m_{L} & \\ P & & m_{R} \\ & & \vdots\end{array}$

$\begin{array}{ccc}O & & m_{R}^{\prime} \\ P & m_{L}^{\prime} & \\ & & \vdots\end{array}$

Given $\sigma: A_{1} \Rightarrow A_{2}$ and $\tau: A_{2} \Rightarrow A_{3}$ one can define $\sigma ; \tau: A_{1} \Rightarrow A_{3}$.

- Moves in A_{2} have a double identity.
- We can exploit the duality to play σ and τ against each other in A_{2}.
- Following the exchange between σ and τ we can hide the interaction in A_{2} to obtain a play in $A_{1} \Rightarrow A_{3}$.

COMPOSITION

$$
\begin{array}{ccc}
A_{1} \stackrel{\sigma}{\Rightarrow} & A_{2} \stackrel{\tau}{\Rightarrow} & A_{3} \\
\hline & & o \\
& & p \\
& & o / p \\
p & & \\
o & & \\
& & \\
& & \\
p & o / p & \\
o & & \\
& & \\
& & p / o \\
& o / p & \\
& p / o & \\
& & \\
& & \\
& & \\
& &
\end{array}
$$

COMPOSITIONAL INTERPRETATION

- The game-semantic denotations are obtained compositionally by induction on term structure.
- Free identifiers are interpreted by identity strategies.
- All other cases are handled through composition with suitably-crafted strategies.

POINTERS (CBN)

$f:($ int \rightarrow int $) \rightarrow$ int

$f\left(\lambda x^{\text {int }} . f\left(\lambda y^{\text {int }} . y\right)\right)$

POINTERS (CBV)

$f:$ int \rightarrow int \rightarrow int
let val $g=f(0)$ in let val $h=f(1)$ in $g(2)$

let val $g=f(0)$ in
let val $h=f(1)$ in $h(2)$

FULL ABSTRACTION

M and N are contextually equivalent if and only if they induce the same sets of complete plays (all questions must be answered).

Samson Abramsky, Guy McCusker: Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions. Electr. Notes Theor. Comput. Sci. 3: 2-14 (1996)

EXAMPLE (○'HEARN)

Idealized Algol: an applied lambda calculus over com, int and var with call-by-name evaluation and fixed-point combinators.
$p: \mathbf{c o m} \rightarrow \operatorname{com} \vdash p(\Omega): \mathbf{c o m}$
$p: \operatorname{com} \rightarrow \operatorname{com} \vdash$ new x in $x:=0$;

$$
p(x:=1)
$$

if $x=0$ then skip else $\Omega:$ com

The equivalence of the two terms cannot be validated using state-transformer semantics.

GAME-SEMANTIC ARGUMENT

$$
\begin{aligned}
p: \operatorname{com}_{4} \rightarrow & \operatorname{com}_{2} \vdash p: \operatorname{com}_{1} \rightarrow \operatorname{com}_{0} \\
& \text { run }_{0} \text { run }_{2}\left(\text { run }_{3} \text { run }_{1} \text { done }_{1} \text { done }_{3}\right)^{*} \text { done }_{2} \text { done }
\end{aligned} 0
$$

$$
\text { run }_{0} \text { run }_{2} \text { done }_{2} \text { done }_{0}
$$

$p(x:=1)$

- p
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { run }_{1} \text { done }_{1} \text { done }_{3}\right)^{*}$ done $_{2}$ done $_{0}$
- $x:=1$
run $_{0}$ write(1) ok done ${ }_{0}$
- $p(x:=1)$
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { write(1) ok done }{ }_{3}\right)^{*}$ done $_{2}$ done $_{0}$

$p(x:=1)$

- p
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { run }_{1} \text { done }_{1} \text { done }_{3}\right)^{*}$ done $_{2}$ done $_{0}$
- $x:=1$
run $_{0}$ write (1) ok done ${ }_{0}$
- $p(x:=1)$
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { write (1) ok done }{ }_{3}\right)^{*}$ done $_{2}$ done $_{0}$

$p(x:=1)$

- p
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { run }_{1} \text { done }_{1} \text { done }_{3}\right)^{*}$ done $_{2}$ done $_{0}$
- $x:=1$
run $_{0}$ write(1) ok done ${ }_{0}$
- $p(x:=1)$
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { write (1) ok done }{ }_{3}\right)^{*}$ done $_{2}$ done $_{0}$

