
ALGORITHMIC
GAME SEMANTICS

Andrzej S. Murawski

UNIVERSITY OF LEICESTER

1Sunday, 25 September 2011

GAME SEMANTICS

auxiliary.ml Thu Jan 13 18:08:33 2011 1

open String
open List
open Map

exception Internal_error of int
exception Undeclared_identifier
exception Type_mismatch
exception Duplicate_identifier
exception Identifier_missing_in_table
exception Type_var_exception
exception Strange_casting
exception Not_a_subdistribution
exception Zero_denominator
exception Not_a_triple
exception Empty_caselist
exception Insufficient_typing_information
exception Zero_int_type
exception Empty_type_list
exception Zero_var_type
exception Wrong_var_type
exception Wrong_array_type
exception Empty_array
exception Let_exception
exception Empty_typelist
exception Apply_var_exception
exception Eta_exception

exception Error of string

(* Hash map with strings as keys *)

module StringMap = Map.Make (String)

let const_table : (int StringMap.t) ref = ref StringMap.empty

let add_constant = StringMap.add

let rec lookup_constant key table = StringMap.find key table

let rec exists_constant key table = StringMap.mem key table

(* Symbol Table

symt = ((string, type list) list) ref

maintained invariant:
if (s,l) occurs in the stored list l is not empty.
*)

let rec add_identifier id id_type env =
 match env with
 [] -> [(id,[id_type])]
 | (top_id, ty) :: env_tl ->
 if top_id = id then (top_id, id_type :: ty) :: env_tl
 else (top_id, ty) :: add_identifier id id_type env_tl

let rec rem_identifier id env =
 match env with
 [] -> raise Undeclared_identifier
 | (top_id, ty) :: env_tl ->
 if top_id = id then (if ty=[] then raise Empty_typelist else (top_id, tl ty) :: e
nv_tl)
 else (top_id, ty) :: rem_identifier id env_tl

let rec get_identifier id env =

2Sunday, 25 September 2011

FULL ABSTRACTION

M andN are contextually equivalent (M ∼= N)
if they can be used interchangeably in any context
(without affecting the computational outcome).

∀C[−]. C[M] ⇓ ⇐⇒ C[N] ⇓

!M" = !N" ⇐⇒ M ∼= N

Since the 1990s steady stream of full abstraction results based on games.

Refences
O P

Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6

M andN are contextually equivalent (M ∼= N)
if they can be used interchangeably in any context
(without affecting the computational outcome).

∀C[−]. C[M] ⇓ ⇐⇒ C[N] ⇓

!M" = !N" ⇐⇒ M ∼= N

Since the 1990s steady stream of full abstraction results based on games.

Refences
O P

Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6

M andN are contextually equivalent (M ∼= N)
if they can be used interchangeably in any context
(without affecting the computational outcome).

∀C[−]. C[M] ⇓ ⇐⇒ C[N] ⇓

!M" = !N" ⇐⇒ M ∼= N

Since the 1990s steady stream of full abstraction results based on games.

Refences
O P

Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6

3Sunday, 25 September 2011

GAMES FOR TYPES

•Who plays?

O P
Opponent Proponent

C[−] M

4Sunday, 25 September 2011

JUSTIFIED SEQUENCES

•How do they play?

O begins. Subsequent moves must be justified by
earlier moves made by the opposite player .

O P
Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6

5Sunday, 25 September 2011

GAMES PLAYED IN ARENAS

O P
Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6

An arena A is specified by a structure 〈MA,λA,"A 〉.

– MA is a set of moves.
– λA : MA → {O,P}× {Q,A} is a labelling function.
– "A is an enabling relation between {†}+MA andMA.

• If † " m then λA(m) = O and n "A m implies n = †.
• Ifm " m′ then λA(m) &= λA(m′).

A strategy σ in arena A is a prefix-closed set of plays over A
such that

s ∈ σ and s o ∈ PA implies so ∈ σ.

A justified sequence over arena A is a sequence of moves fromMA together
with an associated sequence of pointers satisfying the following conditions.

– The first move is enabled by † and has no outgoing pointer.
– Any other move m must have a pointer to an earlier move n such that
n !A m.

†

o1
!!

""

p2 p3
!!

""

o4 o6

p5

A play is a justified sequence that additionally satisfies ...
We shall write PA for the set of plays over arena A.

6Sunday, 25 September 2011

PLAYS
A justified sequence over arena A is a sequence of moves fromMA together
with an associated sequence of pointers satisfying the following conditions.

– The first move is enabled by ! and has no outgoing pointer.
– Any other move m must have a pointer to an earlier move n such that
n !A m.

!

o1
!!

""

p2 p3
!!

""

o4 o6

p5

A

N.B. Papers on game semantics use variations on
the concept of a justified sequence to suit the

programming paradigm being modelled.

A justified sequence over arena A is a sequence of moves fromMA together
with an associated sequence of pointers satisfying the following conditions.

– The first move is enabled by ! and has no outgoing pointer.
– Any other move m must have a pointer to an earlier move n such that
n !A m.

!

o1
!!

""

p2 p3
!!

""

o4 o6

p5

A play is a justified sequence that additionally satisfies ...
We shall write PA for the set of plays over arena A.

7Sunday, 25 September 2011

SOME EXAMPLES

• Sequential computation: alternation

• Absence of control effects: well-bracketing

• First-order store only: visibility

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M] ⇓may ⇐⇒ C[N] ⇓may

– Must-equivalence

∀C[−]. C[M] ⇓must ⇐⇒ C[N] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M] ⇓p ⇐⇒ C[N] ⇓p

Two probabilistic programs are equivalent if and only
if the corresponding probabilistic strategies assign the
same probabilities to all complete plays.

· · · q q1 a1 · · · qn an a · · ·

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M] ⇓may ⇐⇒ C[N] ⇓may

– Must-equivalence

∀C[−]. C[M] ⇓must ⇐⇒ C[N] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M] ⇓p ⇐⇒ C[N] ⇓p

Two probabilistic programs are equivalent if and only
if the corresponding probabilistic strategies assign the
same probabilities to all complete plays.

· · · q q1 a1 · · · qn an a · · ·

o1 p1 · · · o2 p2 · · · o3 p3 · · · o4

In his next move P cannot use · · · for justification.

8Sunday, 25 September 2011

HISTORY
All the conditions were already present in

But it took a few years to match them with
other computational paradigms.

21/09/2011 08:15DBLP: C.-H. Luke Ong

Page 7 of 10http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ong:C==H=_Luke.html

13

J. M. E. Hyland, C.-H. Luke Ong: On Full Abstraction for PCF: I, II, and III. Inf. Comput.
163(2): 285-408 (2000)

1999
12

Andrew D. Ker, Hanno Nickau, C.-H. Luke Ong: A Universal Innocent Game Model for
the Böhm Tree Lambda Theory. CSL 1999: 405-419

11

Thong wei Koh, C.-H. Luke Ong: Internal Languages for Autonomous and *-Autonomous
Categories. Electr. Notes Theor. Comput. Sci. 29: 151 (1999)

10

Andrzej S. Murawski, C.-H. Luke Ong: Exhausting Strategies, Joker Games and IMLL with
Units. Electr. Notes Theor. Comput. Sci. 29: 209-239 (1999)

1997
9

C.-H. Luke Ong, Charles A. Stewart: A Curry-Howard Foundation for Functional
Computation with Control. POPL 1997: 215-227

1996
8

C.-H. Luke Ong: A Semantic View of Classical Proofs: Type-Theoretic, Categorical, and
Denotational Characterizations (Preliminary Extended Abstract). LICS 1996: 230-241

1995
7

J. M. E. Hyland, C.-H. Luke Ong: Pi-Calculus, Dialogue Games and PCF. FPCA 1995: 96-
107

1993
6

C.-H. Luke Ong, Eike Ritter: A Generic Strong Normalization Argument: Application to
the Calculus of Constructions. CSL 1993: 261-279

5

21/09/2011 08:15DBLP: Guy McCusker

Page 3 of 5http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/McCusker:Guy.html

2002
13

Guy McCusker: A Fully Abstract Relational Model of Syntactic Control of Interference.
CSL 2002: 247-261

2000
12

Dan R. Ghica, Guy McCusker: Reasoning about Idealized ALGOL Using Regular
Languages. ICALP 2000: 103-115

11

Guy McCusker: Games and Full Abstraction for FPC. Inf. Comput. 160(1-2): 1-61 (2000)

1999
10

Russell Harmer, Guy McCusker: A Fully Abstract Game Semantics for Finite
Nondeterminism. LICS 1999: 422-430

9

Samson Abramsky, Guy McCusker: Full Abstraction for Idealized Algol with Passive
Expressions. Theor. Comput. Sci. 227(1-2): 3-42 (1999)

