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Abstract. In this paper the authors point out that the Pareto Optimality is unfair, 
unreasonable and imperfect for Many-objective Optimization Problems (MOPs) 
underlying the hypothesis that all objectives have equal importance. The key 
contribution of this paper is the discovery of the new definition of optimality 
called ε-optimality for MOP that is based on a new conception, so called 
ε-dominance, which not only considers the difference of the number of superior 
and inferior objectives between two feasible solutions, but also considers the 
values of improved objective functions underlying the hypothesis that all 
objectives in the problem have equal importance. Two new evolutionary 
algorithms are given, where ε- dominance is used as a selection strategy with 
the winning score as an elite strategy for search -optimal solutions. Two 
benchmark problems are designed for testing the new concepts of 
many-objective optimization problems. Numerical experiments show that the 
new definition of optimality is more perfect than that of the Pareto Optimality 
which is widely used in the evolutionary computation community for solving 
many-objective optimization problems. 

Keywords: Many-objective optimization; Pareto optimality; ε-optimality; 
ε-dominance. 

1   Introduction  

Most optimization problems in nature have many objectives (normally conflicting with 
each other) that need to be optimized at the same time. These problems are called 
Multi-Objective Problems (MOPs), which are studied in economies, sciences and 
engineering. People realize the importance of solving MOPs and the development of 
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theory and methodology to deal with this kind of problems become an important area of 
computational intelligence. Because of the conflicting nature of their objectives, MOP 
does not normally have a single solution and, in fact, they even require the definition of 
a new notion of “optimality.” The most commonly adopted notion of optimality in 
MOPs is that originally proposed by Edgeworth [1] and later generalized by Pareto [2]. 
Such a notion is called Edgeworth-Pareto Optimality or, more commonly, Pareto 
Optimality[3]. 

There are two ways for solving MOPs to find their Pareto optimal sets. One is using 
the weighted objectives summed in one objective. Another is using the population 
search strategies. The former is called “One Many” and the later is called “Many 
Once”[4]. Why evolutionary multi-objective optimization algorithms are increasingly 
inappropriate as the number of objectives increases? Can we find other ways for 
solving many-objective optimization problems? Recently, Maneeratana, Boonlong, 
and Chaiyaratana[5] proposed a method called Compressed-Objective Genetic 
Algorithm (COGA) for solving an optimization problem with a large number of 
objectives by transforming the original objective vector into a two-objective vector 
during survival selection is presented. The transformed objectives, referred to as 
preference objectives, consist of a winning score and a vicinity index. The winning 
score, a maximization criterion, describes the difference of the number of superior and 
inferior objectives between two solutions. The vicinity index, a minimization criterion, 
describes the level of solution clustering around a search location which is used to 
encourage the results to spread throughout the Pareto front. The new conception in that 
paper is the definition of Winning Score, a preference objective which concerns 
numbers of superior and inferior objectives between a pair of two non-dominated 
solutions. But the goal of the authors is still to get a solution set which is coverage and 
closeness to the true Pareto front. 

In 2003, Zhou, Kang, Chen and Huang[6] proposed a new definition (Evolving 
Solutions) for MOP to answer the essential question: what is a multi-objective optimal 
solution and advance an asynchronous evolutionary model, Multiple Island Net 
Training Model (MINT model), to solve MOPs, especially to solve many-objective 
optimization problems. The new theory is based on their understanding of the natural 
evolution and the analysis of the difference between natural evolution and MOP, thus it 
is not only different from the tradition methods of weighted objective sum, but also 
different from Pareto Optimization. 

Benedelti, Farina, and Gobbi [7]  mentioned three reasons of Pareto definition of 
optimality which can be unsatisfactory to a large number of objective optimization. 

P1, The number of improved objective functions values is not taken into account. 
P2, The (normalized) relevance of the improvements is not taken into account. 
P3, No preference among objectives is considered. 

They give two new definitions to meet above issues. One is called k Optimality 
when taking into account number of improved objectives. Another is called Fuzzy 
Optimality when taking into account size of improvements and including parameters to 
be provided by decision maker with the underlying hypothesis that all objectives have 
equal importance. 
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We must point out that the definition of Pareto Optimality is fair, reasonable and 
perfectly correct for two-objective optimization problems, but is unfair, unreasonable 
and imperfect for more than two objectives which are in strict conflict of each other, 
especially for a large number of objectives, if all objectives have equal importance.  

Kang [8] gives an example:  

   Minimize ))(,),(),(()( 21 xfxfxfxF m"Δ     

where m is a large number, 

and      fi (x ) = (x – i)2,  i = 1, 2, …,m,  1≤ x ≤m.  

It is clear that its Pareto Optimal Set is [1, m ] which is the exact decision space of 
the MOP. It is not clear at all what a decision maker can do with such a large result of a 
Pareto Optimal Set in practice! 

In this paper, a new definition of optimality for MOPs is given. It not only considers 
the number of improved objectives, but also considers the convergence of improved 
values of objective functions. The remainder of this paper is organized as follows. The 
new definitions of optimality are presented in section 2. The new evolutionary 
algorithms are given in Section 3. Section 4 presents experimental design, benchmarks 
and results for the new definitions of optimality. Section 5 is conclusions and new 
research directions for future MOPs research with the new concepts proposed by this 
paper. 