$p(x:=1)$

- p
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { run }_{1} \text { done }_{1} \text { done }_{3}\right)^{*}$ done $_{2}$ done $_{0}$
- $x:=1$
run $_{0}$ write (1) ok done ${ }_{0}$
- $p(x:=1)$
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { write (1) ok done }{ }_{3}\right)^{*}$ done $_{2}$ done $_{0}$

$p(x:=1)$

- p
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { run }_{1} \text { done }_{1} \text { done }_{3}\right)^{*}$ done $_{2}$ done $_{0}$
- $x:=1$
run $_{0}$ write (1) ok done ${ }_{0}$
- $p(x:=1)$
run $_{0}$ run $_{2}\left(\text { run }_{3} \text { write(1) ok done }{ }_{3}\right)^{*}$ done $_{2}$ done $_{0}$
- $p(x:=1)$

$$
\text { run }_{0} \text { run }_{2}\left(\text { run }_{3} \text { write }(1) \text { ok done }{ }_{3}\right)^{*} \text { done }_{2} \text { done }_{0}
$$

- $x:=0 ; p(x:=1)$; if $x=0$ then () else Ω
run $_{0}$ write (0) ok run $\left.2_{2}\left(\text { run }_{3} \text { write (1) ok done }\right)_{3}\right)^{*}$ done $_{2}$ read 0 done $_{0}$
- new x in $x:=0 ; p(x:=1)$; if $x=0$ then () else Ω

$$
\text { run }_{0} \text { run }_{2} \text { done }_{2} \text { done } 0_{0}
$$

new is interpreted by composition with a strategy ensuring that read's and write (i) 's match.

Same complete plays imply equivalence.

RECIPE

- Analyze the underlying process of composition.
- Understand what "really happens".
- Express strategy-building in a concrete way as an operation on formal languages.
- Remember to encode pointers, if necessary.
- Prove language equivalence using the chosen representation.

TYPE ORDER

$$
\operatorname{ord}(\theta)= \begin{cases}0 & \theta \equiv \mathbf{c o m}, \text { int }, \text { var } \\ \max \left(\operatorname{ord}\left(\theta_{1}\right)+1, \operatorname{ord}\left(\theta_{2}\right)\right) & \theta \equiv \theta_{1} \rightarrow \theta_{2}\end{cases}
$$

- $I A_{k}$ consists of terms of the form

$$
x_{1}: \theta_{1}, \cdots, x_{n}: \theta_{n} \vdash M: \theta
$$

with $\operatorname{ord}\left(\theta_{i}\right)<k$ and $\operatorname{ord}(\theta) \leq k$.

- Looping and recursion are not available in $\mathrm{I} \mathrm{A}_{k}$.
- We write \mathbf{Y}_{k} to stress the availability of the fixed-point combinator $\mathbf{Y}_{\theta}:(\theta \rightarrow \theta) \rightarrow \theta$ for θ of order k.

DECIDABILITY

We assume finite ground types!

	pure	+ while	$+\mathbf{Y}_{0}$	$+\mathbf{Y}_{1}$
IA_{1}	+	+	+	-
IA_{2}	+	+	+	-
IA_{3}	+	+	+	-
$\mid \mathrm{A}_{4}$	-	-	-	-

The results were obtained using FA, DPDA and VPA.

BIBLIOGRAPHY

Dan R. Ghica, Guy McCusker: Reasoning about Idealized ALGOL Using Regular Languages. ICALP 2000: 103-115

Andrzej S. Murawski: Games for complexity of second-order call-by-name programs Theor. Comput. Sci. 343(1-2): 207-236 (2005)
C.-H. Luke Ong: Observational Equivalence of 3rd-Order Idealized Algol is Decidable. LICS 2002: 245-256

Andrzej S. Murawski, C.-H. Luke Ong, Igor Walukiewicz: Idealized Algol with Ground Recursion, and DPDA Equivalence. ICALP 2005: 917-929

Andrzej S. Murawski, Igor Walukiewicz: Third-Order Idealized Algol with Iteration Is Decidable. FoSSaCS 2005: 202-218

Andrzej S. Murawski: On Program Equivalence in Languages with Ground-Type References. LICS 2003: 108-

COMPLEXITY

Equivalence of terms in beta-normal form.

	pure	+ while	$+\mathbf{Y}_{0}$	$+\mathbf{Y}_{1}$
IA_{1}	CONP-complete	PSPACE-complete	$?$	-
IA_{2}	PSPACE-complete	PSPACE-complete	$?$	-
IA_{3}	EXPTIME-complete	EXPTIME-complete	$?$	-
IA_{4}	-	-	-	-

Non-elementary in general.