1998
8

Guy McCusker: Games and full abstraction for a functional metalanguage with recursive
types. Springer 1998: I-XIII, 1-189

7

Samson Abramsky, Kohei Honda, Guy McCusker: A Fully Abstract Game Semantics for
General References. LICS 1998: 334-344

1997
6

21/09/2011 08:15DBLP: Guy McCusker

Page 4 of 5http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/McCusker:Guy.html

Samson Abramsky, Guy McCusker: Call-by-Value Games. CSL 1997: 1-17

5

Guy McCusker: Games and definability for FPC. Bulletin of Symbolic Logic 3(3): 347-
362 (1997)

1996
4

Guy McCusker: Games and Full Abstraction for FPC. LICS 1996: 174-183

3

Samson Abramsky, Guy McCusker: Linearity, Sharing and State: a fully abstract game
semantics for Idealized Algol with active expressions. Electr. Notes Theor. Comput. Sci.
3: 2-14 (1996)

1995
2

Samson Abramsky, Guy McCusker: Games and Full Abstraction for the Lazy lambda-
Calculus LICS 1995: 234-243

1994
1

Samson Abramsky, Guy McCusker: Games for Recursive Types. Theory and Formal
Methods 1994: 1-20

Coauthor Index

1 Samson Abramsky [1] [2] [3] [6] [7] [9]
2 Ana C. Calderon [21]
3 Martin Churchill [22] [24]
4 Dan R. Ghica [12] [14] [16] [18]

22/09/2011 08:47DBLP: James Laird

Page 6 of 7http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Laird:James.html

Exceptions. LICS 2001: 105-114

4

James Laird: A Deconstruction of Non-deterministic Classical
Cut Elimination. TLCA 2001: 268-282

3

James Laird: A Game Semantics of Idealized CSP. Electr. Notes
Theor. Comput. Sci. 45: 232-257 (2001)

2000
2

James Laird: Finite Models and Full Completeness. CSL 2000:
384-398

1997
1

James Laird: Full Abstraction for Functional Languages with
Control. LICS 1997: 58-67

Coauthor Index

1 Martin Churchill [30] [33] [34]
2 Giulio Manzonetto [35]
3 Guy McCusker [30] [34] [35]

9Sunday, 25 September 2011

REASONING WITH GAMES

• Plays have operational flavour.

• The course of play is often described through metaphores.

• This account has not been formalized yet.

•Operational game semantics: marriage of games and traces

10Sunday, 25 September 2011

1 Dagstuhl

An arena A = 〈MA, λA,"A 〉 is a triple such that
– MA is the set of moves

– λA : MA → {OQ, PA, OA, PA}
– "A such that 〈MA,"A 〉 is a directed acyclic graph whose nodes are parti-
tioned by

λA : MA → {OQ, PQ, OA, PA}

in such a way that

If m "A m′ and m′ is an answer then m must be a question.

q0 q1 t1 q1 f1 f0

q " t1 t0 f1 f0 f1 f0 · · ·

" λxbool.if x then x elsex : bool → bool

q0

!!!!!!!!

""
" ##

O

q1

$$
$$ %

%
% t0 f0 P

t1 f1 O

Questions q0, q1

Answers t0, f0, t1, f1

q O

"

&&
&& '

''
P

t1

((
((

(f1

))
))

)
O

t0 f0 P

Questions q, t1, f1
Answers ", t0, f0

1 Dagstuhl

An arena A = 〈MA, λA,"A 〉 is a triple such that
– MA is the set of moves

– λA : MA → {OQ, PA, OA, PA}
– "A such that 〈MA,"A 〉 is a directed acyclic graph whose nodes are parti-
tioned by

λA : MA → {OQ, PQ, OA, PA}

in such a way that

If m "A m′ and m′ is an answer then m must be a question.

q0 q1 t1 q1 f1 f0

q " t1 t0 f1 f0 f1 f0 · · ·

" λxbool.if x then x elsex : bool → bool

q0

!!!!!!!!

""
" ##

O

q1

$$
$$ %

%
% t0 f0 P

t1 f1 O

Questions q0, q1

Answers t0, f0, t1, f1

q O

"

&&
&& '

''
P

t1

((
((

(f1

))
))

)
O

t0 f0 P

Questions q, t1, f1
Answers ", t0, f0

1 Dagstuhl

An arena A = 〈MA, λA,"A 〉 is a triple such that
– MA is the set of moves

– λA : MA → {OQ, PA, OA, PA}
– "A such that 〈MA,"A 〉 is a directed acyclic graph whose nodes are parti-
tioned by

λA : MA → {OQ, PQ, OA, PA}

in such a way that

If m "A m′ and m′ is an answer then m must be a question.

q0 q1 t1 q1 f1 f0

q " t1 t0 f1 f0 f1 f0 · · ·

" bool → bool

" λxbool.if x then x elsex : bool → bool

q0

!!!!!!!!

"
"
" ##

O

q1

$$
$$ %

%
% t0 f0 P

t1 f1 O

Questions q0, q1

Answers t0, f0, t1, f1

q O

"

&&
&& '

''
P

t1

((
((

(f1

))
))

)
O

t0 f0 P

Questions q, t1, f1
Answers ", t0, f0

CBN CBV

1 Dagstuhl

An arena A = 〈MA, λA,"A 〉 is a triple such that
– MA is the set of moves

– λA : MA → {OQ, PA, OA, PA}
– "A such that 〈MA,"A 〉 is a directed acyclic graph whose nodes are parti-
tioned by

λA : MA → {OQ, PQ, OA, PA}

in such a way that

If m "A m′ and m′ is an answer then m must be a question.

q0 q1 t1 q1 f1 f0

q " t1 t0 f1 f0 f1 f0 · · ·

" bool → bool

" λxbool.if x then x elsex : bool → bool

q0

!!!!!!!!

"
"
" ##

O

q1

$$
$$ %

%
% t0 f0 P

t1 f1 O

Questions q0, q1

Answers t0, f0, t1, f1

q O

"

&&
&& '

''
P

t1

((
((

(f1

))
))

)
O

t0 f0 P

Questions q, t1, f1
Answers ", t0, f0

1 Dagstuhl

An arena A = 〈MA, λA,"A 〉 is a triple such that
– MA is the set of moves

– λA : MA → {OQ, PA, OA, PA}
– "A such that 〈MA,"A 〉 is a directed acyclic graph whose nodes are parti-
tioned by

λA : MA → {OQ, PQ, OA, PA}

in such a way that

If m "A m′ and m′ is an answer then m must be a question.

q0 q1 t1 q1 f1 f0

q " t1 t0 f1 f0 f1 f0 · · ·

" bool → bool

" λxbool.if x then x elsex : bool → bool

q0

!!!!!!!!

"
"
" ##

O

q1

$$
$$ %

%
% t0 f0 P

t1 f1 O

Questions q0, q1

Answers t0, f0, t1, f1

q O

"

&&
&& '

''
P

t1

((
((

(f1

))
))

)
O

t0 f0 P

Questions q, t1, f1
Answers ", t0, f0

M andN are contextually equivalent (M ∼= N)
if they can be used interchangeably in any context
(without affecting the computational outcome).

∀C[−]. C[M] ⇓ ⇐⇒ C[N] ⇓

!M" = !N" ⇐⇒ M ∼= N

q0 (q1 b1)
∗ b0

q ! (b1 b0)
∗

Since the 1990s steady stream of full abstraction results based on games. Refences

O P
Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6

M andN are contextually equivalent (M ∼= N)
if they can be used interchangeably in any context
(without affecting the computational outcome).

∀C[−]. C[M] ⇓ ⇐⇒ C[N] ⇓

!M" = !N" ⇐⇒ M ∼= N

q0 (q1 b1)
∗ b0

q ! (b1 b0)
∗

Since the 1990s steady stream of full abstraction results based on games. Refences

O P
Opponent Proponent

C[−] M

o1 p2 p3 o4 p5 o6

Plays

11Sunday, 25 September 2011

STRATEGIES

• Types are interpreted by games.
• Terms are interpreted by strategies.

An arena A is specified by a structure 〈MA,λA,"A 〉 .

– MA is a set of moves.
– λA : MA → {O,P} is a labelling function.
– "A is an enabling relation between {†}+MA andMA.

• If † " m then λA(m) = O and n "A m implies n = †.
• Ifm " m′ then λA(m) %= λA(m′).

A strategy σ in arena A is a prefix-closed set of plays over A
such that

s ∈ σ and s o ∈ PA implies so ∈ σ.

Games and strategies are treated as
first-class mathematical objects.