2   What Is the Optimality for MOP? 

A MOP can be described as follows. 
Let nRD ⊆ be decision variable space and mRO ⊆ be objective space. 
Let F: qp RDhRDOD →→→  :  and :g   , be vector functions. 
A nonlinear constrained multi-objective optimization problem (MOP) is defined as 

))(,),(),(()( 21 min xfxfxfxf m
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We first normalize the MOP (1) as follows. 

Denote 
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The MOP (1) is transformed into 

               ))(,),(),(()(min 21 xFxFxFxF m
Sx

"Δ
∈

                                           (2) 

where   F:    ,]1,0[ mOD =→ the objective space. 

For each pair of variables X1, X2 ∈ S , three integer functions are defined as follows: 
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where Bt , Ws and Eq mean Better Than, Worse Than and  Equivalent To, respectively. 

It is clear that Bt + Ws + Eq = m (the number of objectives). 

The ideal objective vector of the MOP (2) in objective space is the origin which 
corresponds to a non-existent solution in general. 

The distance from any point F(X) in objective space O to the ideal objective vector 
(the origin) is defined as  

                 ∑
=

=
m

i
i XFXF

1

2))(()(  

For any pair X1,X2∈S,we give following definitions: 

Definition 1 (ε-dominance): If ))()((0 21 XFXFWB st <∧>=− ）（ ε  then X1 is said 

to ε-dominate X2 (denoted as
21 XX ε≺ ). 

If 0),( 21 =XXWs
, then ε-dominance is equivalent to Pareto dominance. 

Definition 2 (ε-Optimality): X*
∈S is a ε-optimal solution if there is no X∈S such 

that X ε-dominates X*. (Note: the concept of ε-Optimality is different to the ε optimal 

solutions in [13].) 

Definition 3 (ε-Optimal Set and Front): The set of all ε-optimal solutions is called 

ε-optimal set denoted as Sε and its range of mapping F(Sε) is called ε-optimal front  

denoted as Fε. 

In definition 1, ε > 0 means that the number of superior objectives is great than the 

number of inferior objectives between two feasible solutions: X1 and X2. Because the 

importance of all objectives are equal, so the definition of ε-dominance is fair and 

reasonable, and the distance condition: ‖F(X1)‖< ‖F(X2)‖ not only substantiates 

the meaning of dominance, but also can be used to control the values of inferior 

objectives. We must point out that the new definitions of optimality for MOPs are 
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imperfect, too, because the transitive property is not existent so the pair ([0,1]m, ε≺ ) can 

not form a partially ordered set. For overcoming this difficulty, we use the winning 

score[5] to rank the individuals of population and archives. 

Definition 4 (Winning Score): Let the size of a set A be L, the winning score WSi of 

the ith  element Xi in A is given by 

             
LiXXWXXBWS

L

j
jisjiti ,,2,1       ,)],(),([

1

"=−∑
=

＝

  

For Xi , i = 1,2,…, L, we rank them by their winning score from the biggest one to the 

smallest as 0,1,2,…, k, k≤L-1. The element X with biggest WS has RANK=0. If there 

are many elements in A having the same winning score, then they have the same rank.    

Definition 5 (minimal element): Element x∈A is called a minimal element of A, if 

its rank is 0. 

All minimal elements of A form a minimal element set M(A,RANK=0).   

3   New Evolutionary Algorithms for Solving MOPs 

New algorithms for solving many-objective optimization problems are given as 

follows.  

Algorithm I 

begin 

      Generate a population P(0) uniformly from 
nRD ⊂ ; 

        A(0):= M(P(0),RANK=0); 

        t: = 0; 

        repeat 

           P(t+1): = search-optimizer P(t); 

           A(t+1): = M(A(t)∪P(t+1),RANK=0); 

           t: = t+1; 

       until stopping criterion fulfilled 

end 

where search-optimizer can be any efficient optimizer which is used for producing 
offspring. We use the Fast Particle Swarm Optimization Algorithm[12] as 
search-optimizer which is based on Particle Swarm Optimization with Cauchy 
mutation and an ε- optimality based selection strategy.       
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Fast Particle Swarm Optimizer 

   Begin 

     For  i = 1 to N do 

         Vi:= Vi +η1 rand( ) (Xi best-Xi) +η2 rand( ) (Xg 
best-Xi); 

         ; :    ),( 

;:
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; :

3

2211

iiiii

iii

ii

iii

XXthenXXXXbetterif

VXX

VV

VXX

′=′′
′+=

+′=′
+=′

））（（ ε

δ
δτδτ

≺Λ  

     endfor 

end 

where δ1, δ2 and δ3 are Cauchy random numbers, and η1,η2,τ1and τ2are parameters,  
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where     

Algorithm I is almost the same as the Base Algorithm VV in [8].  

