
Verification of Architectural Refactoring Rules

Dénes Bisztray, Reiko Heckel, Hartmut Ehrig

Department of Computer Science,

University of Leicester,

dab24@mcs.le.ac.uk

October 27, 2008

Abstract

With the success of model-driven development as well as component-based

and service-oriented systems, models of software architecture are key arte-

facts in the development process. To adapt to changing requirements and

improve internal software quality such models have to evolve while preserving

aspects of their behaviour.

To avoid the costly verification of refactoring steps on large systems we

present a method which allows us to extract a (usually much smaller) rule

from the transformation performed and verify this rule instead. The main

result of the paper shows that the verification of rules is indeed sufficient to

guarantee the desired semantic relation between source and target models.

We apply the approach to the refactoring of architectural models based on

UML component, structure, and activity diagrams, with using CSP as a

semantic domain.

Contents

1 Introduction 3

2 Related Work 6

3 Architectural Models 8
3.1 Type-Level . 8
3.2 Instance-Level . 9
3.3 Behaviour . 10
3.4 Metamodel . 11

4 Model Refactoring 13
4.1 Description of the Refactoring 13
4.2 Rule Extraction . 14

5 Semantic Domain 17
5.1 Communicating Sequential Processes. 17
5.2 Representation in FDR2 . 19
5.3 Abstract Syntax . 20

5.3.1 Concurrency . 21
5.3.2 Renaming . 22

6 Semantic Mapping 23
6.1 Type-Level Mapping. 24

6.1.1 Components . 25
6.1.2 Ports . 26
6.1.3 Interfaces . 27

6.2 Behavioural Mapping . 29
6.2.1 Initial Node, Action and Final Node 29
6.2.2 Communication Events 30
6.2.3 Decision Node and Merge Node 31
6.2.4 Fork Node and Join Node 32

1

6.3 Instance-Level Mapping. 34
6.3.1 Component Objects . 34
6.3.2 Channels . 34

6.4 Renaming Rules . 35
6.5 Application to the Rule . 37

7 Correctness of Rule-level Verification 38
7.1 Correctness . 38

8 Compositionality. 42
8.1 Simple Graph Transformations 42
8.2 Graph Transformations with NACs 44

9 Conclusion and Future Work 51

2

Chapter 1

Introduction

Nothing endures but change, as the philosopher says [10]. As much as any-

where else, this applies to the world of software. In order to improve the

internal structure, performance, or scalability of software systems, changes

may be required that preserve the observable behaviour of systems. In OO

programming, such behaviour-preserving transformations are known as refac-

torings [7]. Today, where applications tend to be distributed and service-

oriented, the most interesting changes take place at the architectural level.

Even if these changes are structural, they have to take into account the

behaviour encapsulated inside the components that are being replaced or re-

connected. In analogy to the programming level we speak of architectural

refactorings if preservation of observable behaviour is intended.

In this paper, refactoring is addressed at the level of models. Given a

transformation from a source to a target model we would like to be able to

verify their relation. In order to make this precise we have to fix three ingredi-

ents: the modelling language used, its semantics, and the relation capturing

our idea of behaviour preservation. Notice however that in the mathematical

formulation of our approach, these parameters can be replaced by others, sub-

ject to certain requirements. For modelling language we use the UML, which

provides the means to describe both structure (by component and static

structure diagrams) and behaviour (by activity diagrams) of service-oriented

systems [17]. The semantics of the relevant fragment of the UML is expressed

3

in a denotational style, using CSP [9] as semantic domain and defining the

mapping from UML diagrams to CSP processes by means of graph trans-

formation rules. As different UML diagrams are semantically overlapping,

the mapping has to produce one single consistent semantic model [5]. The

semantic relation of behaviour preservation can conveniently be expressed

using one of the refinement and equivalence relations on CSP processes.

Based on these (or analogue) ingredients, we can formalise the question

by saying that a model transformation M1 → M2 is behaviour-preserving if

sem(M1) R sem(M2) where sem represents the semantic mapping and R
the desired relation on the semantic domain. However, the verification of

relation R over sufficiently large M1 and M2 can be very costly, while the

actual refactoring might only affect a relatively small fragment of the overall

model. Hence, it would be advantageous if we could focus our verification

on those parts of the model that have been changed, that is, verify the

refactoring rules rather than the actual steps. This is indeed possible, as we

show in this paper, if both semantic mapping sem and semantic relation R
satisfy suitable compositionality properties. We satisfy these requirements

by specifying the mapping sem by graph transformation rules of a certain

format and choosing CSP refinements as semantic relations.

However, model-level architectural refactorings are unlikely to be created

directly from semantics-preserving rules. Such rule catalogues as exist focus

on object-oriented systems and are effectively liftings to the model level of

refactoring rules for OO programs. Rather, an engineer using a modelling tool

performs a manual model transformation M1 → M2 from which a verifiable

refactoring rule has to be extracted first. In this we follow the idea of model

transformation by example [23] where model transformation rules expressed

as graph transformations are derived from sample transformations.

The paper is structured as follows. In Sect. 3 we present our architectural

models along with an example, on which a refactoring step is performed in

Sect. 4. Section 6 introduces CSP as the semantic domain and describes the

mapping and the semantic relation. The formal justification for rule-level

verification is discussed in Sect. 7. It is demonstrated that the method is

sound if the semantic mapping is compositional, which is true based on a

4

general result which derives this property from the format of the mapping

rules. Section 9 concludes the paper.

5

Chapter 2

Related Work

After refactorings for Java were made popular by Fowler [7], several proposals

for formalisation and verification based on first-order logics and invariants

have been made [20, 13, 15]. The first formal approach to refactoring based

on graph transformations is due to Mens [16], focusing on the analysis of

conflicts and dependencies between rules.

Refactoring of architectural models has been studied formally in archi-

tectural description languages (ADLs) like Wright [1] or Darwin [14], using

process calculi like CSP or π-calculus for expressing formal semantics. Our

semantic mapping to CSP follows that of [5] for UML-RT [19], an earlier

component-based extension to the UML, but distinguishes type and instance

level architectural models in UML 2.

A number of authors have studied instance level architectural transforma-

tions, or reconfigurations. For example, Taentzer [21] introduces the notion

of distributed graph transformation systems to allow architectural reconfig-

uration by means of two-level rules to express system-level and local trans-

formations. The approach of [24] uses an algebraic framework to represent

reconfigurations based on the coordination language Community. In [8] the

architecture is represented by hypergraphs, where the hyperedges are the

components, and the nodes are the communication ports. Architectural re-

configurations are represented by synchronised hyperedge replacement rules.

Our approach combines the type level, typical of source code refactor-

6

ing, which happens at the level of classes, with the instance level typical of

architectural transformations.

7

Chapter 3

Architectural Models

This chapter presents our choice of architectural modelling language by means

of an example based on the Car Accident Scenario from the SENSORIA Au-

tomotive Case Study [25].

We use UML component and composite structure diagrams for represent-

ing the type and instance-level architecture of our system in conjunction

with activity diagrams specifying the workflows executed by component in-

stances [17].

Briefly, the scenario is as follows. A car company is offering a service by

which, in case one of the sensors in their car detects an accident, customers

are contacted via their mobile phones to check if they require assistance. If

they do, a nearby ambulance is dispatched. The system consists of three

main parts: the agent in the car, the accident server, and the interface to the

local emergency services. We present the architecture and behaviour of the

accident server in detail.