12Sunday, 25 September 2011

GAME CONSTRUCTORS

A1

A2

A1 ×A2

A1 ⇒ A2

†

A1

A2

A1 ×A2

A1 ⇒ A2

†

A1

A2

A1 ×A2

A1 ⇒ A2

†

A1

A2

A1 ×A2

A1 ⇒ A2

†

L

R

A1 +A2

A1

A2

A1 ×A2

A1 ⇒ A2

†

L

R

A1 +A2

A1

A2

A1 ×A2

A1 ⇒ A2

†

L

R

A1 +A2

A1

A2

A1 ×A2

A1 ⇒ A2

†

L

R

A1 +A2

A1

A2

A1 ×A2

A1 ⇒ A2

†

L

R

A1 +A2

A1

A2

A1 ×A2

A1 ⇒ A2

†

A1

A2

A1 ×A2

A1 ⇒ A2

†

A1

A2

A1 ×A2

A1 ⇒ A2

†

L

R

A1 +A2

A1

A2

A1 ×A2

A1 ⇒ A2

†

L

R

A1 +A2

A1

A2

A1 ×A2

A1 ⇒ A2

†

L

R

A1 +A2

A1

A2

A1 ×A2

A1 ⇒ A2

†

13Sunday, 25 September 2011

IDENTITY STRATEGY

A ⇒ A

...
O mL

P mR

...
O m′

R

P m′

L

...

· · · mL mR · · · m′

R m′

L · · ·

A ⇒ A

...
O mL

P mR

...
O m′

R

P m′

L

...

· · · mL mR · · · m′

R m′

L · · ·

14Sunday, 25 September 2011

COMPOSITION

Given σ : A1 ⇒ A2 and τ : A2 ⇒ A3

one can define σ; τ : A1 ⇒ A3.

– Moves in A2 have a double identity.
– We can exploit the duality to play σ and τ against
each other in A2.

– Following the exchange between σ and τ we can hide
the interaction in A2 to obtain a play in A1 ⇒ A3.

σ; τ = (σ ||
A2

τ) \A2

A1

σ
†

⇒ A2

τ
⇒ A3

o
p
o

o/p
p
o

p/o
o/p

p
o

p/o
o/p
p/o

p

15Sunday, 25 September 2011

COMPOSITION

Given σ : A1 ⇒ A2 and τ : A2 ⇒ A3

one can define σ; τ : A1 ⇒ A3.

– Moves in A2 have a double identity.
– We can exploit the duality to play σ and τ against
each other in A2.

– Following the exchange between σ and τ we can hide
the interaction in A2 to obtain a play in A1 ⇒ A3.

σ; τ = (σ ||
A2

τ) \A2

A1

σ
⇒ A2

τ
⇒ A3

o
p
o

o/p
p
o

p/o
o/p

p
o

p/o
o/p
p/o

p

16Sunday, 25 September 2011

COMPOSITIONAL
INTERPRETATION

• The game-semantic denotations are obtained
compositionally by induction on term structure.

• Free identifiers are interpreted by identity strategies.

• All other cases are handled through composition with
suitably-crafted strategies.

17Sunday, 25 September 2011

POINTERS (CBN)

f : (int → int) → int

f(λxint.f(λyint.x)) f(λxint.f(λyint.y))

m0 m1 m2 m3 m4 m5 m0 m1 m2 m3 m4 m5

f : int → int → int

let val g = f(0) in
let valh = f(1) in g(2)

let val g = f(0) in
let valh = f(1) inh(2)

q0 01 "1 11 "1 22 q0 01 "1 11 "1 22

2

18Sunday, 25 September 2011

POINTERS (CBV)

f : (int → int) → int

f(λxint.f(λyint.x)) f(λxint.f(λyint.y))

m0 m1 m2 m3 m4 m5 m0 m1 m2 m3 m4 m5

f : int → int → int

let val g = f(0) in

let valh = f(1) in g(2)
let val g = f(0) in

let valh = f(1) inh(2)

q0 01 "1 11 "1 22 q0 01 "1 11 "1 22

2

19Sunday, 25 September 2011

FULL ABSTRACTION

M andN are contextually equivalent
if and only if they induce the same sets
of complete plays (all questions must
be answered).

21/09/2011 08:14DBLP: Samson Abramsky

Page 9 of 17http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Abramsky:Samson.html

45

Samson Abramsky: Game Semantics for Programming Languages (Abstract). MFCS 1997:
3-4

44

Samson Abramsky, Simon J. Gay, Rajagopal Nagarajan: A Type-Theoretic Approach to
Deadlock-Freedom of Asynchronous Systems. TACS 1997: 295-320

1996
43

Samson Abramsky: Semantics of Interaction (Abstract). CAAP 1996: 1

42

Samson Abramsky: Retracing Some Paths in Process Algebra. CONCUR 1996: 1-17

41

Samson Abramsky, Simon J. Gay, Rajagopal Nagarajan: Interaction categories and the
foundations of typed concurrent programming. NATO ASI DPD 1996: 35-113

40

Samson Abramsky, Guy McCusker: Linearity, Sharing and State: a fully abstract game
semantics for Idealized Algol with active expressions. Electr. Notes Theor. Comput. Sci.
3: 2-14 (1996)

1995
39

Samson Abramsky, Simon J. Gay, Rajagopal Nagarajan: Specification Structures and
Propositions-as-Types for Concurrency. Banff Higher Order Workshop 1995: 5-40

38

Samson Abramsky, Guy McCusker: Games and Full Abstraction for the Lazy lambda-
Calculus LICS 1995: 234-243

1994

20Sunday, 25 September 2011

EXAMPLE (O’HEARN)
Idealized Algol: lambda calculus with commands (com),
integers (int) and variables for storing them (var).

O’Hearn (no snapback example)

p : com → com " p(Ω) : com

p : com → com " newx in x :=0;
p(x :=1);
if x = 0 then skip else Ω : com

This example cannot be validated using state-transformer semantics: the transformer
corresponding to p(x :=1) can yield a state with x = 0.

Premature focus on states...

Idealized Algol: an applied lambda calculus over com, int and var
with call-by-name evaluation and fixed-point combinators.

O’Hearn (no snapback example)

p : com → com " p(Ω) : com

p : com → com " newx in x :=0;
p(x :=1);
if x = 0 then skip else Ω : com

This example cannot be validated using state-transformer semantics: the transformer
corresponding to p(x :=1) can yield a state with x = 0.

Premature focus on states...

The equivalence of the two terms cannot be validated
using state-transformer semantics.

21Sunday, 25 September 2011

GAME-SEMANTIC ARGUMENT

In games it can be validated as follows.
com is interpreted by

run

done

Arena:

run0

!!
!!

"""
"""

"""

run2

##
##
#

run1 done0

run3 done2 done1

done3

p : com4 → com2 " p : com1 → com0

run0 run2 (run3 run1 done1 done3)
∗
done2 done0

p : com4 → com2 " p(Ω) : com0

run run2 done2 done

In games it can be validated as follows.
com is interpreted by run

done

Arena:

run0

!!
!!

"""
"""

"""

run2

##
##
#

run1 done0

run3 done2 done1

done3

p : com4 → com2 " p : com1 → com0

run0 run2 (run3 run1 done1 done3)
∗
done2 done0

p : com4 → com2 " p(Ω) : com0

run run2 done2 done

In games it can be validated as follows.
com is interpreted by run

done

Arena:

run0

!!
!!

"""
"""

"""

run2

##
##
#

run1 done0

run3 done2 done1

done3

p : com4 → com2 " p : com1 → com0

run0 run2 (run3 run1 done1 done3)
∗
done2 done0

p : com4 → com2 " p(Ω) : com0

run0 run2 done2 done0

22Sunday, 25 September 2011

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

new is interpreted by composition with a strategy
ensuring that read ’s and write(i)’s match.

p(x :=1)

var is interpreted by read write(i)

i ok

23Sunday, 25 September 2011

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

new is interpreted by composition with a strategy
ensuring that read ’s and write(i)’s match.

p(x :=1)

var is interpreted by read write(i)

i ok

23Sunday, 25 September 2011

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

new is interpreted by composition with a strategy
ensuring that read ’s and write(i)’s match.

p(x :=1)

var is interpreted by read write(i)

i ok

23Sunday, 25 September 2011

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

new is interpreted by composition with a strategy
ensuring that read ’s and write(i)’s match.

p(x :=1)

var is interpreted by read write(i)

i ok

23Sunday, 25 September 2011

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

new is interpreted by composition with a strategy
ensuring that read ’s and write(i)’s match.

p(x :=1)

var is interpreted by read write(i)

i ok

23Sunday, 25 September 2011

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

run0

!!
!!
!!

