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Abstract. There has been a growing interest in studying evolutionary
algorithms in dynamic environments in recent years due to its importance
in real applications. However, different dynamic test problems have been
used to test and compare the performance of algorithms. This paper
proposes a generalized dynamic benchmark generator (GDBG) that can
be instantiated into the binary space, real space and combinatorial space.
This generator can present a set of different properties to test algorithms
by tuning some control parameters. Some experiments are carried out on
the real space to study the performance of the generator.

1 Introduction

In recent years, there has been a growing interest in studying evolutionary algo-
rithms for dynamic optimization problems (DOPs) due to its importance in real
world applications. In order to study the performance of EAs in dynamic environ-
ments, one important task is to develop proper dynamic benchmark problems.
Over the years, researchers have applied a number of dynamic test problems to
compare the performance of EAs in dynamic environments. Generally speaking,
they can be roughly divided into two types.

For the first type, the environment is just switched between several stationary
problems or several states of a problem. For example, many researchers tested
their approaches on the dynamic knapsack problem where the weight capacity
of the knapsack changes over time, usually oscillating between two or more fixed
values [1].

The second type of DOP generators construct dynamic environments by re-
shaping a predefined fitness landscape. For example, Branke [2] suggested a
dynamic benchmark problem, called the “moving peaks” benchmark (MPB)
problem. It consists of a multi-dimensional landscape with several peaks, where
the height, width and position of each peak is altered a little every time the envi-
ronment changes. This function is capable of generating a given number of peaks
in a given number of dimensions that vary both spatially (position and shape of
a peak) and in terms of fitness. Morrison and De Jong [3] also defined a similar
dynamic generator as the MPB problem. Yang and Yao [4–6] proposed a DOP
generator that can generate dynamic environments from any binary encoded
stationary problem using a bitwise exclusive-or (XOR) operator.



Though a number of DOP generators exist in the literature, there is no a
unified approach of constructing dynamic problems across the binary space, real
space, and combinatorial space so far. This paper proposes a generalized dy-
namic benchmark generator (GDBG) to construct dynamic environments for
all the three solution spaces. GDBG provides six properties of the environmen-
tal dynamics, which are random change, small step change, large step change,
chaotic change, recurrent change, and recurrent change with noisy. Especially, in
the real space, we introduce a rotation method instead of shifting the positions
of peaks as in [3] and [2]. The rotation method can overcome the problem of un-
equal challenge per change for algorithms of the MPB generator, which happens
when the peak positions bounce back from the boundary of the landscape. In
this paper, some experiments are carried out on the real space using the particle
swarm optimizaiton (PSO) [7, 8] algorithm and fast evolutionary programming
(FEP) [9] to test the performance of the GDBG system.

The rest of the paper is organized as follows. Section 2 describes the GDBG
system in details. Section 3 presents several instances of the GDBG in the binary
space, the real space and the combinatorial space. Then some experiments based
on the real space are carried out to test the performance of the GDBG system
in Section 4. Finally, Section 5 concludes the paper.

2 The Generalized Dynamic Benchmark Generator

In this section, we first define DOPs and then introduces the GDBG system.
DOPs can be defined as follows:

F = f(x, φ, t) (1)

where F is the optimization problem, f is the cost function, x is a feasible solution
in the solution set X, t is the real-world time, and φ is the system control pa-
rameter, which determines the solution distribution in the fitness landscape. The
objective is to find a global optimal solution x∗ such that f(x∗) ≤ f(x)∀x ∈ X
(without loss of generality, minimization problems are considered in the paper).

First, we classify the environmental changes into two categories: the dimen-
sional changes and the non-dimensional changes. Dimensional changes corre-
spond to adding or removing variables from the optimization problem. For ex-
ample, the number of cities increases or decreases in the traveling salesman
problem (TSP), the dimensions in the function optimization problem and the
number of objects in the knapsack problems increases or decreases. This kind of
changes requires the alternation of the representation of solutions.

Non-dimensional changes result from the change of the value of variables
within the problem constraints. For example, the capacity of the knapsack changes
and the weight or profit of objects changes in the knapsack problem, the positions
of cities change in the TSP, the position of peaks change in the function opti-
mization problem, and the processing time and ready date change in a scheduling
problem. Non-dimensional changes might be regarded harder than dimensional
changes when there’s no relationship among dimensions. We just simply delete
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Fig. 1. Model of the GDBG system.

or add variables when dimensional changes occur. In this paper, we only consider
non-dimensional changes in the GDBG system.