3.1 Type-Level

Component diagrams specify the components, ports, interfaces that make

up the building blocks of the system. Figure 3.1(a) shows the component

diagram of the accident server.

The AccidentManager is the core component, responsible for receiving

8

(a) Component Diagram (b) Inter-
faces

Figure 3.1: Architectural model of the accident server

incoming alerts from cars through the AlertRecv port. In order to initiate a

phone call it acquires the number of the driver from the PersistentDatabase,

and passes it to the PhoneService, which calls the driver. In case the driver

replies saying that assistance is not required, the alert is cancelled. Other-

wise, the call is returned to the AccidentManager, which assesses the available

data (including sensorial and location data from the car) and decides if the

situation is a real emergency. In this case it passes the necessary data to

the ServiceManager, which matches the GPS location of the car using the

MapHandler, creates a service description, and contacts the serviceConnector

interface that provides access to local emergency services.

In the diagram, components are represented by rectangles with a compo-

nent icon and classifier name. Smaller squares on the components represent

the ports, provided interfaces are represented by circles and required inter-

faces by a socket shape [17]. Dashed arrows represent dependencies between

the provided and required interfaces.

3.2 Instance-Level

The composite structure diagram specifying the configuration of the accident

server is shown in Figure 3.2. Boxes named instance : type represent com-

ponent instances. Ports are typed by interfaces defining the possible actions

9

that can happen through that port. For instance, the possible actions of the

PhoneQuery port are defined by the phone interface. Links between port

instances represent connectors, enabling communication between component

instances [17].

Figure 3.2: Static Structure Diagram of the Accident Server

3.3 Behaviour

Figure 3.3: Activity Diagram of the AccidentManager component

The behaviours of components are described by activity diagrams, like the

one depicted in Figure 3.3 associated with the AccidentManager component.

10

Apart from the obvious control flow constructs they feature accept event

actions, denoted by concave pentagons, that wait for the occurrence of spe-

cific events triggered by send signal actions, shown as convex pentagons [17].

They fit into the communication framework by representing functions calls

from the corresponding interface through the relevant port. For instance, the

phoneData send signal action in Fig. 3.3 represents the function call from

phone interface through PhoneQuery port.

3.4 Metamodel

Formally, the UML models are instances of metamodels represented by at-

tributed typed-graphs. The combined metamodel of the three diagrams is

shown in Figure 3.4.

Figure 3.4: Metamodel for the Structure Model

The reason for including the activity diagram and component diagram

is the interconnection between the different nodes. Not only the component

11

is the container of activity nodes and edges, but also the ports are engaged

with communication nodes. The component diagram is the metamodel of a

composit structure diagram, thus it should be an abstraction level higher.

However both are included in the same metamodel. Unfortunately there is

no tool (and theoretical) support for graph transformations that spans more

than two abstraction levels.

Aside from the elements that have a self interpreting name, the com-

ponent container contains all elements corresponding to one particular side

of the refactoring rule. In the activity diagram part, the event node is a

common parent for all nodes that represents an event. Communication node

represents the special nodes that engage in communication through a port.

On instance level, component object is the instance of a component, while

the interaction point is the instance of a port. Connectable object is a sim-

ilar base class on instance level as the connectable element. Channels are

semantically not instances of owned interfaces, they are rather a realisation

of them.

12

Chapter 4

Model Refactoring

Continuing the description of the case study, a refactoring is presented in

this chapter.

4.1 Description of the Refactoring

With the current architecture scalability issues may arise. Assuming that

70% of the incoming alerts are not real emergencies, the analysis of ’false

alerts’ consumes considerable resources. The AccidentManager may thus

turn out to be a bottleneck in the system.

To address this scalability problem we extract the initial handling of alerts

from the AccidentManager into an AlertListener component. The solution is

depicted in Figure 4.1. The AlertListener receives alerts from cars, forwards

them to the AccidentManager for processing while querying the database

for the phone number and invoking the telephone service, which sends the

results of its calls to the AccidentManager.

The behaviour of the new AlertListener component is given in Figure 4.3(a),

while the updated behaviour of the AccidentManager is shown in Figure

4.3(b).

13

(a) Component Diagram (b) Inter-
faces

Figure 4.1: Architectural model of the refactored Accident Server

Figure 4.2: Configuration after the refactoring

4.2 Rule Extraction

However, rather than comparing the semantics of the entire system model be-

fore and after the change, we focus on the affected parts and their immediate

context. More precisely, we are proposing to extract a model transformation

rule which, (1) when applied to the source model produces the target model

of the refactoring and (2) is semantics preserving in the sense that its left-

hand side is in the desired semantic relation with its right-hand side. We will

demonstrate in Sect. 7 that this is indeed sufficient to guarantee the corre-

sponding relation between source and target model. In the example present,

such a rule is shown in Fig. 4.4 for the structural part only. The behaviour

transformation is given by the new and updated activity diagrams associated

with the components in the rule.

14

(a) AlertListener (b) AccidentManager

Figure 4.3: Owned behaviour after the refactoring

Figure 4.4: Refactoring rule

The rule is applied by selecting in the source model an occurrence isomor-

phic to the left-hand side of the rule at both type and instance level. Thus,

component C is matched by AccidentManager from Fig. 3.1(a), interface N

corresponds to phone, M to processAlert, and J to phoneData. At instance

level a similar correspondence is established.

A rule is extracted as follows: G denotes the original model while H

denotes the refactored one. The smallest consistent submodel of G containing

G\H would form the left-hand side L of the rule, while the smallest submodel

of H containing H \ G would form the right hand side R. In the algebraic

approach to graph transformation, which provides the formal background of

15

this work, this is known as Initial Pushout Construction [4].

Recently a similar construction has been used as part of the model trans-

formation by example approach, where a transformation specification is de-

rived inductively from a set of sample transformation rules [23]. Notice that

while the rule thus obtained is known to achieve the desired transformational

effect, it is not in general guaranteed that the semantic relation between L

and R can indeed be verified, even if it holds between G and H. The reason

is that additional context information present in G and H may be required

to ensure semantic compatibility. It is the responsibility of the modeller to

include this additional context into the rule. However, as in the example pre-

sented, a minimal rule might not be enough because some additional context

may have to be taken into account in order to guarantee the preservation of

the semantics. In the example this has led to the introduction into the rule

of generic component instances a and b (the PhoneHandler and Database in

the concrete model).

The example illustrates the potential complexity of the problem at hand,

with changes in all three diagrams types to be coordinated in order to lead

to an equivalent behaviour. In the following section we will see how the

combined effect of these three models is reflected in the semantic mapping

to CSP.

16

Chapter 5

Semantic Domain

In this section the introduction of CSP, the chosen semantic domain is pre-

sented. As the theoretical results proposed in Chapter 7 and 8 are generic

with respect to semantic domain, we propose its formal definition. Moving

from the abstract to the concrete, after the formal definitions and introduc-

tions, the implementation details are provided

Definition 5.0.1 (semantic domain) A semantic domain is a triple (D,v
, C) where D is a set, v is a partial order on D, C is a set of total functions

C[] ∈ C : D → D, called contexts, such that d v e =⇒ C[d] v C[e] (v is

closed under contexts).

The equivalence relation ≡ is the symmetric closure of v. Contexts C,

D are equivalent if ∀d ∈ D, C[d] ≡ D[d].