""
""
""
""
"

####
####

####
####

####
####

####
#

$$$$
$$$$

$$$$
$$$$

$$$$
$

read write(i) run2

%%
%%
%%

run1 done0

i ok run3 done2 done1

done3

• p
run0 run2 (run3 run1 done1 done3)

∗
done2 done0

• x :=1
run0 write(1) ok done0

• p(x :=1)
run0 run2 (run3 write(1) ok done3)

∗
done2 done0

• x :=0; p(x :=1); if x = 0 then () else Ω

run0 write(0) ok run2 (run3 write(1) ok done3)
∗
done2 read 0 done0

• new x in x :=0; p(x :=1); if x = 0 then () else Ω

run0 run2 done2 done0

new is interpreted by composition with a strategy
ensuring that read ’s and write(i)’s match.

Same complete plays imply equivalence.

24Sunday, 25 September 2011

RECIPE

• Analyze the underlying process of composition.

• Understand what “really happens”.

• Express strategy-building in a concrete way as an
operation on formal languages.

• Remember to encode pointers, if necessary.

• Prove language equivalence using the chosen
representation.

25Sunday, 25 September 2011

TYPE ORDER

ord(θ) =

{

0 θ ≡ com, int,var
max(ord(θ1) + 1, ord(θ2)) θ ≡ θ1 → θ2

• IAk consists of terms of the form

x1 : θ1, · · · , xn : θn # M : θ

with ord(θi) < k and ord(θ) ≤ k.

• Looping and recursion are not available in IAk.

• We writeYk to stress the availability of the fixed-point combinator
Yθ : (θ → θ) → θ for θ of order k.

ord(θ) =

{

0 θ ≡ com, int,var
max(ord(θ1) + 1, ord(θ2)) θ ≡ θ1 → θ2

• IAk consists of terms of the form

x1 : θ1, · · · , xn : θn # M : θ

with ord(θi) < k and ord(θ) ≤ k.

• Looping and recursion are not available in IAk.

• We writeYk to stress the availability of the fixed-point combinator
Yθ : (θ → θ) → θ for θ of order k.

26Sunday, 25 September 2011

DECIDABILITY
We assume finite ground types!Results obtained using FA, DPDA, VPA.

pure +while +Y0 +Y1

IA1 + + + −
IA2 + + + −
IA3 + + + −
IA4 − − − −

pure +while +Y0 +Y1

IA1 CONP PSPACE DPDA-EQ DPDA-EQ
IA2 PSPACE PSPACE DPDA-EQ undecidable
IA3 EXPTIME EXPTIME DPDA-EQ undecidable
IA4 undecidable undecidable undecidable undecidable

The results were obtained using FA, DPDA and VPA.

27Sunday, 25 September 2011

BIBLIOGRAPHY

FA

DPDA

VPA

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 3 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

2006

23

Dan R. Ghica, Andrzej S. Murawski: Compositional Model Extraction for Higher-Order
Concurrent Programs. TACAS 2006: 303-317

22

Andrzej S. Murawski, C.-H. Luke Ong: Fast verification of MLL proof nets via IMLL.
ACM Trans. Comput. Log. 7(3): 473-498 (2006)

21

Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong: Syntactic control of concurrency.
Theor. Comput. Sci. 350(2-3): 234-251 (2006)

2005
20

Andrzej S. Murawski, Joël Ouaknine: On Probabilistic Program Equivalence and
Refinement. CONCUR 2005: 156-170

19

Andrzej S. Murawski, Igor Walukiewicz: Third-Order Idealized Algol with Iteration Is
Decidable. FoSSaCS 2005: 202-218

18

Andrzej S. Murawski: Functions with local state: from regularity to undecidability.
GALOP 2005: 124-138

17

Andrzej S. Murawski, C.-H. Luke Ong, Igor Walukiewicz: Idealized Algol with Ground
Recursion, and DPDA Equivalence. ICALP 2005: 917-929

16

Andrzej S. Murawski: About the undecidability of program equivalence in finitary
languages with state. ACM Trans. Comput. Log. 6(4): 701-726 (2005)

15

Andrzej S. Murawski: Functions with local state: Regularity and undecidability. Theor.
Comput. Sci. 338(1-3): 315-349 (2005)

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 3 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

2006

23

Dan R. Ghica, Andrzej S. Murawski: Compositional Model Extraction for Higher-Order
Concurrent Programs. TACAS 2006: 303-317

22

Andrzej S. Murawski, C.-H. Luke Ong: Fast verification of MLL proof nets via IMLL.
ACM Trans. Comput. Log. 7(3): 473-498 (2006)

21

Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong: Syntactic control of concurrency.
Theor. Comput. Sci. 350(2-3): 234-251 (2006)

2005
20

Andrzej S. Murawski, Joël Ouaknine: On Probabilistic Program Equivalence and
Refinement. CONCUR 2005: 156-170

19

Andrzej S. Murawski, Igor Walukiewicz: Third-Order Idealized Algol with Iteration Is
Decidable. FoSSaCS 2005: 202-218

18

Andrzej S. Murawski: Functions with local state: from regularity to undecidability.
GALOP 2005: 124-138

17

Andrzej S. Murawski, C.-H. Luke Ong, Igor Walukiewicz: Idealized Algol with Ground
Recursion, and DPDA Equivalence. ICALP 2005: 917-929

16

Andrzej S. Murawski: About the undecidability of program equivalence in finitary
languages with state. ACM Trans. Comput. Log. 6(4): 701-726 (2005)

15

Andrzej S. Murawski: Functions with local state: Regularity and undecidability. Theor.
Comput. Sci. 338(1-3): 315-349 (2005)

21/09/2011 08:15DBLP: C.-H. Luke Ong

Page 6 of 10http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ong:C==H=_Luke.html

2002
22

C.-H. Luke Ong: Model Checking Algol-Like Languages Using Game Semantics. FSTTCS
2002: 33-36

21

C.-H. Luke Ong, Pietro Di Gianantonio: Games Characterizing Levy-Longo Trees. ICALP
2002: 476-487

20

C.-H. Luke Ong: Observational Equivalence of 3rd-Order Idealized Algol is Decidable.
LICS 2002: 245-256

19

Anindya Basu, C.-H. Luke Ong, April Rasala, F. Bruce Shepherd, Gordon T. Wilfong:
Route oscillations in I-BGP with route reflection. SIGCOMM 2002: 235-247

18

Andrew D. Ker, Hanno Nickau, C.-H. Luke Ong: Innocent game models of untyped
lambda-calculus. Theor. Comput. Sci. 272(1-2): 247-292 (2002)

2001
17

Andrzej S. Murawski, C.-H. Luke Ong: Evolving Games and Essential Nets for Affine
Polymorphism. TLCA 2001: 360-375

2000
16

C.-H. Luke Ong: Light Logic and Resource Bounded Computation. APLAS 2000: 181

15

Andrzej S. Murawski, C.-H. Luke Ong: Discreet Games, Light Affine Logic and PTIME
Computation. CSL 2000: 427-441

14

Andrzej S. Murawski, C.-H. Luke Ong: Dominator Trees and Fast Verification of Proof
Nets. LICS 2000: 181-191

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 4 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

14

Andrzej S. Murawski: Games for complexity of second-order call-by-name programs.
Theor. Comput. Sci. 343(1-2): 207-236 (2005)

2004
13

Dan R. Ghica, Andrzej S. Murawski: Angelic Semantics of Fine-Grained Concurrency.
FoSSaCS 2004: 211-225

12

Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong: Syntactic Control of
Concurrency. ICALP 2004: 683-694

11

Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong, Ian D. B.
Stark: Nominal Games and Full Abstraction for the Nu-Calculus. LICS 2004: 150-159

10

Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong: Applying
Game Semantics to Compositional Software Modeling and Verification. TACAS 2004:
421-435

9

Andrzej S. Murawski, C.-H. Luke Ong: On an interpretation of safe recursion in light
affine logic. Theor. Comput. Sci. 318(1-2): 197-223 (2004)

2003
8

Andrzej S. Murawski: On Program Equivalence in Languages with Ground-Type
References. LICS 2003: 108-

7

Andrzej S. Murawski, C.-H. Luke Ong: Exhausting strategies, joker games and full
completeness for IMLL with Unit. Theor. Comput. Sci. 294(1/2): 269-305 (2003)

2002
6

Andrzej S. Murawski, Kwangkeun Yi: Static Monotonicity Analysis for lambda-
definable Functions over Lattices. VMCAI 2002: 139-153

21/09/2011 08:15DBLP: Guy McCusker

Page 3 of 5http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/McCusker:Guy.html

2002
13

Guy McCusker: A Fully Abstract Relational Model of Syntactic Control of Interference.
CSL 2002: 247-261

