
A New Approach to Solving Dynamic Traveling
Salesman Problems

Changhe Li1 Ming Yang1 Lishan Kang1

1China University of Geosciences(Wuhan) School of Computer
 430074 Wuhan,P.R.China

lchwfx@yahoo.com,yangming0702@gmail.com,kang_whu@yahoo.com

Abstract. The Traveling Salesman Problem (TSP) is one of the classic NP hard
optimization problems. The Dynamic TSP (DTSP) is arguably even more
difficult than general static TSP. Moreover the DTSP is widely applicable to
real-world applications, arguably even more than its static equivalent.
However its investigation is only in the preliminary stages. There are many
open questions to be investigated. This paper proposes an effective algorithm to
solve DTSP. Experiments showed that this algorithm is effective, as it can find
very high quality solutions using only a very short time step.

1 Introduction

With the development of computer science and communication technology, from
highly centralized computing through distributed computing to today’s highly mobile
computing, computing environments have changed a great deal. Key research
challenges they face in common are the optimization of dynamic networks, arising
from network planning and designing, load-balance routing and traffic management.
However, guaranteeing that these systems run effectively and reliably is a difficult
problem. It leads to a very important theoretical mathematical model: the Dynamic
TSP (DTSP).

Because of the characteristics of DTSP itself, the solutions to general static TSPs
are usually unsuitable for DTSP. Most cost too much time to gain good solutions, so
the general algorithms are inefficient. Though a number of authors have researched
[1][2][3][4] the DTSP, since it was proposed by Psaraftis[5], exploration of the DTSP
is still in the preliminary stages, and many open questions need to be discussed. The
ultimate (but unobtainable) goal is to find an optimum solution at every moment, as
time progresses. In fact, if you want to get better solutions, the efficiency will be
lower, and conversely, if you require quick solutions, their quality will reduce that is
to say the two goals (solution quality and time response)are in conflict. Since we
can’t get an optimum solution at every instant, we can solve the problem in discrete
time steps, finding good solutions in a time step as short as possible.

In this paper, we will introduce an improved Inver-Over[6] algorithm(GSInver-
Over) based on a gene pool. Generally, we find that using a gene pool, which reduces
the search space sharply, gives solutions much more rapidly, without degradation of

the solution quality. Thus it dramatically improves the system performance in the
combined objectives. The GSInver-Over algorithms can improve the individuals
using information either from other individuals or from gene pools. We augment this
with elastic relaxation as a local search method, which permits the rapid evolution of
variants of individuals which were successful in previous situations. Our experiments
show that these operators can provide highly satisfactory results.

In the remainder of this paper, there are five sections: (1) description of DTSP; (2)
design of the gene pool; (3) the detailed algorithms; (4) analysis of the results; (5)
summary and conclusions.

2 Description of DTSP

Definition 1
A dynamic TSP(DTSP) is a TSP determined by a dynamic cost (distance) matrix

as follows:

() ()() { ()}ij n t n tD t d t ×= (1)

where is the cost from city(node) to city , and t is the real-world time. In
this definition, the number of cities and the cost matrix are time-dependent. The
Dynamic Traveling Salesman Problem is to find a minimum-cost route containing the
all the nodes.

()ijd t ic jc
()n t

()n t
Definition 2 DTSP:

Given all points, and the corresponding cost matrix
, find a minimum-cost route containing all the

points, where t stands for the moment of time t; stands for the distance between
the objective point and the objective point , and

()n t 1 2 ()(, ,...,)n tP P P
{ ()}, , 1, 2,..., ()ijD d t i j n t= = ()n t

()ijd t

iP jP () ()ij jid t d t= .
For example：

1

()

,
1

((())) min(())
i i

n t

T T
i

Min d T t d t
+

=

= ∑ (2)

where if , then {1, 2,..., ()}T n t∈ i j≠ i jT T≠ , () 1 1n tT T+ =
In definition 1, we deem the change of a DTSP’s cost matrix with time as a

continuous process. Practically, we discretize this change process. Thus, A DTSP
becomes a series of optimization problems:

() ()() { ()}
k kk ij k n t n tD t d t ×= (3)

0,1,2,..., 1k = m − , with time windows [tk, tk+1], where 0{ }m
k it = is a sequence of real

world time sampling points.