5.1 Communicating Sequential Processes.

Communicating Sequential Processes [9] is a process algebra providing for

concurrent systems and supported by tools [6]. A process is the behaviour

pattern of a component with an alphabet of events. Processes are defined

using recursive equations based on the following syntax.

P ::= event → P | P uQ | P ¤ Q | P || Q | P \ a | SKIP | STOP

17

The prefix a → P performs action a and then behaves like P . The pro-

cesses P u Q and P ¤ Q represent internal and external choice between

processes P and Q, respectively. The process P || Q behaves as P and Q

engaged in a lock-step synchronisation. Hiding P \ a behaves like P except

that all occurrences of event a are hidden. SKIP represents successful ter-

mination, STOP is a deadlock. Due to the distinction of type and instance

level, in our application it is important to define groups of processes with

similar behaviour. To this end, we use renaming: Each process within a

structural group is renamed to a different name, which is also used to distin-

guish its events. Renaming is an injective function r : αP → A that maps

the alphabet of process P to a set of symbols A. The renamed process r(P)

engages in the event r(e) whenever P would have engaged in e [9].

For clarity, we use the terminology as shown in the expression below. A

CSP expression that defines the behaviour of a process is called a process as-

signment. The definition is the behaviour assigned to the particular process,

while the declaration is the name of the process itself.

assignment︷ ︸︸ ︷
P =︸︷︷︸

declaration

(a → Q)||(b → R)︸ ︷︷ ︸
definition

The semantics of CSP is defined in terms of traces, failures, and diver-

gences [9]. A trace of a process behaviour is a finite sequence of events in

which the process has engaged up to some moment in time. The complete

set of all possible traces of process P is denoted by traces(P). For the three

semantics domains, corresponding equivalence and refinement relations can

be deducted. Two processes are trace equivalent, i.e. P ≡T Q if the traces of

P and Q are the same, i.e. traces(P) = traces(Q). Trace refinement means

that P vT Q if traces(Q) ⊆ traces(P). Hence, every trace of Q is also a

trace of P . Analogously the equivalence and refinement relations based on

failures and divergences can be defined. These relations shall be used to ex-

press behaviour preservation of refactoring rules and compatibility of system

components.

CSP is a semantic domain in the sense of Definition 5.0.1. D is the set

18

of CSP expressions and v can be trace, failure or divergence refinement as

they are closed under context [9]. A context is a process expression E(X)

with a single occurrence of a distinguished process variable X.

Despite the existence of more expressive mathematical models, the com-

positional property and tool support are most important to our aim. FDR2

[6] enables the automatic verification of the above mentioned equivalence and

refinement relations.

5.2 Representation in FDR2

FDR2 is a refinement checker for establishing properties of models expressed

in CSP [6]. As FDR2 is used for refinement checking, we introduce its CSP

representation and use it for presenting CSP expressions in the followings.

As FDR2 is implementation level, its file format is introduced with the dif-

ferences to official CSP.

An FDR2 compliant CSP file consists of three major parts: channel def-

initions, system specifications and system equations. The channel definition

is a kind of collective alphabet of the described systems: it lists all possible

events. The system specification is the actual set of CSP expressions that

define the behaviour of a system. A file may contain multiple systems. The

system equation is the root process of a system.

FDR2 treats the process alphabets and their parallel composition in a sig-

nificantly different way than the official CSP. According to [9], every process

has its own, intrinsic alphabet αP . A single parallel composition operator

(P || Q) is used. The synchronised events are not defined explicitly, they are

the intersection of the respective alphabets, i.e. αP ∩ αQ. An interleaving

process P ||| Q is the truly concurrent process, with no synchronisation even

if the intersection is not empty.

In FDR2 the processes lack the intrinsic alphabet definition. As men-

tioned, the channel definition contains the list of all possible events, but

they are not explicitly bound to a particular process. Thus, a parameterised

concurrency operator P[|X|]Q is used where X is the set of synchronised

events. All events outside the set are interleaved.

19

Except renaming, most of the other operators are represented according to

CSP. Renaming has a different notation. Assuming the renaming r(event1) =

renamed1, r(event2) = renamed2 and r(P) = R in CSP. The respective

FDR2 representation is:

R = P [[renamed1<-event1, renamed2<-event2]].

5.3 Abstract Syntax

The abstract syntax of CSP can be also represented as a typed graph. The

typed graph based metamodel for CSP is defined in this section. This way,

the semantic mapping can be defined as a typed graph transformation.

Figure 5.1: Metamodel for CSP

The elementary classes are the Event and Process with obvious meanings.

In both classes name, subscript and label attributes denotes a label.namesubscript

pattern. As CSP is used for refinement checking, identical process names are

not allowed. The side attribute indicates the particular side of the rule where

the process is.

20

Following the Composite Pattern [3], a process expression either repre-

sents a prefix, a process with set of events, renaming or other general binary

operator combining two expressions. A process with set is such a process

expression that has events associated with it. Hiding has the set of hidden

events, concurrency has the set of synchronised events and processes have

their own alphabets. The process identifier connected to the process assign-

ment is the declared process while the process connection is the definition.

CSP container represents the CSP file. Channel definitions and process as-

signments are defined through the corresponding aggregations. System equa-

tions are represented by the SystemExpression class with the systems name.

The meaning of Concurrency, Prefix, Choice and Hiding is discussed in Sec-

tion 5.1. The following two examples are presented for clarity.

5.3.1 Concurrency

An example concurrency scenario is shown in Figure 5.2. It shows the ex-

pression P = E [| {|a, b|} |] F.

Figure 5.2: Example Concurrency

The ProcessAssignment assigns the concurrency expression to the process

P . The Concurrency node has two operands inherited from BinaryOperator

with the left-hand side process E and the right-hand side F . The synchro-

nised events a and b are contained in the eventSet attribute inherited from

ProcessWithSet.

21

5.3.2 Renaming

The renaming R = P [[renamed1<-event1, renamed2<-event2]] from Sec-

tion 5.2 is shown in Figure 5.3.

Figure 5.3: Example Renaming

The ProcessAssignment defines the process R as a renaming. The used-

Process attribute of RenamingOperator shows the original process, which is

P in this case. The connected RenameArrows represent the <- arrow of the

renaming.

22

Chapter 6

Semantic Mapping

In order to verify the semantic relation between source and target mod-

els, UML models are mapped to CSP processes. The mapping is inspired

by triple graph grammar rules [18] but was implemented using the Tiger

EMF Transformer [22] tool. It consists of 45 rules organised in 4 major

groups (type-level, owned behaviour, instance-level, renaming). The pro-

duction rules are defined by rule graphs, namely a left-hand side (LHS), a

right-hand side (RHS) and possible negative application conditions (NACs).

These rule graphs are object-structures that contain objects typed over EMF

metamodels of UML diagrams (Fig. 3.4) as well as CSP expressions (Fig. 5.1).

These object-structures are also essentially attributed typed graphs.

Figure 6.1: Overview of the Transformation

23

The general mechanics of the transformation is as shown in Figure 6.1.

The component declarations derived from the components, port and inter-

faces form the framework of the semantic model. The behaviour of the sys-

tem is generated from the corresponding activity diagrams, thus completing

the component definitions. The instance level declarations are created using

both the component and composite structure diagrams. For every instance,

the behaviour is identical to the component. Thus, the behaviour of the

component instances are renamed from the type-level behaviour.