2000
12

Dan R. Ghica, Guy McCusker: Reasoning about Idealized ALGOL Using Regular
Languages. ICALP 2000: 103-115

11

Guy McCusker: Games and Full Abstraction for FPC. Inf. Comput. 160(1-2): 1-61 (2000)

1999
10

Russell Harmer, Guy McCusker: A Fully Abstract Game Semantics for Finite
Nondeterminism. LICS 1999: 422-430

9

Samson Abramsky, Guy McCusker: Full Abstraction for Idealized Algol with Passive
Expressions. Theor. Comput. Sci. 227(1-2): 3-42 (1999)

1998
8

Guy McCusker: Games and full abstraction for a functional metalanguage with recursive
types. Springer 1998: I-XIII, 1-189

7

Samson Abramsky, Kohei Honda, Guy McCusker: A Fully Abstract Game Semantics for
General References. LICS 1998: 334-344

1997
6

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 4 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

14

Andrzej S. Murawski: Games for complexity of second-order call-by-name programs.
Theor. Comput. Sci. 343(1-2): 207-236 (2005)

2004
13

Dan R. Ghica, Andrzej S. Murawski: Angelic Semantics of Fine-Grained Concurrency.
FoSSaCS 2004: 211-225

12

Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong: Syntactic Control of
Concurrency. ICALP 2004: 683-694

11

Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong, Ian D. B.
Stark: Nominal Games and Full Abstraction for the Nu-Calculus. LICS 2004: 150-159

10

Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong: Applying
Game Semantics to Compositional Software Modeling and Verification. TACAS 2004:
421-435

9

Andrzej S. Murawski, C.-H. Luke Ong: On an interpretation of safe recursion in light
affine logic. Theor. Comput. Sci. 318(1-2): 197-223 (2004)

2003
8

Andrzej S. Murawski: On Program Equivalence in Languages with Ground-Type
References. LICS 2003: 108-

7

Andrzej S. Murawski, C.-H. Luke Ong: Exhausting strategies, joker games and full
completeness for IMLL with Unit. Theor. Comput. Sci. 294(1/2): 269-305 (2003)

2002
6

Andrzej S. Murawski, Kwangkeun Yi: Static Monotonicity Analysis for lambda-
definable Functions over Lattices. VMCAI 2002: 139-153

undecidability

28Sunday, 25 September 2011

COMPLEXITY
Equivalence of terms in beta-normal form.

Non-elementary in general.

Results obtained using FA, DPDA, VPA.

pure +while +Y0 +Y1

IA1 + + + −
IA2 + + + −
IA3 + + + −
IA4 − − − −

pure +while +Y0 +Y1

IA1 CONP-complete PSPACE-complete ? −
IA2 PSPACE-complete PSPACE-complete ? −
IA3 EXPTIME-complete EXPTIME-complete ? −
IA4 − − − −

29Sunday, 25 September 2011

UNDECIDABILITY
• It may seem surprising that program equivalence in a language

over finite datatypes is undecidable.

• This is all due to the rich structure of interactions afforded by
higher-order types.

• At fourth order there are patterns of interaction between O
and P that resemble actions of a queue.

•Moreover, there exists a program that can detect whether O
follows the queue-pattern.

• Game semantics tames higher-order interaction.

30Sunday, 25 September 2011

NONDETERMINISM
May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M] ⇓may ⇐⇒ C[N] ⇓may

– Must-equivalence

∀C[−]. C[M] ⇓must ⇐⇒ C[N] ⇓must

– May & Must-equivalence

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M] ⇓may ⇐⇒ C[N] ⇓may

– Must-equivalence

∀C[−]. C[M] ⇓must ⇐⇒ C[N] ⇓must

– May & Must-equivalence

31Sunday, 25 September 2011

MAY-EQUIVALENCE

Characterization via complete plays still applies.

Results obtained using FA, DPDA, VPA.

pure +while +Y0 +Y1

IA1 + + + −
IA2 + + + −
IA3 + + + −
IA4 − − − −

pure +while +Y0 +Y1

IA1 CONP-complete PSPACE-complete ? −
IA2 PSPACE-complete PSPACE-complete ? −
IA3 EXPTIME-complete EXPTIME-complete ? −
IA4 − − − −

pure +while +Y0

EA1 PSPACE-complete EXPSPACE-complete −
EA2 EXPSPACE-complete EXPSPACE-complete −
EA3 2-EXPTIME-complete 2-EXPTIME-complete −
EA4 − − −

32Sunday, 25 September 2011

MUST-EQUIVALENCE

21/09/2011 08:15DBLP: Guy McCusker

Page 3 of 5http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/McCusker:Guy.html

2002
13

Guy McCusker: A Fully Abstract Relational Model of Syntactic Control of Interference.
CSL 2002: 247-261

2000
12

Dan R. Ghica, Guy McCusker: Reasoning about Idealized ALGOL Using Regular
Languages. ICALP 2000: 103-115

11

Guy McCusker: Games and Full Abstraction for FPC. Inf. Comput. 160(1-2): 1-61 (2000)

1999
10

Russell Harmer, Guy McCusker: A Fully Abstract Game Semantics for Finite
Nondeterminism. LICS 1999: 422-430

9

Samson Abramsky, Guy McCusker: Full Abstraction for Idealized Algol with Passive
Expressions. Theor. Comput. Sci. 227(1-2): 3-42 (1999)

1998
8

Guy McCusker: Games and full abstraction for a functional metalanguage with recursive
types. Springer 1998: I-XIII, 1-189

7

Samson Abramsky, Kohei Honda, Guy McCusker: A Fully Abstract Game Semantics for
General References. LICS 1998: 334-344

1997
6

Figure 1. Operational semantics of EIA

3.3 Strategies

The usual definition of strategy is in terms of traces: a
strategy for Player is a set of even-length legal plays saying
what moves may be made by the system. As was hinted
at in the introduction, if we take this definition, we end up
with a model of EIA which is fully abstract with respect to
may-equivalence. In order to capture M&M-equivalence,
we add to the definition of strategy an additional compo-
nent, its divergences. We shall only give details of the ex-
tended model; the model based solely on traces can be ob-
tained (more or less) by deleting all mention of divergences
and must-convergence from what follows.
A strategy on an arena is a pair . The first

component , known as the traces of , is a non-empty
set of even-length legal plays of satisfying

We write for the domain of , i.e. the set
and for the contingency

closure of , i.e. . Given , let
.

The second component is known as the divergences
of ; it’s a set of odd-length legal plays of satisfying

(d1)
.

(d2) .

(d3) infinite .

Axiom (d1) says that, if a strategy is confronted with a
situation to which it has no response, i.e. , then
this must be reflected by an appropriate divergence.
(d3) is the finite-branching condition: if, at some point,

there is the possibility of infinite branching then there must
be the possibility of divergence.

Representing divergence The existence of a divergence
records the fact that may diverge after playing

the sequence . Of course, once a program has diverged,
it remains divergent so, if , the existence of some
other is of little interest.
This can be represented in several ways. The choice

made in CSP is to include all extensions of a divergence
as divergences by convention; this has the consequence
of forcing the traces of a process to include all possible
behaviours after a divergence has been reached, running
counter to the intuition of a divergent process having no ob-
servable behaviours. A second possibility is to record only
the minimal divergences, denoted by .
Clearly, many choices of representation of divergent be-

haviour are available. Rather than fixing on any particu-
lar representation, we identify those strategies which intu-
itively record the same behaviour by means of an equiva-
lence relation; see Section 3.5 below.

3.4 Composition of strategies

Let be a finite string of moves from arenas , and
with “justification pointers” from all moves except those

initial in . We define to be the subsequence
of where we delete all moves from and all pointers to
; is defined similarly. We define by

removing all moves from and all pointers to with one
exception: if points to which, in turn, points
to then points to in .
Such a string is a legal interaction of , and iff

, and
. The set of all legal interactions of , and is

written .
Given and , we define to

be the set of such that

Characterization via quotienting.
33Sunday, 25 September 2011

WINNING REGIONS
Let O and P play a reachability game over the traces
of σ. O will be declared a winner if he reaches a com-
plete play without encountering any divergences. This
induces winning regions for O and P .

Two terms are must-equivalent if any difference be-
tween the induced strategies (trace or divergence) is
compensated by a winning region for P .

ord(θ) =

{

0 θ ≡ com, int,var
max(ord(θ1) + 1, ord(θ2)) θ ≡ θ1 → θ2

• IAk consists of terms of the form

x1 : θ1, · · · , xn : θn # M : θ

with ord(θi) < k and ord(θ) ≤ k.

• Looping and recursion are not available in IAk.

• We writeYk to stress the availability of the fixed-point combinator
Yθ : (θ → θ) → θ for θ of order k.