In the GDBG system, the dynamism results from a deviation of solution dis-
tribution from the current environment by tuning the system control parameters.
It can be described as follows:

φ(t+ 1) = φ(t)⊕∆φ (2)

where ∆φ is a deviation from the current system control parameters. Then, we
can get the new environment at the next moment t+ 1 as follows:

f(x, φ, t+ 1) = f(x, φ(t)⊕∆φ, t) (3)

The system control parameters decide the distribution of solutions in the
solution space. They may be different from one specific instance to another
instance. For example, the only distance matrix determines the solution distri-
bution in TSP, while the capacity of the knapsack and the weights and profits
of objects together determine the solution distribution in the knapsack problem.
The GDBG system constructs dynamic environments by changing the values of
these system control parameters. Fig. 1 shows the model of the GDBG system.

There are six change types of the system control parameters in the GDBG
system. They are small step change, large step change, random change, chaotic
change, recurrent change, and recurrent change with noisy. By controlling the
values of the system control parameters using the six change types, GDBG can
present six different dynamic properties. This easily enables the test and compar-
ison of the adaptibility of algorithms in different dynamistic types. The frame-
work of the six change types are described as follows:

Framework of DynamicChanges
switch(change type)

case small step: ∆φ = α · ‖φ‖ · r · φseverity
case large step: ∆φ = ‖φ‖ · (α · sign(r) + (αmax − α) · r) · φseverity
case random: ∆φ = N(0, 1) · φseverity
case chaotic: φ(t+ 1) = A · φ(t) · (1− φ(t)/‖φ‖)
case recurrent: φ(t+ 1) = φmin + ‖φ‖(sin( 2π

P t+ ϕ) + 1)/2



case recurrent with noisy:
φ(t+ 1) = φmin + ‖φ‖(sin( 2π

P t+ ϕ) + 1)/2 +N(0, 1) · noisyseverity
where ‖φ‖ is the change range of φ, φseverity ∈ (0, 1) is change severity of φ, φmin
is the minimum value of φ, noisyseverity ∈ (0, 1) is noisy severity in recurrent
with noisy change. α ∈ (0, 1) and αmax ∈ (0, 1) are constant values, which are
set to 0.02 and 0.1 in the GDBG system. A logistics function is used in the
chaotic change type, where A is a positive constant between (1.0, 4.0), if φ is
a vector, the initial values of the items in φ should be different within ‖φ‖ in
chaotic change. P is the period of recurrent change and recurrent change with
noise, ϕ is the initial phase, r is a random number in (−1, 1), sign(x) returns 1
when x is greater than 0, returns −1 when x is less than 0, otherwise, returns
0. N(0, 1) denotes a normally distributed one dimensional random number with
mean zero and standard deviation one.

In the following section, some specific instances from the GDBG system in
the binary space, real space, and combinatorial space are described respectively.

3 Generator Instances from the GDBG system

3.1 Generator Instance in the Binary Space

The XOR DOP generator proposed in [4–6] can generate DOPs from any binary
encoded stationary problem. Given a stationary problem f(x, φ)(x ∈ {0, 1}l),
where l is the length of the binary representation, φ ∈ [0, l] is the number of
ones in x. In the GDBG system, we can also use the XOR operator to construct
a new environment from the current fitness landscape as follows:

Step 1. φ(t+ 1)=DynamicChanges(φ(t))
Step 2. Generate a binary string m(t) of length l containing φ(t+ 1) ones
Step 3. x(t+ 1) = x(t)⊕m(t)

where “⊕” is a XOR operator, i.e., 1⊕ 1 = 0, 1⊕ 0 = 1, 0⊕ 0 = 0. φseverity = 1,
‖φ‖ = l. The difference between φ(t + 1) and φ(t) controls the severity of each
environmental change. The φ(t) is predefined in [4–6], it is one case from GDBG
system when α is set 0.

3.2 Generator Instances in the Real Space

In this section, two different real DBGs will be constructed using different meth-
ods. In [2] and [3], two real DBGs were constructed that contain several peaks.
The height, width and position of each peak may change every time an envi-
ronmental change occurs. They have been tested by many researchers. However,
both have a disadvantages of unequal challenge per change for algorithms when
the position of a peak bounces back from the search boundary. This paper pro-
poses a rotation method for the peak position to overcome that shortcoming.

Real Rotation DBG



The fitness landscape of the rotation DBG also consists of several peaks that
can be artificially controlled. The height, width, and position of each peak are
system control parameters, which are altered according to the above six change
types. Given a problem f(x, φ, t), φ = (H,W ,X), where H,W and X denote
the peak height, width and position respectively. The function of f(x, φ, t) is
defined as follows:

f(x, φ, t) = Minmi=1(Hi(t) +W i(t) · (exp(
√√√√

n∑

j=1

(xj −Xi
j(t))2

n
)− 1)) (4)

where m is the number of peaks, n is the number of dimensions. H and W
change as follows:

H(t+ 1) = DynamicChanges(H(t))
W (t+ 1) = DynamicChanges(W (t))

where in the height change,height severity should read φ hseverity and ‖φ h‖ is
height range. Accordingly, width severity and width range should read φ wseverity
and ‖φ w‖ in the width change

Instead of shifting peak position as in MPB[2], we borrow the idea from [10]
and use rotation matrices to change the peak position in the GDBG system.