The transformation is initiated with rule InitSysEq shown in Figure 6.2.

It matches a component container, and creates the corresponding System-

Expression class. The attribute value P denote a variable that holds the

same value in both sides of the rule. It can be omitted in the RHS in case of

mapped objects.

Figure 6.2: Implementation of InitSysEq Rule

6.1 Type-Level Mapping.

The type-level mapping realises the generation of the component declara-

tions.

24

6.1.1 Components

The mapping of a component and its ports are shown in Fig. 6.3. The com-

ponent is mapped to a process definition with its owned behaviour (obtained

from the activity diagram) and port procsses in parallel. X and Y denotes

the shared events between the behaviour and the ports.

Figure 6.3: Mapping of a Component and its Ports

The rules in Figure 6.4 and 6.5 create the component and port processes,

as well as weaves the port processes to the component definitions.

Figure 6.4: Implementation of Component Rule

The Component rule in Figure 6.4 creates the process declaration and

definition for the corresponding component. The NAC, defined on CSP ex-

pressions, checks the existence of a similar process declarations. If none

exist, the matched component has not been transformed yet. Thus it cre-

ates the CSP expressions type.C def = type.C behaviour and the empty

type.C behaviour process definition. As the absence of an attribute is not

25

matchabe in EMT, the type label is used in both the component and port

processes, to indicate a type-leve process.

Figure 6.5: Implementation of Port Rule

The Port rule in Figure 6.5 creates the process declarations for the corre-

sponding ports and inserts them to the definition of the parent component.

The NAC works the same way as the one in the Component rule. The rule,

if applicable creates the empty type.P1 and type.P2 process definitions. As

the component definition is not empty, the root element can be matched as

a general process expression. Hence, the port processes are added to the

component definition in two steps:

1. type.C = type.P1 || C behaviour

2. type.C = type.P2 || (type.P1 || C behaviour).

6.1.2 Ports

The ports are mapped to processes with the events corresponding to their

interfaces. As shown in Figure 6.6, port type.P1 implementing provided a

26

interface engage with receive and reply events. In case of required interface

with port type.P2, the definition consists of the initial send and possible

return event.

Figure 6.6: Mapping of Port Behaviour

The process of generating the provided interface definition of type.P1 is

shown in Figure 6.7. Step 0 in Figure 6.7(a) is the initial declaration of the

port process. When an accept event action is found with the identical method

name in the corresponding interface a definition is created for the empty

process declaration as shown in Figure 6.7(b). This definition is the prefix

method1 recv -> type.P1. When a communication event corrresponding to

a different method is found, a choice is introduced in Figure 6.7(c). The rule

in Step 1 searched for an empty process definition, this rule needs a generic

process expression to insert the choice operator. When a send signal action

is present in the owned behaviour besides an accept event action, the system

sends a reply. Az shown in Figure 6.7(d), the necessary prefix method1 rply

-> type.P1 is inserted. Although not shown in Figure 6.7, the created events

are added to the corresponding event set of the concurrency operator in the

component and channel definition.

6.1.3 Interfaces

In the CSP representation ports are facades synchronising the events between

communication channels and owned behaviour. Interfaces are themselves

the communication behaviour. They contain all the possible communication

events, and through event synchronisation they define the allowed order of

events.

The mechanics behind the rules building the interface definitions are sim-

ilar to the ones wiht ports. The only difference is that the events are created

in send− receive and reply − return pairs if necessary.

27

(a) Step 0 (b) Step 1

(c) Step 2

(d) Step 3

Figure 6.7: Mechanics of the provided interface transformation

28

Figure 6.8: Mapping of an Interface

6.2 Behavioural Mapping

Every component has exactly one activity diagram as its owned behaviour.

This activity diagram is transformed to CSP to define the behaviour of the

component. This behavioural mapping was first presented in [2]. The idea

behind the mapping is to relate an Edge in the owned behaviour to a Process

in CSP.

6.2.1 Initial Node, Action and Final Node

First, we consider the initial node. Although this node is not mapped to

anything directly, its outgoing edge is related to a process declaration of the

same name. This will be the first process.

A previously declared process A is defined in terms of a new prefix ex-

pression, and the process B is declared from the outgoing activity edge.

The definition of an activity edge that ends in a final node is the SKIP

process

29

Figure 6.9: BhAction rule

As the most important rule from this group, the BhAction rule is pre-

sented in Figure 6.9 that implements the mapping of an action.

In the LHS the Action, its incoming and outgoing edges are matched

along with the process declaration corresponding to the incoming edge. In

the RHS, a prefix is created as well as the empty process declaration for the

outgoing edge. The created event is added to the channel definition.

6.2.2 Communication Events

Both the send signal and accept event action maps to a similar prefix as an

action node. As mentioned in Section 3.3, these events represent function

calls through the ports they are engaged in. Thus, the difference is the

distinction of the four communication primitives. Send and reply for the

send signal action; receive an return for the accept event action. Both actions

have two possible meanings, thus the transformation uses two rules for each.

30

Figure 6.10: LHS of SendSignalAction Rule 1

The LHS of one of the rules transforming send signal action is shown in

Figure 6.10. The pattern is similar to the one in Figure 6.9: the send signal

action, its incoming and outgoing edges. However, the corresponding port is

also matched. The corresponding port has to be connected to an interface

with a method of a similar name as the send signal action. If the interace

is required (as the one in the figure) an eventname send event is created.

In case of a provided interface the event is a reply event. The rules for the

accept event action are very similar to the one described.

6.2.3 Decision Node and Merge Node

The transformation of a DecisionNode depicted in Figure 6.12 is a more

complicated case. The concrete syntax is obvious, but the choice is a binary

operator. Thus, we have to build a binary tree bottom-up as depicted in

Figure 6.11. First else branch is matched with an arbitrary edge and create

the lowest element of the tree (in dark shade grey). Then the tree is built by

adding the elements one-by-one (in light shade grey).

Note that this transformation, which creates non-determinism at the syn-

tactic level, leads to semantically equivalent processes. According to [17], the

31

Figure 6.11: Abstract syntax tree for the result of DecisionNode transforma-
tion

order in which guards are evaluated is undefined and the modeler should ar-

range that each token only be chosen to traverse one outgoing edge, otherwise

there will be race conditions among the outgoing edges. Hence, if guard condi-

tions are disjoint, syntactically different nestings are semantically equivalent.

Figure 6.12: DecisionNode

The MergeNode is a simpler case, as illustrated in Figure 6.13. It is

mapped to an equation identifying the processes corresponding to the two

incoming edges.

6.2.4 Fork Node and Join Node

Fork node and join node represent semantically the most complex cases.

Before describing the transformation, we discuss some observations.

If in an activity diagram the names of the action nodes are unique, the

32

Figure 6.13: MergeNode

intersection of the alphabets of the corresponding processes is empty. This

would cause problems in official CSP, where the shared events are automat-

ically synchronised, and the processes may get stuck while waiting for some

random other process that accidentally has events with similarly names. As

mentioned in Section 5.2, the synchronisation points are explicitly defined,

and all other events interleave. We need synchronisation points in order to

implement the joining of processes. Thus we use an event pJoin as a syn-

chronisation point. This way all participating processes require simultaneous

participation. This fact is used to join concurrent processes by blocking them

until they can perform the synchronisation event.