Algorithm II 

begin 

      Generate a population P(0) uniformly from 
nRD ⊂ ; 

        A(0):= M(P(0),RANK=0); 

        t: = 0; 

        repeat 

           P(t+1): = search-optimizer P(t); 

           A(t+1): = M(A(t)∪P(t+1),RANK=0); 

           A(t+1):=Sieve(A(t+1); 

           t: = t+1; 
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       until stopping criterion fulfilled 

end 

where the Fast Particle Swarm Optimization Algorithm[12]is used as search-optimizer, 
and a Sieve procedure is used for control the diversity. 

Sieve algorithm 

begin 

for i = 1 to | A(t+1)| do  

    if (d(i)<δ) then delete element Xi from A(t+1); 
endfor 

end 

where d(i) is the distance between two nearest points in A(t+1). For more detail, please 

refer to [11]. 

Using Algorithm II, a finite well-distributed subset of )0,]1,0([ =RANKM m can be 

obtained, because the number of nodes on an δ-net in [0, 1]m is finite. 

4   Numerical Experiments 

In order to test the correctness of the new definitions and the effectiveness of 

Algorithm Ⅱ, we give two benchmarks[8] with more than three objectives and some 

numerical results to compare with the results obtained by using Pareto-Optimality. 

4.1   Benchmark Problems 

Benchmark Problem 1 

Minimize F(X) = ( F1(X), F2(X), ... , Fm(X) ) 

where    Fi(X) = ( X – i )2 , i = 1,2,…,m,  X∈[1, m]. 

The theoretical Pareto optimal set Sp is the whole feasible domain S= [1, m], so it 

gives us too much information for decision making. However, if we consider ε-optimal 

set Sε, then we can easily get the following theoretical results: 

(1) If m is even, then its ε-optimal set Sε = [m/2, (m+1)/2]. 

(2) If m is odd，then its ε- optimal set Sε.= { (m+1)/2}, a unique optimal solution. 

We will illustrate these results with numerical experiments. 

Benchmark Problem 2 

Minimize F(X) = ( f1(x), f2(x), …, f9(x)),   -2 ≤ x ≤2， -2 ≤ y ≤2， 
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where  

      f1(x) =－(1/(1+(((x2 – y2) (( x2 – y2)-12x2y2)-1)2+ 4x2y2(3(x2 – y2)2-4 x2y2)2)1/2  

+t sin(x)), where parameter t∈[-1,1], 

22
2 )01.1()( yxxf ++=  

     22
3 )01.1()( ++= yxxf  

     22
4 )01.1()( −+= yxxf  

    22
5 )8283.0()4825.0()( +++= yxxf  

    22
6 )8283.0()4825.0()( −++= yxxf    

    22
7 )8283.0()4825.0()( −+−= yxxf  

    22
8 )8283.0()4825.0()( ++−= yxxf  

The first objective f1(x) with parameter t=0 is a multi-modal function, which has eight 
valleys respectively at points : (0, -1) , (0,1), (-1, 0) , (1,0), (0.47245126882998, 
-0.81830960171391), (0.47245126882998，0.81830960171391), (-0.47245126882998, 
-0.81830960171391), (-0.47245126882998，0.81830960171391) 

4.2   Numerical Results 

Benchmark Problem 1. When m=4 and m=5, the numerical results are depicted on 
Fig.1 and Fig.2 respectively. From the figures, we can clearly see that Pareto-optimal 
set Sp is uniformly distributed in the whole feasible domain S= [1, m] ; ε-optimal set Sε 
is consistent with the above theoretical results . 
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Fig. 1. Comparison of Pareto-front and ε-front for Benchmark Problem 1 with four objectives.  
(black-dot denote the Pareto-front , red- triangle denote the ε-front.) 
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Fig. 2. Comparison of Pareto-front and ε-front for Benchmark Problem 1 with five objectives  

Benchmark Problem 2  
From the numerical results(Fig.1, Fig.2, Fig.3(b) and Fig.4(b)), it is found that the 
number of ε-optimal solutions depends on the number of objectives been odd or even. 
But compared with the number of Pareto optimal solutions, no matter the number of 
objectives is odd or even, the number of ε-optimal solutions is quite smaller than that of 
Pareto optimal solutions.  

 
(a) Pareto-front 

 
(b) -front 

Fig. 3. Comparison of Pareto-front (a) and ε-front (b) with 8 conflict objectives 

 
(a) Pareto-front 

 
(b) ε-front 

Fig. 4. Comparison of Pareto-front (a) and ε-front (b) with 7 conflict objectives 
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5   Conclusions and New Research Directions 

The key contribution in this paper is the new conception of optimality, called 
ε-optimality, for many-objective optimization. It can be used instead of 
Pareto-optimality in evolutionary multi-objective optimization algorithms. In the new 
concept of optimality, the number of objectives is taken into account. It is found that 
for ε = 1 if the number of objectives is odd then the number of ε-optimal solutions is 
fewer than that with even objectives.  

As we mentioned before that the definition of -optimality is imperfect. There exist 
many difficulties waiting to overcome. For example, how to prove the convergence of 
the new algorithms? It is believed that the new concept will have a profound and 
lasting influence in the field of optimization as the applications of the -optimality 
based evolutionary algorithms being used widely. 
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