3 Design of Gene Pool

Heuristic rules can dramatically affect the efficiency of DTSP algorithms. The TSP is
an NP-hard problem, and adding only one node, will increase the candidate search
space by . Thus it is impossible to search all the candidate individuals. One
useful heuristic derives from the fact that most of the edges in a minimum-cost route
will join nearby vertices. So it is generally desirable for the elements in the gene pool
to select from edges which go to nearby vertices. Unfortunately, this heuristic is often
violated: for hard TSPs, a small proportion of the edges in optimal routes will need to
connect distant vertices. If the heuristic is too rigidly applied, some of the edges in the
optimal route won’t exist in the gene pool. So a heuristic method based on
minimising local distances seems reasonable, but in fact, this kind of restriction
usually results in bad performances. We describe an alternative heuristic for the
design of the gene pool. It is based on the concept of α-nearness [7], which derives
from Minimum Spanning Trees (MSTs). The α-length α(i,j) of an edge <v

!n n×

i,vj> can be
defined as the difference in length between the true MST, and the length of the 1-tree
which is constrained to contain <vi, vj>.

() ()() ()TLj,iTLj,i －＝α ＋ (4)

where T is an any given MST of length L(T),T+(i,j) is a 1-tree that contain the edge <
vi, vj > ,that is, given a MST of length L(T),α(i,j) is the increase length of a 1-tree
required to contain the edge < vi, vj > .

It is easy to see that: α(i,j)≥0 and α(i,j)＝0 when the edge < vi, vj > belong to T. It
can compute α(i,j) in the following rules:

(1) if the edge < vi, vj > belong to T, then α(i,j)=0.
(2) Otherwise, insert the edge < vi, vj > into T, this will create a circle

containing the edge < vi, vj >,then α(i,j) is the length difference between the
longest edge of the circle and the edge < vi, vj >.

The gene pool is a candidate set of some most promising edges. The candidate set
may, for example, contain k α-nearness edges incident to each node. Generally
speaking, the experience value of k is 6 to 9.we set k=8 in CHN144 problem[8].

Through experiments, it can be shown experimentally that 50%-80% (i.e the
experiment result of table 1 of instances in TSPLIB) of the connections in an optimal
TSP solution are also in the minimum spanning tree. This is a far larger proportion
than the proportion of the n shortest edges. Thus we expect that a gene pool
constructed based on α-nearness may perform better than a gene pool constructed on
the distance. It should be possible to use a smaller gene pool while maintaining the
solution quality. Taking the CHN144 problem for example, 76.3% of the connections
in the best known solution are also edges in the minimum spanning tree. If we bias
the gene pool based on the α-nearness, we expect that it will better match the optimal
solution. That is to say, we expect that a gene pool that probabilistically includes
elements close to members of the MST will also include elements close to members
of the optimum TSP circuit. The gene pool based on the α-nearness has another
remarkable advantage that it is independent of instance scale, it means ,when the

instance scale increases ,the size of gene pool won’t increase. This character of gene
pool is much suitable to DTSP.

Table 1. Instances in TSPLIB

CHN144 a280 pr439 u574 u724 rl1323
76.3% 75.7% 79.1% 75.6% 75.2% 89.2%

4 Introducing the Algorithms

Operator design is the key to solving TSPs. A vast range of operators have already
been proposed (for example: λ-Opt[9], LK[10], Inver-Over), and we anticipate that
this trend will continue. Based on performance, many of these local-search inspired
operators are superior to the traditional mutation, crossover and inversion operators.
In this paper, we adopt a form of improved Inver-Over operator. We propose a highly
efficient dynamic evolution algorithm based on elastic.

4.1 GSInver-Over Operator

Inver-Over is a high-efficiency search operator based on inversion, and having a
recombination aspect. It can fully utilize information from other individuals in the
population to constantly renew itself. This gives it better search ability than many
other operators (within a certain range of problems), yet the complexity of algorithm
is low. We can say Inver-Over is a highly adaptable operator which has very effective
selection pressure.