The mapping for the fork node is shown in Figure 6.14. The concurrency

operator is binary, so by generating the nodes one-by-one, we create a binary

abstract syntax tree of concurrency nodes the same way we did in Figure 6.11

for the decision node. Since P ‖ (Q ‖ R) = (P ‖ Q) ‖ R, the different trees

are semantically equivalent.

Figure 6.14: ForkNode

The transformation of a join node is depicted in Figure 6.15. The first

edge that meets the join node is chosen to carry the continuation process,

while the others terminate in a SKIP . All processes engange with the pJoin

event before continuing.

33

Figure 6.15: Join Node

6.3 Instance-Level Mapping.

The composite structure diagram models the dynamic behaviour of a com-

ponent system. Hence, it needs to be used for checking of behavioural re-

finement. The instance-level mapping first creates the process declarations.

The behaviour is renamed from the type-level as described in Section 6.4.

6.3.1 Component Objects

To deal with multiple instances, component and port instance processes are

renamed according to their instance names as shown in Figure 6.16.

Figure 6.16: Mapping of a Component Instance

Aside from the generated renaming definition and instance name labels,

the rules creating the process declarations are similar to component and port

rules shown in Figures 6.4 and 6.5.

6.3.2 Channels

Channels are implementations of interface definitions. The channel object

maps to a process declaration as shown in Figure 6.17, since its behaviour is

renamed from the corresponding interface.

34

Figure 6.17: Mapping of a Channel

6.4 Renaming Rules

The only missing piece of the semantic mapping is the behaviour of the in-

stance level objects. This behaviour is acquired by instantiating the be-

haviour of the components. This instantiation is done by renaming the

events. The structural elements are mapped to processes, thus the distinc-

tion between the RHS and LHS was important. On the contrary, similar

events have to bear similar name.

As shown in Section 6.3, instances of structural artifacts are renamed

using their instance name. Structure based renaming, i.e. the label is the

instance name of the owning object, can be used for events not present in

both sides of the refactoring rule. They are considered to be deleted or

created. However, event instances that are similar on both rule sides need a

distinction. As events are possibly relocated in the hierarchy, their renaming

cannot be based on structural notions. These event instances, are renamed

by a unique mapid overriding the structure based renaming.

Figure 6.18: Renaming of Non-Mapped ActionNodes

The three object from the architectural model that maps to events are the

35

action, send signal action and accept event action. As the two communication

actions can indicate two different communication primitives, this resolves to

five different cases as shown in Figure 6.18 for the non-mapped actions only.

As the simplest of all, the renaming of a non-mapped action is shown in

Figure 6.19. The action is matched with its container and the relevant com-

ponent instance. The false isMapped attribute ensures that the matched

action is not mapped. A renaming arrow is inserted to the CSP expression,

where the original event is renamed with a label bearing the name of the

relevant component object. The renamed event is added to the channel def-

inition, and to the list of hidden events in the system equation. The reason

for hiding is explained in Section 6.5. The renaming of the communication

nodes are works the same way, they only encompass a more complicated

pattern in the LHS.

Figure 6.19: RnActionNoMap rule

The rules for the mapped elements are slightly different. The isMapped

attribute in their case is true with an integer MapId present, that holds

their system-wide unique identification. All mapped elements, regardless of

36

the structural status, are labelled with the map id.

6.5 Application to the Rule

To verify the compatibility of the rule with a semantic relation, say trace

refinement, we map the instance levels of both left- and right-hand side to

their semantic representation and verify the relation between them. For the

left-hand side, for example the refactoring rule from Figure 4.4, this yields

System LHS = (((a [|X|] ch-n) [|Y|] c.C) [|Z|] ch-j) [|W|] b \
{|unmapped1, unmapped2, ... |}

by placing all component instances and connectors in parallel and hiding

the unmapped events. As the set of events X, Y, Z and W are the communica-

tion events, whenever a send event happens at the component, the channel

attached changes state to and waits for the corresponding recv event at the

other end.

On the right hand side we hide all internal communication between in-

stances of C1 and C2. For example, referring to our activity diagram in

Fig. 4.3(a), the alertData and callStarted events are hidden because they

serve the combination between the two parts of the newly split component C.

To check if sem(L) v sem(R) we would take into account the CSP mappings

of all activity diagrams of components involved in the transformation.

The assertion of SystemRHS vT SystemLHS successful in FDR2, and

indicates trace refinement.

37

Chapter 7

Correctness of Rule-level

Verification

In this chapter we demonstrate that the method of verifying a transformation

by verifying an extracted rule is indeed correct. The crucial condition is

the compositionality of the semantic mapping, which guarantees that the

semantic relation R (think refinement or equivalence) is preserved under

embedding of models. We will first formulate the principle and prove that,

assuming this property, our verification method is sound. Then we establish

a general criterion for compositionality and justify why this applies to our

semantic mapping.

7.1 Correctness

The overall structure is illustrated in Fig. 7.1. The original model (compo-

nent, composite structure and activity diagrams) is given by graph G. The

refactoring results in graph H by the application of rule p : L → R at match

m. Applying the semantic mapping sem : GraphsTG → (D,v, C) to the

rule’s left- and right-hand side, we obtain the semantic expressions sem(L)

and sem(R). Whenever the relation sem(L) R sem(R) (say R = v is for

example CSP trace refinement, so all traces of the left processes are also

traces of the right), we would like to be sure that also sem(G) R sem(H)

38

L

m

²²

H

sem

½½

// Rv

sem

¥¥

m∗
²²

G_
sem

²²

// H_
sem

²²
sem(G) R sem(H)

sem(L)

OO

R

KS

sem(R)

OO

Figure 7.1: Semantic correspondence for behaviour verification

(traces of sem(G) are preserved in sem(H)).

Both the source and target models are represented as typed graphs. For

clarity, we present the definition of typed graphs that we use.

Definition 7.1.1 (typed graph and typed graph morphism [4]) A type

graph is a distinguished graph TG = (VTG, ETG, sTG, tTG). VTG and ETG are

called vertex and edge label alphabet respectively. Then a tuple (G, type) of

a graph G together with a graph morphism type : G → TG is called a typed

graph.

Given typed graphs GT
1 = (G1, type1) and GT

2 = (G2, type2), a typed graph

morphism f : GT
1 → GT

2 is a graph morphism f : G1 → G2 such that

type2 ◦ f = type1.

G1
=

f //

type1

²²

G2

type2
zzz

}}zz
z

TG

As the concept of context is central in compositionality, a context C

in graph G is the set of surrounding nodes and edges around an arbitrary

subgraph D in G, i.e. C = G \D. Context C is not necessarily a graph due

to the possible dangling edges.

The main assumption is the compositionality of the semantic mapping

sem. Intuitively, it is similar to the compositionality property of denota-

tional semantics. As for simple mathematical expressions, we assume that

39

the meaning of expression 2 + 5 is determined by the meaning of 2, 5 and

the semantics of the + operator, i.e. [[2 + 5]] = [[2]]
⊕

[[5]].

Figure 7.2: Compositinal Semantic Mapping

In terms of model transformations, compositionality is presented in Fig-

ure 7.2. A system consisting of components A and B with a connector c is

mapped to a semantic domain through transformation sem. The result is

such a set of semantic expressions where sem(A), sem(B) and sem(c) are

distinguishable and their composition represents the semantics of the whole

system.