A rotation matrix Rij(θ) is obtained by rotating the projection of −→x in the
plane i− j by an angle θ from the i-th axis to the j-th axis. The peak position
X is changed by the following algorithm:

Step 1. Randomly select l dimensions (l is an even number) from the n dimen-
sions to compose a vector r = [r1, r2, ..., rl].

Step 2. For each pair of dimension r[i] and dimension r[i + 1], construct a
rotation matrix Rr[i],r[i+1](θ(t)), θ(t)=DynamicChanges(θ(t− 1)).

Step 3. A transformation matrix A(t) is obtained by:
A(t) = Rr[1],r[2](θ(t)) ·Rr[3],r[4](θ(t)) · · ·Rr[l−1],r[l](θ(t)),θ(t) ∈ (0, 2π)

Step 4. X(t+ 1) = X(t) ·A(t)

where the change severity of θ ( φ θseverity ) is set 1, the range of θ should read
‖φ θ‖, ‖φ θ‖ ∈ (0, 2π)

By changing the height, width and position of each peak, we can easily con-
struct a new fitness landscape with different properties. However, this artificial
fitness landscape has a problem that the shape of each peak in the fitness land-
scape is symmetrical at their peak position. It is easy to obtain the local optima
for some algorithms using this property. For example, PSO is effective to search
the global optimum in symmetrical fitness landscapes. We can see this from the
experimental results presented in the paper. So, a composition real DBG based
on several static benchmark problems is proposed in this paper.

Real composition DBG



A composition function construction method was proposed in [11]. The idea
is to compose the standard benchmark functions to construct a more challeng-
ing function with a randomly located global optimum and several randomly lo-
cated local optima. By shifting, rotating and composing the global optimum of
standard functions, we can get more challenging test functions possessing many
desirable properties. In the GDBG system, we get dynamism by controlling the
values and locations of these global and local optima. The composition function
can be described as:

F (x, φ, t) =
m∑

i=1

(wi · (f ′i((x−Oi(t) +Oiold)/λi ·M i) +Hi(t))) (5)

where the system control parameter φ = (O,M ,H), F (x) is the composition
function, fi(x) is i-th basic function used to construct the composition function.
m is the number of basic functions, M i is orthogonal rotation matrix for each
fi(x), Oi and Oiold are the shifted and old optimum position for each fi(x). The
weight value wi for each fi(x) is calculated as:

wi = exp(−sqrt(
∑n
k=1 (xk − oki + okiold)

2

2nσ2
i

))

wi =
{
wi if wi = max(wi)
wi · (1−max(wi)10) if wi 6= max(wi)

wi = wi/

m∑

i=1

wi

where σi is the converge range factor of fi(x), whose default value is 1.0 in the
paper, λi is the stretch factor for each fi(x), which is defined as:

λi = σi · Xmax −Xmin

ximax − ximin
where [Xmax, Xmin]n is the search range of F (x) and [ximax, ximin]n is the search
range of fi(x).

In Eq. (5), f ′i(x) = C · fi(x)/|f imax|, where C is a predefined constant, which
is set to 2000 as in [11], and f imax is the estimated maximum value of fi(x),
which is estimated as:

f imax = fi(xmax ·Mi)

In the composition DBG, M is randomly initialized using the above transforma-
tion matrix construction algorithm and then remains unchanged. The dynamism
of the system control parameter H and O can be described as follows:

H(t+ 1) = DynamicChanges(H(t))
O(t+ 1) = DynamicChanges(O(t))

Five basic benchmark functions are used in the GDBG system. Table 1 shows
the details of the five functions.



Table 1. Details of the basic benchmark functions

name function range

Sphere f(x) =
∑n

i=1
x2
i [-100,100]

Rastrigin f(x) =
∑n

i=1
(x2
i − 10 cos(2πxi) + 10) [-5,5]

Weierstrass f(x) =
n∑
i=1

(
kmax∑
k=0

[ak cos(2πbk(xi + 0.5))])− n
kmax∑
k=0

[ak cos(πbk)]

a = 0.5, b = 3, kmax = 20 [-0.5,0.5]
Griewank f(x) = 1

4000

∑n

i=1
(xi)

2 −∏n

i=1
cos( xi√

i
) + 1 [-100,100]

Ackley f(x) = −20 exp(−0.2

√
1
n

n∑
i=1

x2
i )− exp( 1

n

n∑
i=1

cos(2πxi)) + 20 + e [-32,32]

3.3 Generator Instances in the Combinatorial Space

In this section, the dynamic multi-dimensional knapsack problem (DMKP) and
dynamic TSP (DTSP) are instantiated from the GDBG system.