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 2 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

2010
32

Andrzej S. Murawski, Nikos Tzevelekos: Block Structure vs. Scope Extrusion: Between
Innocence and Omniscience. FOSSACS 2010: 33-47

31

Andrzej S. Murawski: Full Abstraction Without Synchronization Primitives. Electr.
Notes Theor. Comput. Sci. 265: 423-436 (2010)

2009
30

Andrzej S. Murawski, Nikos Tzevelekos: Full Abstraction for Reduced ML. FOSSACS
2009: 32-47

2008
29

Andrzej S. Murawski: Reachability Games and Game Semantics: Comparing
Nondeterministic Programs. LICS 2008: 353-363

28

Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, Olivier Serre: Collapsible
Pushdown Automata and Recursion Schemes. LICS 2008: 452-461

27

Axel Legay, Andrzej S. Murawski, Joël Ouaknine, James Worrell: On Automated
Verification of Probabilistic Programs. TACAS 2008: 173-187

26

Dan R. Ghica, Andrzej S. Murawski: Angelic semantics of fine-grained concurrency.
Ann. Pure Appl. Logic 151(2-3): 89-114 (2008)

25

Andrzej S. Murawski, Igor Walukiewicz: Third-order Idealized Algol with iteration is
decidable. Theor. Comput. Sci. 390(2-3): 214-229 (2008)

2007
24

 Andrzej S. Murawski: Bad Variables Under Control. CSL 2007: 558-572

Let O and P play a reachability game over the traces
of σ. O will be declared a winner if he reaches a com-
plete play without encountering any divergences. This
induces winning regions for O and P .

Two terms are must-equivalent if and only if any dif-
ference between the induced strategies (trace or diver-
gence) is compensated by a winning region for P .

ord(θ) =

{

0 θ ≡ com, int,var
max(ord(θ1) + 1, ord(θ2)) θ ≡ θ1 → θ2

• IAk consists of terms of the form

x1 : θ1, · · · , xn : θn # M : θ

with ord(θi) < k and ord(θ) ≤ k.

• Looping and recursion are not available in IAk.

• We writeYk to stress the availability of the fixed-point combinator
Yθ : (θ → θ) → θ for θ of order k.

34Sunday, 25 September 2011

MUST-EQUIVALENCE

Results obtained using FA, DPDA, VPA.

pure +while +Y0 +Y1

IA1 + + + −
IA2 + + + −
IA3 + + + −
IA4 − − − −

pure +while +Y0 +Y1

IA1 CONP-complete PSPACE-complete ? −
IA2 PSPACE-complete PSPACE-complete ? −
IA3 EXPTIME-complete EXPTIME-complete ? −
IA4 − − − −

pure +while +Y0

EA1 PSPACE-complete EXPSPACE-complete −
EA2 EXPSPACE-complete EXPSPACE-complete −
EA3 2-EXPTIME-complete 2-EXPTIME-complete −
EA4 − − −

pure +while +Y0

EA1 PSPACE-complete 2-EXPTIME-complete −
EA2 2-EXPTIME-complete 2-EXPTIME-complete −
EA3 3-EXPTIME-complete 3-EXPTIME-complete −
EA4 − − −

35Sunday, 25 September 2011

PROBABILISTIC EQUIVALENCE

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M] ⇓may ⇐⇒ C[N] ⇓may

– Must-equivalence

∀C[−]. C[M] ⇓must ⇐⇒ C[N] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M] ⇓p ⇐⇒ C[N] ⇓p

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M] ⇓may ⇐⇒ C[N] ⇓may

– Must-equivalence

∀C[−]. C[M] ⇓must ⇐⇒ C[N] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M] ⇓p ⇐⇒ C[N] ⇓p

36Sunday, 25 September 2011

PROBABILISTIC STRATEGIES

4 · V. Danos and R. Harmer

—m !A×B n iff m !A n or m !B n.

This places A and B “side by side” with no chance of any interaction between them.
The empty arena 1 = 〈∅, ∅, ∅〉 is the unit for this constructor.

Our other constructor is the arrow, A ⇒ B, defined by:

—MA⇒B = MA + MB;

—λA⇒B = [〈λOP
A , λQA

A 〉, λB], where λ
OP
A (m) = O iff λOP

A (m) = P;
—m !A⇒B n iff m !A n or m !B n or m ∈ IB ∧ n ∈ IA.

In other words, the initial moves of A ⇒ B are the initial moves of B, the roles of
Opponent and Player are reversed in A and the (formerly) initial moves of A are
now enabled by the (still) initial moves of B.

2.2 Strategies

A strategy is a kind of “rule book” saying which moves may be made by Player—
and with what probabilities—given the moves which have been played to date.
This idea is formalized by assigning “weights” to even-length legal plays, i.e. where
Player played last, indicating the likelihood of that play occurring from Player’s
point of view.

The definition comes in two steps. First of all, we define a prestrategy σ on an
arena A to be a (set-theoretic) function σ : Leven

A → [0,∞]. Such a prestrategy is a
strategy iff

(p1) σ(ε) = 1;
(p2) if sa ∈ Lodd

A then σ(s) ≥
∑

t∈ie(sa) σ(t).

The traces of σ, which we denote by Tσ, are those plays assigned non-zero weight
by σ, i.e. {s ∈ Leven

A | σ(s) > 0}. The domain of σ, written dom(σ), is those odd-
length plays that are “reachable” by σ, i.e.

⋃
s∈Tσ

ie(s). Finally, given s ∈ dom(σ),
we define the range of σ at s, written rngσ(s), to be those immediate extensions
of s that are in Tσ, i.e. ie(s) ∩ Tσ. The range can be empty in which case s is an
immediate extension of a maximal trace.

Note that (p2) implies that σ is order reversing with respect to the prefix ordering
on Tσ and the usual ordering on [0,∞]. This means that Tσ is even-length prefix-
closed. Furthermore, by (p1), we get σ(s) ≤ 1 for all s ∈ LA.

2.2.1 Basic constraints. A strategy σ is deterministic iff for all s ∈ Tσ, σ(s) =
1. Equivalently, σ takes values in {0, 1}. Note that (p2) asserts only an inequality.
If σ is a strategy for which this is always in fact an equality, we say that it’s a total
strategy.

2.2.2 Local probabilities. Given sa ∈ dom(σ) and sab ∈ ie(sa), define the con-
ditional probability of sab given sa by:

σ(sab/sa) =
σ(sab)
σ(s)

Since sa ∈ dom(σ), σ(s) > 0, so it’s well-defined. By (p2), this gives a subprobabil-
ity on rngσ(sa) for each sa ∈ dom(σ). Intuitively speaking, σ(sab/sa) is the “die”
that σ rolls for each sa ∈ dom(σ).
ACM Transactions on Computational Logic, Vol. V, No. N, November 2001.

22/09/2011 08:22DBLP: Russell Harmer

Page 2 of 4http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Harmer:Russell.html

hide facet boxes

Refine by YEAR
2008 (2)
2007 (2)
2009 (1)
2005 (1)
[top 4] [all 10]

 FMSB 2008: 103-122
9

Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer,
Jean Krivine: Investigation of a Biological Repair Scheme.
Workshop on Membrane Computing 2008: 1-12

2007
8

Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer,
Jean Krivine: Rule-Based Modelling of Cellular Signalling.
CONCUR 2007: 17-41

7

Russell Harmer, Martin Hyland, Paul-André Melliès: Categorical
Combinatorics for Innocent Strategies. LICS 2007: 379-388

2006
6

Russell Harmer, Olivier Laurent: The Anatomy of Innocence
Revisited. FSTTCS 2006: 224-235

2005
5

Russell Harmer: Affine strategies in arena games. GALOP 2005:
48-60

2002
4

Vincent Danos, Russell Harmer: Probabilistic game semantics.
ACM Trans. Comput. Log. 3(3): 359-382 (2002)

37Sunday, 25 September 2011

PROBABILISTIC LANGUAGE
EQUIVALENCE

May-termination ⇓may
Must-termination ⇓must

– May-equivalence

∀C[−]. C[M] ⇓may ⇐⇒ C[N] ⇓may

– Must-equivalence

∀C[−]. C[M] ⇓must ⇐⇒ C[N] ⇓must

– May & Must-equivalence

⇓p

∀C[−]. C[M] ⇓p ⇐⇒ C[N] ⇓p

Two probabilistic programs are equivalent if and only
if the corresponding probabilistic strategies assign the
same probabilities to all complete plays.