Definition 7.1.2 (compositionality) A mapping sem : GraphsTG → (D,v
, C) is compositional if for each injective graph morphisms m : L → G there

exists a context E such that sem(G) ≡ E[sem(L)]. Moreover, this context

is uniquely determined by the part of G not in the image of L, i.e., given

a pushout diagram as below with injective morphisms only, and a context F

with sem(D) ≡ F [sem(K)], then E and F are equivalent.

K
l //

d
²²

L

m

²²
D

g // G

The concept of compositionality is depicted in Figure 7.3. The semantic

expression generated from G contains the one derived from L (through the

inclusion morphism m). Also it is uniquely determined by the part of G not

in the image of L.

Definition 7.1.2 applies particularly where L is the left hand side of a

rule and G is the given graph of a transformation. In this case, the se-

mantic expressions generated from L contains the one derived from G up to

equivalence, while the context E is uniquely determined by G \m(L).

40

Figure 7.3: Unique determination of the context

Theorem 7.1.1 Assume a compositional mapping sem : GraphsTG → (D,v
, C). Then, for all transformations G

p,m
=⇒ H via rule p : L → R with injective

match m, it holds that sem(L) v sem(R) implies sem(G) v sem(H).

Proof 1 By assumption the match m, and therefore the comatch m∗ : R →
H are injective. Since the mapping sem is compositional, according to Defi-

nition 7.1.2 there are contexts E and F such that sem(G) ≡ E[sem(L)] and

sem(H) ≡ F [sem(R)]. Now, E[sem(L)] v E[sem(R)] since sem(L) v sem(R)

and v is closed under context. Finally, E[sem(R)] ≡ F [sem(R)] by the

uniqueness of the contexts.

The statements in Theorem 7.1.1 hold for the relation ≡, being the sym-

metric closure of v.

41

Chapter 8

Compositionality.

In this section we present a proof sketch for the fact that our semantic map-

ping is compositional. The result is interesting by itself because it holds for a

large class of mappings described by triple graph grammars [18]. The idea is

that triple graph grammars describe model transformations by creating the

target from the source model and linking both by a relation model. Hence

it is not necessary to remove the source model, and rules can be designed in

such a way that also on the relation and target model rules are non-deleting.

For simple rules (without negative application conditions), composition-

ality then follows directly from the fact that the transformations realising

the semantic mapping can be embedded into larger contexts.

8.1 Simple Graph Transformations

In this section we give a condition for compositionality for semantic mappings

specified by simple graph transformations.

The semantic mapping sem is defined by a typed graph transformation

system GTS = (TG, P) consisting of a type graph TG and a set of typed

graph productions P .

The result of the semantic mapping sem on a source graph G0 is sem(G0) =

Gn if and only if it is a typed graph transformation G0
p1⇒ G1...Gn−1

pn⇒ Gn

with rules p1, ..., pn ∈ P and it is terminating (@p ∈ P that can be applied

42

to Gn).

It is important to note that only a globally deterministic graph transfor-

mation produces a unique result for a source graph, regardless of the rule

application order. A graph transformation is globally deterministic only if

it is confluent or locally confluent and terminating [4]. As termination was

already required for sem, it has to be locally confluent, otherwise it is not

well-defined.

Theorem 8.1.1 Assume a mapping sem : G0
∗⇒ Gn from typed graphs to

semantic domain (D,v, C) described by a graph transformation system GTS.

If all rules of GTS are non-deleting and do not contain negative application

conditions, then sem is compositional.

Proof 2 Given the mapping sem : G0
∗⇒ Gn from graphs to semantic do-

main (D,v, C) by sem(G0) = Gn and a pushout (1) with injective morphisms

m0, n0.

G0

m0

²²

//

(1)

G′
0

n0

²²
H0

// H ′
0

If sem is compositional, then exists a context E such that sem(H ′
0) ≡

E[sem(G′
0)] and sem(H0) ≡ E[sem(G0)].

The main argument is based on the Embedding Theorem [4].

B
b0 //

²²

G0
sem +3

m0

²²

Gn

mn

²²
C //

(2)

H0
sem +3 Hn

(3)

For the transformation sem : G0
∗⇒ Gn we create a boundary graph B

and a context graph C. The boundary graph is the smallest subgraph of G0

which contains the identification points and dangling points of m0. Pushout

(2) is the initial pushout [4] of the morphism m0 : G0 → H0.

If none of the productions of sem deletes any item of B, then m0 is

consistent with sem and there is an extension diagram over sem and m0 [4].

This basically means that Hn is the pushout complement of sem and m0, thus

43

can be determined without applying the transformation sem on H0. By the

assumption that all rules of sem are non-deleting, sem is consistent with m0.

Thus, according to the Embedding Theorem, we have an extension diagram,

as depicted below, where (2) and (2′) are initial pushouts and the following

equations hold.

Hn
∼= Gn +B E = E[Gn] =⇒ Hn ≡ E[Gn] (8.1)

H ′
n
∼= G′

n +B E = E[G′
n] =⇒ H ′

n ≡ E[G′
n] (8.2)

G′
0

sem +3

n0

²²

G′
n

nn

²²

B

77nnnnnnnnnnnnnnnn

²²

//

(2)

(2′)

G0

m0

²²

>>||||||||
sem +3 Gn

mn

²²

H ′
0

sem +3 H ′
n

E

77nnnnnnnnnnnnnnnn // H0

>>||||||||
sem +3 Hn

We have sem(G0) = Gn, sem(H0) = Hn and sem(G′
0) = G′

n, sem(H ′
0) =

H ′
n.

Thus the following equations hold.

sem(H ′
0) = H ′

n ≡ E[G′
n] = E[sem(G′

0)] (8.3)

sem(H0) = Hn ≡ E[Gn] = E[sem(G0)] (8.4)

8.2 Graph Transformations with NACs

In Section 8.1 the compositionality of graph transformations with non-deleting

rules was proved. However in order to control the transformation, negative

application conditions (NACs) are used. In Theorem 8.2.1 we show, that

NACs do not disturb the compositionality, thus a non-deleting transforma-

tion with NACs remain compositional.

Definition 8.2.1 (negative application condition [4]) A simple nega-

tive application condition is of the form NAC(x), where x : L → X is a

44

morphism. A morphism m : L → G satisfies NAC(x) if there does not exist

a morphism p : X → G in M ′ with p ◦ x = m:

L x //

m

²²

X

p

~~
G

Before the establishment of Theorem 8.2.1, the necessary definitions are

presented.

Definition 8.2.2 (gluing and created points) Given a (typed) graph pro-

duction p = (L
l←− K

r−→ R).

• The gluing points GP are those nodes and edges in L that are not

deleted by p, i.e. GP = lV (VK) ∪ lE(EK) = l(K).

• The created points CP are those nodes and edges in R that are created

by p, i.e. CP = rV (VK)\VK ∪ rE(EK)\EK.

The concept of created points is demonstrated in Figure 8.1.

Figure 8.1: Production Rule with Created Points

Since the C node is deleted, the only gluing points are the two A nodes.

They are not deleted by the rule in Fig. 8.1. The created points are the B

nodes on the right hand side of the rule.

It is possible that the B nodes are always - if present - created or gluing

points in every production rule of a graph transformation system. This means

that the node type B is such a special type that none of its instances are

deleted. This observation leads to the definition of a stable type.