Dynamic Multi-dimensional Knapsack Problem (DMKP)

The knapsack problem [12] is a classical combinatorial benchmark problem to
test the performance of EAs. The static multi-dimensional knapsack problem
(MKP) belongs to the class of NP-complete problems. It has a wide range of
real world applications, such as cargo loading, selecting projects to fund, budget
management, etc. The DMKP can be defined as f(x, φ, t), φ = (R,P ,C) and
R, P , and C are the vector of resources, profits, and capacities respectively. The
DMKP can be formalized as:

f(x, φ, t) = Max

n∑

i=1

pi(t) · xi(t) (6)

subject to

n∑

i=1

rij(t) · xi(t) ≤ ci(t), j = 1, 2, · · · ,m (7)

where n is the number of items, m is the number of resources, xi ∈ {0, 1}
indicates whether item i is included in the subset or not, pi is the profit of item
i, rij shows the resource consumption of item i for resource j, and ci is the
capacity constraint of resource i. The system control parameters are changed as:

P (t+ 1) = DynamicChanges(P (t))
C(t+ 1) = DynamicChanges(C(t))
R(t+ 1) = DynamicChanges(R(t))

where the item profits, resources, and consumption constraints are bounded
in the range of [lp, up], [lr, ur], and [lc, uc] respectively. The change severity
of item profits, resources, and consumption constraints should read φ pseverity,
φ rseverity and φ cseverity, all of them are set 1 in DBG system.

Dynamic Traveling Salesman Problem (DTSP)



TSP is another classical NP-complete combinatorial problem. DTSP [13] has
a wide range of real applications, especially in the optimization of dynamic net-
works, like network planning and designing, load-balance routing, and traffic
management.

DTSP is a TSP determined by a dynamic cost (distance) matrix as follows:

D(t) = {dij(t)}n∗n (8)

where dij(t) is the cost from city i to city j, n is the number of cities. DTSP can
be defined as f(x, φ, t), φ = D, the objective of DTSP is to find a minimum-cost
route containing all cities at time t. It can be described as:

f(x, φ, t) = Min(
n∑

i=1

dTi,Ti+1(t)) (9)

where T ∈ 1, 2, · · · , n, if i 6= j,then Ti 6= Tj , Tn+1 = T1. The dynamism of the
cost matrix D is described as:

D(t+ 1) = DynamicChanges(D(t)).

4 Experimental Study

In this section, some experiments based on PSO and FEP [9] algorithms are
carried out on the two instances of real space to test the performance of the
GDBG system. The number of dimensions n = 10, peak number and basic
function number m = 10 in both instances, the 10 basic functions selected are
all sphere function in the composition DBG, the search range is set to x ∈ [−5, 5]
for both DBGs. noisyseverity = 0.5, Chaotic constant A = 3.57, Width severity
φ wseverity = 0.5. The population size is set to 50 for both PSO and FEP. For the
PSO algorithm, acceleration constants η1 and η2 are both set to be 1.496180 and
the inertia weight ω = 0.729844. In FEP, the tournament size is 5 for selection
and the initial standard deviation is 3.0 as used in [9]. Both algorithms were run
30 times independently for all the results.

For evaluating the efficiency of the algorithms, we use the offline performance
measure defined as follows:

et =
ht
ft
, (10)

where ft is the best solution got by an algorithm just before the t-th environmen-
tal change, ht is the optimum value at time t, and et is the relative value of ht
and ft. Fig. 2 shows the offline performance of PSO and FEP in the composition
DBG and rotation DBG environments.

From Fig. 2, it can be seen that algorithms show a different performance in
different dynamic types. Algorithms give a much better performance in small
step changes than large step changes. Both PSO and FEP show the recurrent
performance in the recurrent and recurrent with noisy environments. On the
other hand, the composition DBG environment is much harder to search than
the rotation DBG environment for all change types.
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Fig. 2. The offline performance of PSO and FEP in the composition and rotation DBG
environments.

5 Conclusions

Constructing benchmark problems is an important task in studying EAs in dy-
namic environments. This paper proposes a unified method, GDBG, to construct
dynamic environments across the binary, real, and combinatorial solution spaces.
GDBG introduces a rotation method instead of shifting peak positions as in the
MPB. The rotation method can overcome the shortcomings of unequal chal-
lenge per change for algorithms of the MPB model, which occurs when the peak
positions bounce back from the boundary of the landscape. In order to test the
GDBG system, experiments were carried out using the PSO and FEP algorithms
under the composition DBG and rotation DBG environments. Experimental re-
sults show that the GDBG system can give different properties by simply setting
the environment change type.



Though GDBG system can give different properties, there’s lack of real-world
application model. In the future, we will add more real-world related models and
extend more dynamic instances.
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