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 2 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

2010
32

Andrzej S. Murawski, Nikos Tzevelekos: Block Structure vs. Scope Extrusion: Between
Innocence and Omniscience. FOSSACS 2010: 33-47

31

Andrzej S. Murawski: Full Abstraction Without Synchronization Primitives. Electr.
Notes Theor. Comput. Sci. 265: 423-436 (2010)

2009
30

Andrzej S. Murawski, Nikos Tzevelekos: Full Abstraction for Reduced ML. FOSSACS
2009: 32-47

2008
29

Andrzej S. Murawski: Reachability Games and Game Semantics: Comparing
Nondeterministic Programs. LICS 2008: 353-363

28

Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, Olivier Serre: Collapsible
Pushdown Automata and Recursion Schemes. LICS 2008: 452-461

27

Axel Legay, Andrzej S. Murawski, Joël Ouaknine, James Worrell: On Automated
Verification of Probabilistic Programs. TACAS 2008: 173-187

26

Dan R. Ghica, Andrzej S. Murawski: Angelic semantics of fine-grained concurrency.
Ann. Pure Appl. Logic 151(2-3): 89-114 (2008)

25

Andrzej S. Murawski, Igor Walukiewicz: Third-order Idealized Algol with iteration is
decidable. Theor. Comput. Sci. 390(2-3): 214-229 (2008)

2007
24

 Andrzej S. Murawski: Bad Variables Under Control. CSL 2007: 558-572

APEX tool

38Sunday, 25 September 2011

DINING CRYPTOGRAPHERSDining Cryptographers (Chaum)

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Verifying Anonymity
• Anonymity
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• PRISM vs APEX
• Lack of anonymity

Conclusion

25

C 2 C 3

C 1

Agree!
Disagree!

?
H
T

H
T

H
T

coin1 coin3

coin2

Agree!
Disagree!

Agree!
Disagree!

39Sunday, 25 September 2011

WAS IT ONE OF THEM?
Was it one of them?

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

26

One of the cryptographers paid ⇐⇒ #“Disagree” is odd

f : {0, 1, 2, 3} → {0, 1}

x:int%4 |-
var%4 whopaid; var%2 first; var%2 left;
var%2 right; var%2 parity; var%4 i;

whopaid :=x; first:= coin; right:= first; i:=1;

while (i) do
{

left:= if (i=3) then first else coin;
if not((left=right)+(whopaid=i))

then parity:=not(parity);
right := left;
i:=i+1

};
parity : int%2

40Sunday, 25 September 2011

CORRECTNESS
Correctness Verification

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

27

0

(0,1)
 0_x, 1

(1,1)

 1_x, 1

 2_x, 1

 3_x, 1

41Sunday, 25 September 2011

ANONYMITY (VIEWS)Anonymity Verification

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

28

cn:var%2, ch:var%2 |-

var%4 whopaid;
whopaid := 2;

if (whopaid <= 1) then diverge else
{

var%2 first; var%2 left; var%2 right; var%4 i;

first:=coin; right:= first; i:=1;

while (i) do
{

left:=if (i=3) then first else coin;
if (i=1) then { cn:= right; cn:=left };
if ((left=right)+(whopaid=i)) then ch:=1 else ch:=0;
right := left;
i := i+1

}
}: com

42Sunday, 25 September 2011

WHAT CAN HE SEE?What can Cryptographer 1 see?

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

29

2 paid

0

1 write(0)_cn, 1/4

6
 write(0)_cn, 1/4

10

 write(1)_cn, 1/4

11 write(1)_cn, 1/4 2

 write(0)_cn, 1

7
 write(1)_cn, 1

 write(0)_cn, 1

 write(1)_cn, 1 3 write(1)_ch, 1
4

 write(0)_ch, 1/2

9

 write(1)_ch, 1/2

(0,1)

 write(1)_ch, 1

 write(0)_ch, 1

8 write(0)_ch, 1
 write(1)_ch, 1/2

 write(0)_ch, 1/2

3 paid

0

1 write(0)_cn, 1/4

6
 write(0)_cn, 1/4

10

 write(1)_cn, 1/4

11 write(1)_cn, 1/4 2

 write(0)_cn, 1

7
 write(1)_cn, 1

 write(0)_cn, 1

 write(1)_cn, 1 3 write(1)_ch, 1
4

 write(0)_ch, 1/2

9

 write(1)_ch, 1/2

(0,1)

 write(1)_ch, 1

 write(0)_ch, 1

8 write(0)_ch, 1
 write(1)_ch, 1/2

 write(0)_ch, 1/2

43Sunday, 25 September 2011

WHAT CAN HE SEE?Anonymity certification

Overview

Coin experiments

Self-stabilization

Random tree shapes

Anonymity
• Dining
Cryptographers
(Chaum)
•Was it one of them?
• Correctness
Verification
• Anonymity
Verification
•What can
Cryptographer 1 see?
• Anonymity
certification
• DC statistics
• Lack of anonymity

Conclusion

30

x:int%4, cn:var%2, ch:var%2 |- ... : com

0 1 2_x, 1
 3_x, 1

3 write(0)_cn, 1/4

7
 write(0)_cn, 1/4

9

 write(1)_cn, 1/4

10 write(1)_cn, 1/4
2

 write(0)_cn, 1

6
 write(1)_cn, 1

 write(0)_cn, 1

 write(1)_cn, 1 4

 write(0)_ch, 1/2

8

 write(1)_ch, 1/2
(0,1)

 write(1)_ch, 1

 write(0)_ch, 1 write(1)_ch, 1/2

 write(0)_ch, 1/2

10 cryptographers:

0 1

 10_x, 1

 2_x, 1

 3_x, 1

 4_x, 1

 5_x, 1

 6_x, 1

 7_x, 1

 8_x, 1

 9_x, 1

2 write(0)_cn, 1/4

14
 write(0)_cn, 1/4

25

 write(1)_cn, 1/4

26 write(1)_cn, 1/4 3

 write(0)_cn, 1

15
 write(1)_cn, 1

 write(0)_cn, 1

 write(1)_cn, 1 4 write(1)_ch, 1
5

 write(0)_ch, 1/2

17

 write(1)_ch, 1/2 6
 write(1)_ch, 1/2

18

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

7
 write(1)_ch, 1/2

19

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

8
 write(1)_ch, 1/2

20

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

9
 write(1)_ch, 1/2

21

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

10
 write(1)_ch, 1/2

22

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

11
 write(1)_ch, 1/2

23

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

12

 write(1)_ch, 1/2

24

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

(0,1)

 write(1)_ch, 1

 write(0)_ch, 1

16 write(0)_ch, 1
 write(1)_ch, 1/2

 write(0)_ch, 1/2 44Sunday, 25 September 2011

MORE CRYPTOGRAPHERS

0 1

 10_x, 1

 2_x, 1

 3_x, 1

 4_x, 1

 5_x, 1

 6_x, 1

 7_x, 1

 8_x, 1

 9_x, 1

2 write(0)_cn, 1/4

14
 write(0)_cn, 1/4

25

 write(1)_cn, 1/4

26 write(1)_cn, 1/4 3

 write(0)_cn, 1

15
 write(1)_cn, 1

 write(0)_cn, 1

 write(1)_cn, 1 4 write(1)_ch, 1
5

 write(0)_ch, 1/2

17

 write(1)_ch, 1/2 6
 write(1)_ch, 1/2

18

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

7
 write(1)_ch, 1/2

19

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

8
 write(1)_ch, 1/2

20

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

9
 write(1)_ch, 1/2

21

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

10
 write(1)_ch, 1/2

22

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

11
 write(1)_ch, 1/2

23

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

12

 write(1)_ch, 1/2

24

 write(0)_ch, 1/2

 write(0)_ch, 1/2

 write(1)_ch, 1/2

(0,1)

 write(1)_ch, 1

 write(0)_ch, 1

16 write(0)_ch, 1
 write(1)_ch, 1/2

 write(0)_ch, 1/2

45Sunday, 25 September 2011

OTHER TOOLS

• Homer

•MAGE

21/09/2011 08:15DBLP: C.-H. Luke Ong

Page 2 of 10http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ong:C==H=_Luke.html

Proceedings Springer 2010

59

Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, Olivier Serre: Recursion
Schemes and Logical Reflection. LICS 2010: 120-129

58

Matthew Hague, C.-H. Luke Ong: Analysing Mu-Calculus Properties of Pushdown
Systems. SPIN 2010: 187-192

57

Gérard Basler, Matthew Hague, Daniel Kroening, C.-H. Luke Ong, Thomas Wahl, Haoxian
Zhao: Boom: Taking Boolean Program Model Checking One Step Further. TACAS 2010:
145-149

56

Matthew Hague, C.-H. Luke Ong: A Saturation Method for the Modal Mu-Calculus with
Backwards Modalities over Pushdown Systems CoRR abs/1006.5906: (2010)