UNDECIDABILITY

- It may seem surprising that program equivalence in a language over finite datatypes is undecidable.
- This is all due to the rich structure of interactions afforded by higher-order types.
- At fourth order there are patterns of interaction between O and P that resemble actions of a queue.
- Moreover, there exists a program that can detect whether O follows the queue-pattern.
- Game semantics tames higher-order interaction.

NONDETERMINISM

May-termination $\Downarrow_{\text {may }}$ Must-termination $\Downarrow_{\text {must }}$

- May-equivalence

$$
\forall \mathbb{C}[-] . \quad \mathbb{C}[M] \Downarrow_{\text {may }} \quad \Longleftrightarrow \quad \mathbb{C}[N] \Downarrow_{\text {may }}
$$

- Must-equivalence

$$
\forall \mathbb{C}[-] . \quad \mathbb{C}[M] \Downarrow_{\text {must }} \Longleftrightarrow \mathbb{C}[N] \Downarrow_{\text {must }}
$$

- May \& Must-equivalence

MAY-EQUIVALENCE

Characterization via complete plays still applies.

	pure	+ while	$+\mathbf{Y}_{0}$
EA $_{1}$	PSPACE-complete	EXPSPACE-complete	-
EA $_{2}$	EXPSPACE-complete	EXPSPACE-complete	-
EA $_{3}$	2-EXPTIME-complete	2-EXPTIME-complete	-
EA $_{4}$	-	-	-

MUST-EQUIVALENCE

Russell Harmer, Guy McCusker: A Fully Abstract Game Semantics for Finite Nondeterminism. LICS 1999: 422-430

A strategy σ on an arena A is a pair $\left(T_{\sigma}, D_{\sigma}\right)$. The first component T_{σ}, known as the traces of σ, is a non-empty set of even-length legal plays of A satisfying

$$
s a b \in T_{\sigma} \Rightarrow s \in T_{\sigma} .
$$

We write $\operatorname{dom}(\sigma)$ for the domain of σ, i.e. the set $\left\{s a \in L_{A} \mid \exists b . s a b \in T_{\sigma}\right\}$ and $c c(\sigma)$ for the contingency closure of σ, i.e. $T_{\sigma} \cup \operatorname{dom}(\sigma)$. Given $s a \in \operatorname{dom}(\sigma)$, let $\operatorname{rng}_{\sigma}(s a)=\left\{b \in M_{A} \mid s a b \in T_{\sigma}\right\}$.

The second component D_{σ} is known as the divergences of σ; it's a set of odd-length legal plays of A satisfying

Characterization via quotienting.

WINNING REGIONS

Let O and P play a reachability game over the traces of $\sigma . O$ will be declared a winner if he reaches a complete play without encountering any divergences. This induces winning regions for O and P.

Two terms are must-equivalent if and only if any difference between the induced strategies (trace or divergence) is compensated by a winning region for P.

Andrzej S. Murawski: Reachability Games and Game Semantics: Comparing

Nondeterministic Programs. LICS 2008: 353-363

MUST-EQUIVALENCE

	pure	+while	$+\mathbf{Y}_{0}$
EA_{1}	PSPACE-complete	2-EXPTIME-complete	-
EA_{2}	2-EXPTIME-complete	2-EXPTIME-complete	-
EA_{3}	3-EXPTIME-complete	3-EXPTIME-complete	-
EA_{4}	-	-	-

PROBABILISTIC EQUIVALENCE

$$
\Downarrow_{p}
$$

$$
\forall \mathbb{C}[-] . \quad \mathbb{C}[M] \Downarrow_{p} \quad \Leftrightarrow \quad \mathbb{C}[N] \Downarrow_{p}
$$

PROBABILISTIC STRATEGIES

The definition comes in two steps. First of all, we define a prestrategy σ on an arena A to be a (set-theoretic) function $\sigma: \mathcal{L}_{A}^{\text {even }} \rightarrow[0, \infty]$. Such a prestrategy is a strategy iff
(p1) $\sigma(\varepsilon)=1$; (p2) if $s a \in \mathcal{L}_{A}^{\text {odd }}$ then $\sigma(s) \geq \sum_{t \in \mathrm{ie}(s a)} \sigma(t)$.