However Inver-Over operator has its own constrains, experiments show that
reducing the inversion times can sharply increase the convergence, this is favourable
to DTSP. We set the maximal inversion times Max_time in the GSInver-Over
operator, when the inversion times surpass Max_time, end the algorithm. The search
environment has increased and it can get useful heuristic information not only from
other individuals, but also from the gene pool. The choice of matching individuals is
not random, but biased toward better individuals in the population. This reduces the
probability of incorporating bad information that damages the individual. The
inversion operator is more rationally designed, incorporating knowledge about the
directionality of the route, further improving the performance of the algorithm. Based
on the above improvements, the GSInver-Over performed substantially better than the
original algorithm. the algorithm for our GSInver-Over operator is as follows:
GSInver-Over Operator:

1. Select a gene g from individual S randomly and set S′=S;
2. If the number p generated randomly is less than p1, then select the gene g′ from
the gene pool of g;
3. Else if p<p2 select an individual randomly from some best individuals and g′ is
the gene that is next to g in the selected individual;
4. Else select next gene g′ randomly from other genes;

5. If the next gene or the previous gene of g in S′ is g′, then go to step 9;
6. Inverse the section from the next gene of g to g′ in S′;
7. counter++, if counter > Max_time, then go to step 9;
8. g= g′ and go to step 2;
9. If the fitness of S′ is better than S, then replace S with S′;

4.2 The Dynamic Elastic Operator

The changes of a node include three cases: the node disappears, the node appears and
the position of the node changes. If the node disappears, it will be deleted directly,
then link the two adjacent nodes of the deleted node. if the node appear, find the
nearest node to the appearing node, then insert it to the tour that minimize the total
length. if the node position changes, it can be seen as the combination of the two
former cases. The dynamic-elastic operator is very simple in concept, but we find it is
an effective local search operator.
 Dynamic Elastic Operator

1. Delete the node c and link the cities adjacent to c;
2. Find the nearest node c* to c in the current individual;
3. Insert c next to C*, on the side that minimize the total length;

4.3 Main Program Loop

In the main program loop, we use a difference list Dlist to store the information of
changed nodes. Note that ∆T is the time step.

1. Initialize the population;
2. If Dlist is not empty goto 3, else goto 5;
3. Update gene pool;
4. Dynamic-elactic ();
5. For each individual in the population,do
 GSInver-Over ();

Optimizing();
6. If the ∆T>0 goto 5;
7. If not termination condition goto 2;
When some nodes change at time t, it needs to update the gene pool, that is to say,

create a new MST of the new nodes topology of time t, then construct a gene pool
according to α-nearness.

5 Experiments with CHN146+3

We tested our algorithm in a relatively difficult dynamic environment, adapted from
the well-known CHN145[11] static TSP benchmark. The problem has 146 static
locations (145 Chinese cities, plus a geo-stationary satellite) and three mobile
locations, two satellites in polar orbit and one in equatorial orbit (fig. 1).

In dynamic optimisation experiments, since the results represent a trade-off
between solution quality, computational cost and problem dynamics, it is important to
specify the computational environment in which experiments were conducted. Our
experimental environment consisted of the following: CPU: Intel C4 1.7GHz,
RAM:256MB. We measure the offline error ē and μ as our quality metric:

))(())(()(kkk tdtdte ππ −= (5)

))((/)()(kkk tdtet πμ = (6)

where))((ktd π is the best tour obtained by a TSP solver (which is assumed to be
good enough to find an optimal solution for the static TSP)))((ktd π is the best tour
obtained by our DTSP solver. Together with:
Maximum error:

)}({max
,,0 kmkm tee

L=
=)}({max

,,0 kmkm tμμ
L=

= (7)

Minimum error:

)}({min
,,0 kmkr tee

L=
=)}({min

,,0 kmkr tμμ
L=

= (8)

Average error:

∑
=+

=
m

t
ka te

m
e

0

))((
1

1 ∑
=+

=
m

t
ka t

m 0

))((
1

1 μμ (9)

Fig. 1. Experiments with CHN146+3

120 sample time-points in the period of the satellites were performed for the
experiments. The results are given in table 2 with ΔT ranging from 0.059s to 1.3s. Fig.
2 to fig. 5 are error curves respectively for ΔT=0.059s, ΔT=0.326s, ΔT=0.579s and
ΔT=0.982s.

From the experiments, we can see that, when ∆T is very small, the result is
relatively poor. As ∆T increases, the maximal and average errors decrease, and the
solution quality improves showing the stability of the algorithm, and its rapid
convergence. The experiments also demonstrate the conflict between the two DTSP
goals, requiring a compromise through the choice of ∆T. With the exception of the
shortest time interval, the data in table 2 are generally acceptable, with the average
errors being under 1%, and the maximal errors less than 2%.