2009
55

David Hopkins, C.-H. Luke Ong: Homer: A Higher-Order Observational Equivalence
Model checkER. CAV 2009: 654-660

54

Matthew Hague, C.-H. Luke Ong: Winning Regions of Pushdown Parity Games: A
Saturation Method. CONCUR 2009: 384-398

53

Christopher H. Broadbent, C.-H. Luke Ong: On Global Model Checking Trees Generated
by Higher-Order Recursion Schemes. FOSSACS 2009: 107-121

52

Naoki Kobayashi, C.-H. Luke Ong: Complexity of Model Checking Recursion Schemes for
Fragments of the Modal Mu-Calculus. ICALP (2) 2009: 223-234

51

Naoki Kobayashi, C.-H. Luke Ong: A Type System Equivalent to the Modal Mu-Calculus
Model Checking of Higher-Order Recursion Schemes. LICS 2009: 179-188

50

22/09/2011 10:55DBLP: Dan R. Ghica

Page 2 of 5http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Ghica:Dan_R=.html

refinement: a game semantic approach. STTT 12(5): 373-389 (2010)

2009
25

Dan R. Ghica: Applications of Game Semantics: From Program Analysis to Hardware
Synthesis. LICS 2009: 17-26

24

Dan R. Ghica, Adam Bakewell: Clipping: A Semantics-Directed Syntactic
Approximation. LICS 2009: 189-198

23

Adam Bakewell, Dan R. Ghica: Compositional Predicate Abstraction from Game
Semantics. TACAS 2009: 62-76

22

Dan R. Ghica: Function Interface Models for Hardware Compilation: Types, Signatures,
Protocols CoRR abs/0907.0749: (2009)

2008
21

Adam Bakewell, Dan R. Ghica: On-the-Fly Techniques for Game-Based Software Model
Checking. TACAS 2008: 78-92

20

Guy McCusker, Dan R. Ghica: Foreword for special issue of APAL for GaLoP 2005. Ann.
Pure Appl. Logic 151(2-3): 69 (2008)

19

Dan R. Ghica, Andrzej S. Murawski: Angelic semantics of fine-grained concurrency. Ann.
Pure Appl. Logic 151(2-3): 89-114 (2008)

2007
18

Dan R. Ghica: Geometry of synthesis: a structured approach to VLSI design. POPL 2007:
363-375

17
 Adam Bakewell, Dan R. Ghica: Game-based safety checking with Mage. SAVCBS 2007:

46Sunday, 25 September 2011

CALL-BY-VALUE EVALUATION

21/09/2011 08:14DBLP: Samson Abramsky

Page 8 of 17http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Abramsky:Samson.html

53

Samson Abramsky, Radha Jagadeesan, Pasquale Malacaria: Full Abstraction for PCF. Inf.
Comput. 163(2): 409-470 (2000)

1999
52

Samson Abramsky, Paul-André Melliès: Concurrent Games and Full Completeness. LICS
1999: 431-442

51

Samson Abramsky: Process Realizability. Electr. Notes Theor. Comput. Sci. 23(1): 1-2
(1999)

50

Samson Abramsky, Simon J. Gay, Rajagopal Nagarajan: A Specification Structure for
Deadlock-Freedom of Synchronous Processes. Theor. Comput. Sci. 222(1-2): 1-53 (1999)

49

Samson Abramsky, Guy McCusker: Full Abstraction for Idealized Algol with Passive
Expressions. Theor. Comput. Sci. 227(1-2): 3-42 (1999)

1998
48

Samson Abramsky, Kohei Honda, Guy McCusker: A Fully Abstract Game Semantics for
General References. LICS 1998: 334-344

1997
47

Samson Abramsky, Guy McCusker: Call-by-Value Games. CSL 1997: 1-17

46

Dusko Pavlovic, Samson Abramsky: Specifying Interaction Categories. Category Theory
and Computer Science 1997: 147-158

1 CBV

Call-by-value Idealized Algol

RML: an ML-like language with integer references,
including “bad” ones

ref int = (unit → int)× (int → unit)

PRO: Finite alphabet, if finitely many values!
CON: Equivalences relying on ref int may be affected.

– unit → unit → unit is problematic.

q ! q a · · · q a

There are many a’s to point at...

– (unit → unit) → (unit → unit) → unit is undecidable.

regularity
=================================
The environment can partially apply a term of this type arbitrary many times and

refer to these partial applications. In order to represent these references an infinite al-
phabet seems to be needed.

arena
play

47Sunday, 25 September 2011

SOME SURPRISES?

1 CBV

Call-by-value Idealized Algol

Reduced ML: as above but with dynamic memory creation.

– unit → unit → unit is problematic.

q ! q a · · · q a

There are many a’s to point at...

– (unit → unit) → (unit → unit) → unit is undecidable.

regularity
=================================
The environment can partially apply a term of this type arbitrary many times and

refer to these partial applications. In order to represent these references an infinite al-
phabet seems to be needed.

arena
play

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 3 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

2006

23

Dan R. Ghica, Andrzej S. Murawski: Compositional Model Extraction for Higher-Order
Concurrent Programs. TACAS 2006: 303-317

22

Andrzej S. Murawski, C.-H. Luke Ong: Fast verification of MLL proof nets via IMLL.
ACM Trans. Comput. Log. 7(3): 473-498 (2006)

21

Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong: Syntactic control of concurrency.
Theor. Comput. Sci. 350(2-3): 234-251 (2006)

2005
20

Andrzej S. Murawski, Joël Ouaknine: On Probabilistic Program Equivalence and
Refinement. CONCUR 2005: 156-170

19

Andrzej S. Murawski, Igor Walukiewicz: Third-Order Idealized Algol with Iteration Is
Decidable. FoSSaCS 2005: 202-218

18

Andrzej S. Murawski: Functions with local state: from regularity to undecidability.
GALOP 2005: 124-138

17

Andrzej S. Murawski, C.-H. Luke Ong, Igor Walukiewicz: Idealized Algol with Ground
Recursion, and DPDA Equivalence. ICALP 2005: 917-929

16

Andrzej S. Murawski: About the undecidability of program equivalence in finitary
languages with state. ACM Trans. Comput. Log. 6(4): 701-726 (2005)

15

Andrzej S. Murawski: Functions with local state: Regularity and undecidability. Theor.
Comput. Sci. 338(1-3): 315-349 (2005)

48Sunday, 25 September 2011

SOME RESULTS

Assume finite ground types and absence of recursion.

– Regular

(unit → unit) → unit " unit → unit

– Visibly context-free

((unit → unit) → unit) → unit " (unit → unit) → unit

=================================
The environment can partially apply a term of this type arbitrary many times and

refer to these partial applications. In order to represent these references an infinite al-
phabet seems to be needed.

arena
play

21/09/2011 08:15DBLP: Andrzej S. Murawski

Page 1 of 6http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Murawski:Andrzej_S=.html

hide facet boxes

Refine by AUTHOR
Andrzej S. Murawski (38)
C.-H. Luke Ong (14)
Dan R. Ghica (7)
Joël Ouaknine (5)
[top 4] [all 17]

Refine by VENUE
LICS (6)
Theor. Comput. Sci. (TCS) (6)
ICALP (4)
TACAS (3)
[top 4] [all 19]

Refine by YEAR
2005 (7)
2011 (6)
2004 (5)
2008 (5)
[top 4] [all 13]

Facets and more with CompleteSearch

author:andrzej_s_murawski:

Andrzej S. Murawski
List of publications from the DBLP Bibliography Server - FAQ

Ask others: ACM DL/Guide - - CSB - MetaPress - Google - Bing - Yahoo

2011
38

Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, James Worrell:
Language Equivalence for Probabilistic Automata. CAV 2011: 526-540

37

Andrzej S. Murawski, Nikos Tzevelekos: Algorithmic Nominal Game Semantics. ESOP
2011: 419-438

36

David Hopkins, Andrzej S. Murawski, C.-H. Luke Ong: A Fragment of ML Decidable
by Visibly Pushdown Automata. ICALP (2) 2011: 149-161

35

Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, James Worrell, Lijun Zhang: On
Stabilization in Herman's Algorithm. ICALP (2) 2011: 466-477

34

Andrzej S. Murawski, Nikos Tzevelekos: Game Semantics for Good General References.
LICS 2011: 75-84

33

Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, James Worrell, Lijun Zhang: On
Stabilization in Herman's Algorithm CoRR abs/1104.3100: (2011)

49Sunday, 25 September 2011

SUMMARY

•Many decision procedures have been obtained via game
semantics in recent years.

• Some have been implemented and observed to beat
alternative approaches.

• Several tools use game semantics as a main engine.

• Ready for “realistic” applications?

50Sunday, 25 September 2011