Vincent Danos, Russell Harmer: Probabilistic game semantics. ACM Trans. Comput. Log. 3(3): 359-382 (2002)

PROBABILISTIC LANGUAGE EQUIVALENCE

Two probabilistic programs are equivalent if and only if the corresponding probabilistic strategies assign the same probabilities to all complete plays.

APEX tool

Axel Legay, Andrzej S. Murawski, Joël Ouaknine, James Worrell: On Automated Verification of Probabilistic Programs. TACAS 2008: 173-187

DINING CRYPTOGRAPHERS

WAS IT ONE OFTHEM?

One of the cryptographers paid \Longleftrightarrow \#"Disagree" is odd

$$
f:\{0,1,2,3\} \rightarrow\{0,1\}
$$

```
x:int%4 |-
    var%4 whopaid; var%2 first; var%2 left;
    var%2 right; var%2 parity; var%4 i;
    whopaid:=x; first:=coin; right:=first; i:=1;
    while (i) do
    {
        left:= if (i=3) then first else coin;
        if not((left=right)+(whopaid=i))
            then parity:=not(parity);
        right := left;
        i:=i+1
    };
    parity : int%2
```


CORRECTNESS

ANONYMITY (VIEWS)

```
cn:var%2, ch:var%2 |-
var%4 whopaid;
whopaid := 2;
if (whopaid <= 1) then diverge else
{
    var%2 first; var%2 left; var%2 right; var%4 i;
    first:=coin; right:=first; i:=1;
    while (i) do
    {
        left:=if (i=3) then first else coin;
        if (i=1) then { cn:=right; cn:=left };
        if ((left=right)+(whopaid=i)) then ch:=1 else ch:=0;
        right := left;
        i := i+1
    }
}: com
```


WHAT CAN HE SEE?

2 paid

3 paid

WHAT CAN HE SEE?

MORE CRYPTOGRAPHERS

OTHERTOOLS

- Homer

David Hopkins, C.-H. Luke Ong: Homer: A Higher-Order Observational Equivalence Model checkER. CAV 2009: 654-660

- MAGE

Adam Bakewell, Dan R. Ghica: On-the-Fly Techniques for Game-Based Software Model Checking. TACAS 2008: 78-92

CALL-BY-VALUE EVALUATION

Call-by-value Idealized Algol

RML: an ML-like language with integer references, including "bad" ones

$$
\text { ref int }=(\text { unit } \rightarrow \text { int }) \times(\text { int } \rightarrow \text { unit })
$$

PRO: Finite alphabet, if finitely many values!
CON: Equivalences relying on ref int may be affected.

Samson Abramsky, Guy McCusker: Call-by-Value Games. CSL 1997: 1-17

SOME SURPRISES?

- unit \rightarrow unit \rightarrow unit is problematic.

$$
q^{\curvearrowleft} \star q^{n} a \cdots q^{\curvearrowleft} a
$$

There are many a 's to point at...

- (unit \rightarrow unit $) \rightarrow$ (unit \rightarrow unit $) \rightarrow$ unit is undecidable.

Andrzej S. Murawski: Functions with local state: Regularity and undecidability. Theor. Comput. Sci. 338(1-3): 315-349 (2005)

SOME RESULTS

Assume finite ground types and absence of recursion.

- Regular

$$
\text { (unit } \rightarrow \text { unit) } \rightarrow \text { unit } \vdash \text { unit } \rightarrow \text { unit }
$$

- Visibly context-free

$$
((\text { unit } \rightarrow \text { unit }) \rightarrow \text { unit }) \rightarrow \text { unit } \vdash(\text { unit } \rightarrow \text { unit }) \rightarrow \text { unit }
$$

David Hopkins, Andrzej S. Murawski, C.-H. Luke Ong: A Fragment of ML Decidable by Visibly Pushdown Automata. ICALP (2) 2011: 149-161

SUMMARY

- Many decision procedures have been obtained via game semantics in recent years.
- Some have been implemented and observed to beat alternative approaches.
- Several tools use game semantics as a main engine.
- Ready for "realistic" applications?