Definition 8.2.3 (stable types) Assume a typed graph transformation sys-

tem GTS = (TG, P).

45

Stable types ST ⊆ TG = (VST , EST) are those nodes and edges in the type

graph TG, whose instances are not deleted by any production p ∈ P . i.e.

ST = {v ∈ VTG | ∀p ∈ P : v = typeV (w) ∧ w ∈ (CPpi
∪ GPpi

)} ∪ {e ∈
ETG | ∀p ∈ P : e = typeE(f) ∧ f ∈ (CPpi

∪GPpi
)} .

In an instance graph, stable points are those nodes and edges that are of

a stable type.

Although NACs used to be connected to the LHS, thus forming a pre-

condition, NACs can be defined as a postcondition and connected to RHS

of the production rule. The left NACs are equivalent to the right NACs as

they can be constructed from them [12]. The left equivalent of a NACR is

denoted as Lp(NACR).

Figure 8.2: Right Negative Application Condition

As stated in Definition 8.2.1, a NAC is true, thus enables the application

of the production rule, if the pattern cannot be found in the host graph.

However, as shown in Figure 8.2, a right NAC can form a restriction on

created points. If the NACR is different from the RHS (as in that case it

disables the application of the rule altogether) it is always true. As shown

in Figure 8.2 it is simply impossible to find a connected C node to the B

nodes that has just been created. The created points are in fact just came

to being, and thus the host graph will never contain the disabling pattern.

Corollary 8.2.0.1 Assume a rule p : L
l←− K

r−→ R with negative application

condition NAC(ni) where ni : L → Ni that has only stable points with at

least one created point in Ni \ ni ◦ r(K). According to the construction of

left from right application conditions, the pushout complement (1) of (K →
Z,Z → Ni) does not exists. Thus, the n′i = id and NAC(n′i) is satisfied by

arbitrary match in Q.

46

L

n′i
²²

Koo //

²²
(1)

R

ni

²²
N ′

i Zoo // Ni

Theorem 8.2.1 Assume a mapping sem : G0
∗⇒ Gn from typed graphs

to semantic domain (D,v, C) described by a graph transformation system

GTS = (TG, P) with stable types ST ⊆ TG. The mapping sem is composi-

tional if:

1. ∀p ∈ P is non-deleting

2. ∀NAC(n), n : L → N for p ∈ P : L
l←− K

r−→ R contains only stable

points in N \ n ◦ r(K).

3. G0 does not contain any stable points.

Proof 3 If the extension diagram exists for a non-deleting transformation,

Theorem 8.1.1 showed it to be compositional. To prove compositionality for

a transformation with NACs, we have to prove the existence of the exten-

sion diagram, and then compositionality follows from Theorem 8.1.1. As

the equivalent left NACs can be constructed from the right NACs, the NACs

throughout this proof are assumed to be left NACs, if not explicitly stated on

the contrary.

The extension diagram exists in case of NACs, if the transformation not

only boundary-consistent [11], but also NAC-consistent [12]. According to the

synthesis construction of Concurrency Theorem a concurrent rule pc with a

concurrent match gc exists [4]. The concurrent rule pc is basically the merge

of all rules for a specific rule application order in sem : G0
∗⇒ Gn such that

the target graph Gn is produced by the application of pc on the source graph

G0.

In graph transformations containing NACs, a concurrent NACpc exists

for the concurrent rule pc. To achieve NAC-consistency, we have to show,

that k0 ◦ gc |= NACpc with NACpc the concurrent NAC, gc the concurrent

match induced by t and k0 : G0 → H0 the inclusion morphism [12].

47

The main idea of the proof is, according to Corollary 8.2.0.1, if a NACR

contains created points, the corresponding NACL is always true. We distin-

guish two cases:

Case 1: There are no production rules pi, pi+1 ∈ P such that NACi+1

contains only elements that are gluing points in pi. The proof is by mathe-

matical induction over the direct transformation steps n.

Basis. n = 1. In the beginning of the transformation it is possible to

have several transformation rules that do not contain stable elements at all.

Since the NACs have restrictions only on the stable elements (assumption 2),

and G0 does not contain any stable element (assumption 3), the NACs won’t

apply enabling the application of the rules. This case is similar to the one

where there are no NACs at all.

Thus we have to consider n = 1 when the direct transformation t0 :

G0
p0,m0
=⇒ G1 is applied via rule p0 : L0 ←− K0 −→ R0 and NACp0.

The concurrent rule pc and concurrent NACpc induced by G0 ⇒ G1 is

defined by pc = p0 and NACpc = NACp0. Since the NACpc contains only

stable elements, the morphism k0 is NAC-consistent. Thus, the extension

diagram exists over t0 and k0.

Ni

ei

²²
(1)

Nj

z1

~~
(3)N ′

i L′c

ni

__@@@@@@@@

mc

²²

g′c

··

K ′
c

oo //

²²

R′
c

e′c ÃÃ

h′c ¾¾

N ′
j Ln

nj

OO

en
~~

gn

¤¤

Kn
oo //

²²

Rn

²²

gn+1

­­

Lc

n′i
``

gc

²²

Cc
loo //

²²

(2)

E

n′j

OO

h

²²

Cn

²²

oo r // Rc

hc

²²

Kc

kc

aa
kn

44

G0 Dn
oo // Gn Doo // Gn+1

Induction Step. Consider tn : G0
n⇒ Gn ⇒ Gn+1 via the rules p0, p1, ..., pn.

The concurrent rule for p0, p1, ..., pn−1 is p′c = L′c ←− K ′
c −→ R′

c as shown in

48

the diagram above.

To prove the NAC-consistency, a deeper analysis of the concurrent NACpc

construction is necessary. The concurrent NACpc consists of two parts:

Dmc(NACL′c) and DLpc(NAC(nj)).

Dmc(NACL′c) is created along pushout (1). It is the resultant NAC from

the first rule p′c, such that g′c |= NACL′c ⇔ gc |= Dmc(NACL′c) [12].

The other resultant NAC, DLpc(NAC(nj)), is transformed from the NAC(nj)

of second rule pn. In fact NAC(n′j) is a postcondition for the production rule

Lc ←− Cc −→ E.

N ′′
j Z //oo N ′

j

Lc

n′′j

OO

Cc
oo //

OO

(4)(5)

E

n′j

OO

As defined in construction of NACs on Lc from NACs on L1, DLpc(NACnj
) =

Lp(De1(NAC(nj))) such that gn |= NACLn ⇔ gc |= DLpc(NACLn) [12].

According to the synthesis construction of Concurrency Theorem with

NACs the concurrent rule pc with NACs induced by G0
n+1
=⇒ Gn+1 is pc =

Lc
l◦kc←−− Kc

r◦kn−−→ Rc (with match gc : Lc → G0, comatch hc : Rc → Gn+1)

and NACpc = DLpc(NACLn) ∪ Dmc(NACL′c)). It is a valid direct graph

transformation and gc satisfies NACpc [12].

The first component of NACpc is the concurrent NAC of the first n

transformation. We have to show that for an arbitrary k0 : G0 → H0,

k0 ◦ gc |= Dmc(NACL′c).

As introduced, Den(NAC(nj)) is the gluing of E and Nj as the right-

hand NAC of production Lc
l←− Cc −→ E. As we assumed that the NACs

only contains stable elements, and p0 creates the first stable elements, Lc,

the LHS of the concurrent production pc contains no stable elements. Thus

according to Corollary 8.2.0.1 the pushout complement (4) does not exists,

and NAC(n′′j) is satisfied by arbitrary gc and k0. Thus, the extension diagram

exists, and from Theorem 8.1.1 the compositionality follows.