Table 2. Error of experiments

ΔT(s) em(km) μm(%) er (km) μr(%) ea(km) μa(%)
0.059 1742 1.487 206 0.199 796 0.727
0.222 2020 1.722 773 0.062 406 0.372
0.326 1310 1.122 0 0 289 0.264
0.481 1014 0.866 0 0 283 0.257
0.579 1038 0.884 0 0 203 0.187
0.982 899 0.770 0 0 240 0.218
1.300 1514 1.297 0 0 188 0.170

0

500

1000

1500

2000

1 12 23 34 45 56 67 78 89 100 111

sample points

e
rr
o
rs
(
km

)

Fig. 2. Error Curve for ΔT = 0.059s

0

400

800

1200

1600

1 11 21 31 41 51 61 71 81 91 101 111

sample points

e
rr

or
s(

km
)

Fig. 3. Error Curve for ΔT = 0.326s

0

200

400

600

800

1000

1200

1 12 23 34 45 56 67 78 89 100 111

sample points

e
r
r
o
r
s
(
k
m
)

Fig. 4. Error Curve for ΔT = 0.579s

0
100
200
300
400
500
600
700
800
900

1000

1 11 21 31 41 51 61 71 81 91 101 111

sample points

e
rr

or
s(

km
)

Fig.5. Error Curve for ΔT = 0.982s

6 Conclusions

In this paper, we analyze the DTSP which can be seen as a two-objective problem by
trading off the quality of the result and the reaction time. We propose a solution based
on a gene pool, which greatly reduces the search space without degradation of the
solution quality. By adding the improved GSInver-Over Operator, we were able to
significantly improve the efficiency of the algorithm. Adding the elastic relaxation
method as a local search operator improves the system’s real-time reaction ability.

7 Acknowledgements

This work was supported by National Natural Science Foundation of China (NO.
60473081). We would like to thank Bob McKay, of Seoul National University, Korea,
for contributions to the presentation of this work.

8 References

1. C.J.Eyckelhof and M.Snoek. Ant Systems for a Dynamic TSP -Ants caught in a traffic jam.
In3rd International Workshop on Ant Algorithms(2002)

2. Z.C.Huang,X.L.Hu and S.D.Chen. Dynamic Traveling Salesman Problem based on
Evolutionary Computation. In Congress on Evolutionary Computation(CEC’01),IEEE Press
(2001)1283–1288

3. Allan Larsen. The Dynamic Vehicle Routing Problem. Ph.D theis,Department of
MathematicalModelling (IMM) at the Technical University of Denmark(DTU)(2001)

4. A.M.Zhou, L.S.Kang and Z.Y.Yan. Solving Dynamic TSP with Evolutionary Approach in
Real Time. Proceedings of the Congress on Evolutionary Computation, Canberra, Austrilia,
8-12, December 2003, IEEE Press(2003) 951–957

5. H.N.Psaraftis. Dynamic vehicle routing problems. In Vehicles Routing: Methods and Stu-
dies,B.L.Golden and A.A.Assad(eds),Elsevier Science Publishers(1988)

6. T.Guo and Z.Michalewize. Inver-Over operator for the TSP. In Parallel Problem Sovling
from Nature(1998)

7. Keld Helsgaun,An Effective Implementation of the Lin-Kernighan Traveling Salesman
Heuristic，Department of Computer Science Roskilde University.

8. L.S.Kang, Y.Xie,S.Y.You,etc. Nonnumerical Parallel Algorithms:Simulated Annealing
Algorithm. Being:Science Press(1997)

9. S. Lin,“Computer Solutions of the Traveling Salesman Problem”,Bell System Tech. J., 44,
(1965) 2245–2269

10. S. Lin & B. W. Kernighan,An Effective Heuristic Algorithm for the Traveling-Salesman
Problem(1973)

11. Lishan Kang, Aimin Zhou, Bob McKay,Yan Li Zhuo Kang ,Benchmarking Algorithms for
Dynamic Travelling Salesman Problems, Benchmarking Algorithms for Dynamic
Travelling Salesman Problems, Proceedings, Congress on Evolutionary Computation,
Portland, Oregon(2004)