Case 2: A rule pair pi, pi+1 ∈ P exists such that all stable elements in

NACi+1 are gluing points in pi. In this case the Corollary 8.2.0.1 does not

49

apply for this rule pair.

We create the concurrent rule pci
for pi, pi+1 with concurrent NACs Dm(NACLi

)

and DLpc(NACLi+1
). From Concurrency Theorem with NACs if follows that

we can use the concurrent rule pci
in transformation sem instead pi, pi+1.

If other rule pairs pj, pj+1 ∈ P exists that NACj+1 contains only gluing

points from pj we perform the previous step until there will be no such rule.

This is possible, since G0 does not contain stable elements, since all stable

elements are created at a certain pk production rule, and then they will be

created points in the NACk+1. Then compositionality follows from Case 1.

The conditions in Theorem 8.2.1 are naturally satisfied in the case of

triple graph grammars [18]: Created types are elements of the target and

relational metamodels, hence they do not occur in source models. The only

real restriction is that no negative application conditions are allowed on the

source model. Our mapping from UML architectural models to CSP satisfies

these restrictions and is thus compositional.

50

Chapter 9

Conclusion and Future Work

The results presented in this paper are spanning two levels of abstraction.

At the level of architectural refactoring, we have developed a method for

verifying transformations of UML architectural models based on a semantic

mapping into CSP processes. More generally, we have shown that the cor-

rectness of such an approach depends on the compositionality of the semantic

mapping, and that this property can be guaranteed by a structural condition

on the form of the mapping rules which is easily satisfied, for example, by

triple graph grammars.

Future work will continue to address both levels. At the concrete level

we hope to be able to come up with a catalogue of verified refactoring rules,

rather than relying on the extraction of rules from individual transformations

as in this paper. It remains to be seen if a general catalogue comparable to

OO refactorings is possible. In general, the approach of rule extraction needs

to be supported by heuristics about which elements of a model, apart from

those that are changed, should be included into the rule in order to verify its

semantic compatibility.

Acknowledgements

This work is funded by the IST-FET IST-2005-16004 project SENSORIA
(Software Engineering for Service-Oriented Overlay Computers).

51

Bibliography

[1] Robert Allen, Rémi Douence, and David Garlan. Specifying and analyz-
ing dynamic software architectures. Lecture Notes in Computer Science,
1382, 1998.

[2] Dénes Bisztray and Reiko Heckel. Rule-level verification of business pro-
cess transformations using csp. In Proc of 6th International Workshop on
Graph Transformations and Visual Modeling Techniques (GTVMT’07),
2007.

[3] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. A System of Patterns, volume Volume 1 of Pattern-
Oriented Software Architecture. John Wiley and Sons, 1st edition, Au-
gust 1996.

[4] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. EATCS Monographs
in Theoretical Computer Science. Springer, 2006.

[5] G. Engels, J.M. Küster, L. Groenewegen, and R. Heckel. A methodol-
ogy for specifying and analyzing consistency of object-oriented behav-
ioral models. In V. Gruhn, editor, Proc. European Software Engineering
Conference (ESEC/FSE 01), Vienna, Austria, volume 1301, pages 327–
343. Springer Verlag, 2001.

[6] Formal Systems Europe Ltd. FDR2 User Manual, 2005.
http://www.fsel.com/documentation/fdr2/html/index.html.

[7] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 1st edition edition, 1999.

[8] Dan Hirsch, Paolo Inverardi, and Ugo Montanari. Graph grammars
and constraint solving for software architecture styles. In ISAW ’98:

52

Proceedings of the third international workshop on Software architecture,
pages 69–72, New York, NY, USA, 1998. ACM Press.

[9] Charles Antony Richard Hoare. Communicating Sequential Processes.
Prentice Hall International Series in Computer Science. Prentice Hall,
April 1985.

[10] Diogenes Laertius. Lives of Eminent Philosophers, volume 2. Loeb
Classical Library, January 1925.

[11] Leen Lambers. Adhesive high-level replacement systems with negative
application conditions. Technical report, Technische Universität Berlin,
2007.

[12] Leen Lambers, Hartmut Ehrig, Fernando Orejas, and Ulrike Prange.
Adhesive high-level replacement systems with negative application con-
ditions. In Proceedings of Applied and Computational Category Theory
Workshop. Kluwer Academic, 2007.

[13] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In
M. Odersky, editor, European Conference on Object-Oriented Program-
ming (ECOOP), volume 3086 of Lecture Notes in Computer Science,
pages 491–516. Springer-Verlag, 2004.

[14] Jeff Magee and Jeff Kramer. Dynamic structure in software architec-
tures. In SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT sym-
posium on Foundations of software engineering, pages 3–14, New York,
NY, USA, 1996. ACM Press.

[15] Tiago Massoni, Rohit Gheyi, and Paulo Borba. An approach to
invariant-based program refactoring. In Software Evolution through
Transformations 2006. Electronic Communications of the EASST, 2006.

[16] Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour
preserving program transformations. In ICGT ’02: Proceedings of the
First International Conference on Graph Transformation, pages 286–
301, London, UK, 2002. Springer-Verlag.

[17] OMG. Unified Modeling Language, version 2.1.1, 2006.
http://www.omg.org/technology/documents/formal/uml.htm.

[18] Andy Schürr. Specification of graph translators with triple graph gram-
mars. In Tinhofer, editor, Proc. WG’94 Int. Workshop on Graph-
Theoretic Concepts in Computer Science, number 903, pages 151–163.
Springer-Verlag, 1994.

53

[19] Bran Selic. Using uml for modeling complex real-time systems. In
LCTES ’98: Proceedings of the ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Tools for Embedded Systems, pages 250–260,
London, UK, 1998. Springer-Verlag.

[20] Gerson Suny, D. Pollet, Y. Le Traon, and J.-M. Jzquel. Refactoring uml
models, 2001.

[21] Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. Dynamic
change management by distributed graph transformation: Towards con-
figurable distributed systems. In TAGT’98: Selected papers from the 6th
International Workshop on Theory and Application of Graph Transfor-
mations, pages 179–193, London, UK, 2000. Springer-Verlag.

[22] Tiger Developer Team. Tiger EMF Transformer, 2007. http://www.

tfs.cs.tu-berlin.de/emftrans.

[23] Dániel Varró. Model transformation by example. In Proc. Model Driven
Engineering Languages and Systems (MODELS 2006), volume 4199 of
LNCS, pages 410–424, Genova, Italy, 2006. Springer.

[24] Michel Wermelinger and José Luiz Fiadeiro. A graph transformation ap-
proach to software architecture reconfiguration. Sci. Comput. Program.,
44(2):133–155, 2002.

[25] Martin Wirsing, Allan Clark, Stephen Gilmore, Matthias Hölzl, Alexan-
der Knapp, Nora Koch, and Andreas Schroeder. Semantic-Based De-
velopment of Service-Oriented Systems. In E. Najn et al., editor, Proc.
26th IFIP WG 6.1 International Conference on Formal Methods for
Networked and Distributed Systems(FORTE’06), Paris, France, LNCS
4229, pages 24–45. Springer-Verlag, 2006.

54

